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Abstract: Background: Current artificial intelligence (AI) in histopathology typically specializes
on a single task, resulting in a heavy workload of collecting and labeling a sufficient number of
images for each type of cancer. Heterogeneous transfer learning (HTL) is expected to alleviate the
data bottlenecks and establish models with performance comparable to supervised learning (SL).
Methods: An accurate source domain model was trained using 28,634 colorectal patches. Addi-
tionally, 1000 sentinel lymph node patches and 1008 breast patches were used to train two target
domain models. The feature distribution difference between sentinel lymph node metastasis or
breast cancer and CRC was reduced by heterogeneous domain adaptation, and the maximum
mean difference between subdomains was used for knowledge transfer to achieve accurate classi-
fication across multiple cancers. Result: HTL on 1000 sentinel lymph node patches (L-HTL-1000)
outperforms SL on 1000 sentinel lymph node patches (L-SL-1-1000) (average area under the curve
(AUC) and standard deviation of L-HTL-1000 vs. L-SL-1-1000: 0.949 ± 0.004 vs. 0.931 ± 0.008,
p value = 0.008). There is no significant difference between L-HTL-1000 and SL on 7104 patches
(L-SL-2-7104) (0.949 ± 0.004 vs. 0.948 ± 0.008, p value = 0.742). Similar results are observed for breast
cancer. B-HTL-1008 vs. B-SL-1-1008: 0.962 ± 0.017 vs. 0.943 ± 0.018, p value = 0.008; B-HTL-1008
vs. B-SL-2-5232: 0.962 ± 0.017 vs. 0.951 ± 0.023, p value = 0.148. Conclusions: HTL is capable
of building accurate AI models for similar cancers using a small amount of data based on a large
dataset for a certain type of cancer. HTL holds great promise for accelerating the development of AI
in histopathology.

Keywords: artificial intelligence in histopathology; heterogeneous transfer learning; cancer diagnosis;
small datasets

1. Introduction

Cancer is a leading cause of death worldwide, with common types including colorectal
cancer (CRC), breast cancer, and others. In 2020, the global fatality rates for CRC and breast
cancer were 9.4% and 6.9%, respectively [1]. Histopathology is an accurate method for
diagnosing cancer [2], but it requires specialized knowledge and clinical experience from
pathologists. Unfortunately, there is a shortage of pathologists worldwide, with the number
of active pathologists decreasing by 17.53% in the United States from 2007 to 2017 [3].
In low-income countries, such as those in sub-Saharan Africa, there are fewer than one
pathologist per 500,000 people [4].

The use of artificial intelligence in histopathology (HAI) has the potential to address
the aforementioned limitations, and improve the accuracy and efficiency of diagnosis [5].
For instance, Wang et al. developed an innovative automated AI approach for CRC
diagnosis, which achieved a testing accuracy of 98.11% [6]. Kanavati et al. also trained
a convolutional neural network based on the EfficientNet-B3 architecture to differentiate
between lung carcinoma and non-neoplastic tissues, achieving highly promising results [7].
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These achievements have been made possible by leveraging deep learning methods, which
require massive amounts of data collection and annotation. For instance, ref. [6] gathered
14,680 whole slide images (WSIs) from 9631 subjects and labeled 170,099 patches. Similarly,
ref. [7] utilized a dataset of 3704 WSIs acquired from Kyushu Medical Centre for training
and validation purposes. Furthermore, data preparation must be repeated for each cancer,
resulting in an extremely heavy workload and becoming a bottleneck for HAI.

Recently, significant progress has been made in reducing the number of annotations [8],
including semi-supervised [9–11] and unsupervised learning [12–14]. However, despite
these advancements, large amounts of unlabeled images are still needed [15]. The use of
generative adversarial networks for data generation has shown promise in decreasing the
amount of annotation and data collection required [16–18]. However, the generated data
is often limited by the existing data distribution [19], which can lead to the generation
of incorrect or misleading data that can negatively impact the training of the model [19].
Additionally, most studies focused on a single type of cancer [5,20], necessitating repetitive
data preparation for each new type of cancer.

In fact, some cancer cells from different types of cancer share similar characteristics and
features, such as large nuclei and strong adhesion among cells [21], indicating the potential
for building AI models across multiple cancer types. Heterogeneous transfer learning
(HTL) [22] is a method that transfers these similar features between different distributed
datasets and has been widely applied in natural images and some medical images, such as
CT images [23] and MR images [24]. However, its effectiveness in histopathology images
has not yet been proven.

We discuss here three cancers including CRC, breast cancer, and sentinel lymph node
metastasis, all originating from glandular epithelium and falling under the category of
adenocarcinoma. These cancers display similar tissue morphology and structure, such as
the shape of cancer nests, morphology of single cancer cells, and overlapping molecular
phenotypes. Furthermore, the interstitium of these carcinomas also share similarities [21].

An HTL framework is proposed in this study. The framework extracts general features
of cancer cells from NCT-CRC-HE-100K, a large CRC dataset [25], and transfers them to
the classification task of sentinel lymph node metastasis and breast cancer. The framework
only uses a small number of labeled images [26,27] for training across multiple cancers and
demonstrates that a robust model can be obtained by incorporating features from CRC.
The main contributions of this study can be summarized as follows:

(1) We demonstrate that features extracted from CRC can aid in the learning of lymph
node metastasis and breast cancer, potentially reducing the amount of data needed
for these cancer types;

(2) The presented HTL method demonstrates generalizability across different types of
cancers and has the potential to accelerate the development of HAI.

2. Methods
2.1. Datasets

We utilized three different datasets comprising of three types of cancers, namely
NCT-CRC-HE-100K [25], Camelyon16 [26], and BreaKHis [27]. NCT-CRC-HE-100K is
a large dataset containing 100,000 non-overlapping patches of size 224 × 224, derived
from 86 Hematoxylin-eosin (H&E) stained WSIs of CRC. Out of the 100,000 patches,
14,317 patches are malignant and 85,683 patches are benign.

The Camelyon16 dataset is composed of 399 H&E stained WSIs of sentinel lymph
nodes, divided into 270 training and 129 testing WSIs. The training set comprises of
160 benign WSIs and 110 WSIs containing malignant tumor tissue, while the test set
contains 80 benign WSIs and 49 WSIs containing malignant tumor tissue. It should be
noted that sentinel lymph node metastasis is a consequence of breast cancer cells spreading
to lymph nodes.

The BreaKHis dataset consists of 2013 images of size 700 × 460, acquired at
20× magnification from 82 subjects’ H&E stained WSIs. Out of the 2013 images, 623
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are benign from 24 subjects, and the other 1390 images are malignant from 58 subjects.
More detailed information and sample images of the three datasets can be found in Table 1
and Figure 1, respectively.

Table 1. Datasets for three types of cancer.

Dataset Name
Slides/Patients Images/Patches

Malignant Benign Total Malignant Benign Total

NCT-CRC-HE-100K NA NA 86 14,317 85,683 100,000

Camelyon16 Training set 110 160 270
NA NA NATest set 49 80 129

BreaKHis 58 24 82 1390 623 2013

Figure 1. The sample images of three datasets. The columns from left to right are CRC, sentinel
lymph node metastasis and breast cancer.

2.2. Data Preprocess Pipeline

We utilized all 14,317 malignant patches and randomly selected 14,317 benign patches
from the NCT-CRC-HE-100K dataset to construct a balanced dataset (Dataset-CRC). In this
study, Dataset-CRC serves as the source domain dataset, and all of its samples were used
as the training set for training the CRC model of source domain.

The Camelyon16 dataset has fixed WSIs for training and testing. In the benign WSIs,
all tissue regions are cut into non-overlapping 300 ∗ 300 patches, while in malignant WSIs,
only malignant tumor tissue regions are used to extract the patches. To avoid extracting
excessive redundant patches and to balance the number of malignant and benign patches,
we randomly select 40 patches from each malignant WSI and 28 patches from each benign
WSI in the training set. Furthermore, the patches are divided into a training set and a
validation set based on an 8:2 ratio of the WSIs. Moreover, we used all 54,105 malignant
patches and 54,014 randomly selected benign patches from the test set to evaluate the
performance of the model. These patches were used to create the Dataset-SLN.

Non-overlapping patches are extracted from 2013 images of 82 patients in the BreaKHis
dataset, resulting in 3738 benign patches and 8340 malignant patches. From the
8340 malignant patches, 3738 patches are randomly selected and combined with all 3738 be-
nign patches to form Dataset-BRE. These patches are then divided into training, validation,
and test set at a ratio of 7:1:2, ensuring that patches from the same patient do not appear in
multiple sets. The preprocessed three datasets are shown in Table 2.
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Table 2. The preprocessed datasets.

Domain Dataset
Name

Dataset
Usage Type Slides/Patients Patches

Source
domain

Dataset-CRC Training set
Malignant NA 14,317

Benign NA 14,317
Total 86 28,634

Target
domain

Dataset-SLN

Training set
Malignant 88 3520 *

Benign 128 3584 *
Total 216 7104

Validation set
Malignant 22 880 *

Benign 32 896 *
Total 54 1776

Test set
Malignant 49 54,105

Benign 80 54,014
Total 129 108,119

Dataset-BRE

Training set
Malignant 42 2616

Benign 18 2616
Total 60 5232

Validation set
Malignant 5 374

Benign 2 374
Total 7 748

Test set
Malignant 11 748

Benign 4 748
Total 15 1496

* Because the number of pixels of various WSIs can vary significantly (especially since the area of malignant tumor
tissue in WSI is quite different), the number of patches is estimated by the randomly selected number of patches
from one WSI.

2.3. HTL Framework

The HTL framework proposed in this study comprises of two modules, namely the
source domain model and the target domain model, both of which utilize Resnet50 [28].
Each module includes a feature extractor and two fully connected layers (FCs). The feature
extractor is composed of several bottleneck residual blocks that output a 2048-dimensional
feature vector. The FCs are used to convert the feature vector into categories, starting
with 2048 dimensions and reducing it to 256 dimensions, and finally classifying it into
two categories—benign or malignant cancer.

As illustrated in Figure 2, the source domain model has been trained end-to-end using
Dataset-CRC to extract general features of CRC. A target domain model is developed for
each of the other cancers. The input images of both models undergo conventional image
augmentation techniques such as resizing, random horizontal flipping, random cropping,
and normalization [29]. Patches of CRC are fed into the trained source domain model
to obtain 256-dimensional features, while patches of breast or sentinel lymph node are
input into the target domain model to obtain predicted labels and 256-dimensional feature
vectors. The HTL loss, computed using an improved Maximum Mean Discrepancy (MMD)
method [22], aligns the features across cancers based on the 256-dimensional vectors from
CRC and breast or sentinel lymph node. Moreover, the supervised loss guides the output of
the target domain model to be consistent with the labels of breast or sentinel lymph node.

Cross-Cancer Domain Adaptation Using HTL Operation

The traditional MMD performs global alignment between the source and target do-
mains without considering the distributions of different categories within each domain.
This may not effectively transfer the differences between the benign (normal tissues) and
malignant (cancerous tissues) categories [30,31]. Since the features of benign and malignant
categories are distinctly different, global alignment may cause confusion between them,
resulting in incorrect HTL operation.



Diagnostics 2023, 13, 1277 5 of 13

Figure 2. The flowchart of the proposed HTL framework. Resnet50 is depicted in blue as the source
domain model and in orange as the target domain model. The CRC features are extracted from the
source domain model, while the features of breast or sentinel lymph node are extracted from the
target domain model for computing the HTL loss during domain adaptation. The ‘+’ and ‘−’ symbols
indicate the feature vectors from malignant and benign samples, respectively.

Our proposed HTL operation across cancers involves aligning the distributions of
subdomains (i.e., categories) to perform effective feature transfer. Unlike traditional MMD,
which performs global alignment without considering differences between categories in
two domains, our HTL operation reduces the feature distribution differences between CRC
and sentinel lymph node metastasis or breast cancer, as depicted in Figure 3.

Figure 3. The schematic diagram for illustrating subdomain adaptation.
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The HTL loss is calculated using the improved MMD, which is defined as:

Lossh =
1
C ∑C

c=1

∥∥∥∑n
i=1 wt

i φ(Ti)− ∑m
j=1 ws

j φ
(
Sj
)∥∥∥2

H
(1)

where c represents the benign or malignant category, t and s indicate the source domain and
target domain respectively, n and m are the numbers of samples in a batch of source domain
and target domain, H represents Hilbert space, φ is a mapping function that transforms
the features of Euler space to the Hilbert space, Sj and Tj are 256-dimensional feature
vectors that represents CRC and the target domain (either sentinel lymph node metastasis
or breast cancer), respectively, ws

j and wt
i are the weights of the category of Sj and Tj, that

are calculated as follows:
wc

i =
yi

∑n
i=1 yi

(2)

For the source domain, the one-hot vector yi is derived from the actual label of CRC,
which takes a value of 0 (benign) or 1 (malignant). For target domain, yi refers to the
predicted class probability for sentinel lymph node metastasis or breast cancer, generated
by the target domain model.

The SL loss is used for supervised learning of sentinel lymph node metastasis or breast
cancer. It is obtained by calculating the cross-entropy loss between the predicted probability
distribution of classes and the ground-truth labels of sentinel lymph node metastasis or
breast cancer, as defined in Equation (3).

Losss = − 1
n∑n

i=1[yilog(pi) + (1 − yi) log(1 − pi)] (3)

where n is the number of samples in a batch, yi and pi denote the actual label and the
predicted probability, respectively.

The total loss function is the weighted sum of SL loss and HTL loss.

Losst = Losss + α[g(epoch)Lossh] (4)

where Losst, Losss and Lossh represent the total loss, SL loss and HTL loss, respectively, α is
constant coefficient, and g(epoch) is a monotonically increasing function of the number of
epochs, defined by Formula (5).

g(epoch) =
2

1 + e−10 epoch
nepoch

− 1 (5)

where e is the Euler number and nepoch represents the total epoch.

2.4. Experiment Setting

To demonstrate that HTL can reduce the amount of labeled data required, HTL is
needed to be compared with massively labeled supervised learning (SL) as well as SL with
insufficient labeled data. Moreover, HTL models trained with a small number of labeled
data should perform comparably to massively labeled training models and significantly
outperform models trained with insufficient labeled data.

Therefore, we trained three different versions of models for each cancer: one HTL
version and two SL versions (SL-1 and SL-2). SL-1 is trained on insufficient labeled data,
while SL-2 is trained on sufficient labeled data. The code is implemented in PyTorch
(version 1.8) [32] and runs on a graphics processing unit (GPU) of Tesla V100 32 GB
(NVIDIA company, Santa Clara, CA, USA). We compared the performance of Resnet18,
Resnet50, and Resnet101 and found that Resnet50, initialized on ImageNet [33], achieved
the best performance.
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2.4.1. Sentinel Lymph Node Metastasis Models

The models for sentinel lymph node metastasis include L-HTL-1000, L-SL-1-1000,
and L-SL-2-7104. L-HTL-1000 and L-SL-1-1000 use the same training and validation set,
which consists of approximately 13% of all training and validation patches. L-SL-2-7104 is
trained and validated using 7104 and 1776 patches, respectively. The test set for all three
models comprises 108,119 patches. Table 3 shows the number of patches used for training,
validation, and testing for each model.

Table 3. Patches in the training, validation and test set for three models on two datasets.

Datasets HTL SL-1 SL-2

Dataset-SLN

Training
Malignant 500 500 3520

Benign 500 500 3584
Total 1000 1000 7104

Validation
Malignant 100 100 880

Benign 100 100 896
Total 200 200 1776

Test
Malignant 54,105 54,105 54,105

Benign 54,014 54,014 54,014
Total 108,119 108,119 108,119

Dataset-BRE

Training
Malignant 504 504 2616

Benign 504 504 2616
Total 1008 1008 5232

Validation
Malignant 57 57 374

Benign 57 57 374
Total 114 114 748

Test
Malignant 748 748 748

Benign 748 748 748
Total 1496 1496 1496

2.4.2. Breast Cancer Models

The breast cancer models consist of three models: B-HTL-1008, B-SL-1-1008, and B-SL-
2-5232. B-HTL-1008 is trained and validated with 1008 and 114 patches, respectively, which
account for approximately 19% of all training and validation patches. B-SL-1-1008 uses
exactly the same data as B-HTL-1008 for training and validating. Additionally, B-SL-2-5232
is trained and validated with all patches in the training and validation set. The test set
comprises 1496 patches and is used to evaluate the performance of all three models.

The dataset was randomly split, and each model was trained eight times for cross-
validation. The hyperparameter selection process for these models was the same, and
various hyperparameters were tested, including learning rate (0.05, 0.01, 0.015), batch size
(16, 32, 64), and others, until the model’s performance was optimal. The hyperparameter
settings for SL-1 and SL-2 were consistent with the HTL version. Additionally, the SL-2
version only increased the number of samples in the training set for two datasets compared
to the SL-1 version, while the others remained the same. Detailed hyperparameters are
listed in Table 4.

Table 4. Hyperparameters used in our model.

Hyperparameters Value

Optimizer SGD
Epochs 200

Momentum 0.9
L2 weight decay 0.0005

Learning rate 0.01
Batch size 32
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3. Results
3.1. Classification of CRC, Breast and Sentinel Lymph Node Metastasis by Source Domain Model

In order to compare the difference between CRC, sentinel lymph node metastasis and
breast cancer, we tested the source domain model on them, where the CRC-VAL-HE-7K
is provided alongside NCT-CRC-HE-100K for CRC testing purposes [25]. The results are
shown in Table 5. The AUC, accuracy, sensitivity and specificity are 0.986, 0.948, 0.951 and
0.944, respectively, which show that the source domain model can accurately identify CRC.
In contrast, this model struggled to effectively identify breast cancer and sentinel lymph
node metastasis.

Table 5. The results of source domain for identifying CRC, breast cancer and sentinel lymph
node metastasis.

Dataset AUC Accuracy Sensitivity Specificity

CRC-VAL-HE-7K 0.986 0.948 0.951 0.944
Dataset-SLN (Test set) 0.692 0.540 0.009 0.986
Dataset-BRE (Test set) 0.307 0.304 0.004 0.991

These results indicate that despite all three cancers being adenocarcinomas, their
image features differ. While the source model trained on CRC can achieve high accuracy
for CRC, it falls short for breast cancer and sentinel lymph node metastasis. Moreover,
the significant difference in AUC for breast cancer and sentinel lymph node metastasis
suggests that although lymph node metastasis originates from breast cancer, there may be
morphological changes between the metastatic and primary cancer.

The results across multiple cancers are also provided in Sections 3.2 and 3.3, where
we compare the performance of the three models (SL-1, HTL, and SL-2) for each cancer.
The two SL versions describe the model differences trained on a small dataset and large
dataset, respectively, while the HTL version shows how CRC image features can improve
performance on small datasets through domain adaptation. We report the area under the
curve (AUC) to demonstrate the comprehensive performance of all models, as well as
accuracy, sensitivity, specificity, F1 score and precision. The eight-fold cross-validation for
three models is performed for statistical comparisons. All presented results are based on
patch-level analysis.

3.2. Classification of Sentinel Lymph Node Metastasis

The results of eight-fold cross-validation on Dataset-SLN are presented in Figure 4, where
the area under the curve (AUC) is shown. The Wilcoxon-signed rank test is performed on
the results, and two-sided p values are reported. The HTL version trained on 1000 sentinel
lymph node patches (L-HTL-1000) outperformed the SL-1 version trained on the same data
(L-SL-1-1000) with an average AUC and standard deviation of 0.949 ± 0.004 vs. 0.931 ± 0.008,
respectively (p value = 0.008). Moreover, there was no significant difference between
the performance of L-HTL-1000 and L-SL-2-7104 (AUC: 0.949 ± 0.004 vs. 0.948 ± 0.008,
p value = 0.742). These results further confirm the excellent performance of HTL on
small datasets.

The accuracy, sensitivity, specificity, F1 score, and precision of L-SL-1-1000, L-HTL-
1000, and L-SL-2-7104 are presented in Figure 5. L-HTL-1000 shows a higher accuracy
(0.879) compared to L-SL-1-1000 (0.862) and is close to L-SL-2-7104 (0.883). Additionally, L-
HTL-1000 exhibits the best sensitivity of 0.854, which is 0.049 higher than L-SL-1-1000 (0.805)
and 0.033 higher than L-SL-2-7104 (0.821). However, L-HTL-1000 has lower specificity
(0.905) than L-SL-1-1000 (0.919) and L-SL-2-7104 (0.946). The F1 score of L-SL-1-1000, L-
HTL-1000, and L-SL-2-7104 is 0.854, 0.876, and 0.875, respectively, and the precision is 0.909,
0.901, and 0.938, respectively. These results are obtained from the average of eight-fold
cross-validation and based on the Youden index [34] as the cut-off.
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Figure 4. This figure displays the distribution of area under the curve (AUC) for the three models
on Dataset-SLN. The ** symbol indicates no significant statistical difference, while * indicates that
there is a statistical difference. The boxes represent the upper and lower quartile values, and the
whiskers indicate the minimum and maximum values. The horizontal bar within the box denotes the
median, while the cross denotes the mean. The circles represent data points, while the scatter dots
indicate outliers.

Figure 5. The radar chart is used to illustrate the accuracy, sensitivity, specificity, F1 score, and
precision of L-SL-1-1000, L-HTL-1000, and L-SL-2-7104.

3.3. Classification of Breast Cancer

The AUC results for Dataset-BRE are presented in Figure 6, and the Wilcoxon-signed
rank test was conducted on the results of eight-fold cross-validation with two-sided
p values reported. The HTL on 1008 breast patches (B-HTL-1008) demonstrated supe-
riority over supervised learning on the same dataset (B-SL-1-1008), with an average AUC
and standard deviation of 0.962 ± 0.017 vs. 0.943 ± 0.018, respectively, and a p value of
0.008. Furthermore, there was no significant difference between the HTL on 1008 patches
(B-HTL-1008) and SL on 5232 patches (B-SL-2-5232), with AUCs of 0.962 ± 0.017 and
0.951 ± 0.023, respectively, and a p value of 0.148. These results indicate that HTL performs
better than SL when the amount of data is small and can achieve comparable performance
to that of large datasets.
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Figure 6. AUC distribution of three models on Dataset-BRE. The ** denotes no statistically significant
difference, while * denotes a statistically significant difference. The boxes indicate the upper and
lower quartile values, and the whiskers indicate the minimum and maximum values. The horizontal
bar in the box indicates the median, while the cross indicates the mean AUC. The circles represent
data points, and the scatter dots indicate outliers.

Figure 7 displays the average values of eight-fold cross-validation for accuracy, sensi-
tivity, specificity, F1 score, and precision. B-HTL-1008 exhibits superior accuracy (0.898)
compared to B-SL-1-1008 (0.869) and B-SL-2-5232 (0.874). Additionally, B-HTL-1008 has the
highest sensitivity and specificity (0.905 and 0.892), which surpasses B-SL-1-1008 by 0.010
and 0.049 (with values of 0.895 and 0.843, respectively), and B-SL-2-5232 by 0.036 and 0.010
(with values of 0.869 and 0.882, respectively). The F1 scores of B-SL-1-1008, B-HTL-1008,
and B-SL-2-5232 are 0.872, 0.900, and 0.867, while their corresponding precision values
are 0.853, 0.896, and 0.871. It is worth noting that the results are optimized through the
Youden index [34].

Figure 7. The radar chart for illustrating the accuracy, sensitivity, specificity, F1 score and precision of
B-SL-1-1008, B-HTL-1008 and B-SL-2-5232.
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4. Discussion

Histopathology is a critical component of clinical diagnosis, and while HAI holds
promise as an effective tool for improving diagnostic accuracy and reducing misdiagnosis
resulting from heavy workloads or limited pathologists, the cost of data preparation for
model establishment has become a bottleneck in HAI development.

While techniques such as semi-supervised and unsupervised learning can help decrease
the cost of data annotation, the collection of massive amounts of unlabeled data remains a
necessity. Furthermore, obtaining enough samples of each type of cancer can be challenging
or even impossible in clinical practice due to a shortage of disease-specific samples.

The histopathological diagnosis of cancer relies on examining the morphology and
tissue structure of cancer cells [21]. We postulate that deep learning can detect similarities
in image features across different cancers. Specifically, a feature extractor from a highly
accurate source model built on a large cancer dataset may offer general image features for
cancers, which could reduce the required amount of data and facilitate model construction
for other types of cancers.

Given the hypothesis that HTL could enhance AI model training for similar cancers,
we chose to examine CRC, breast cancer, and lymph node metastasis. These cancers all
originate from epithelial tissue and fall under adenocarcinoma, demonstrating compa-
rable tissue morphology and structure such as cancer nest shape, individual cancer cell
morphology, and overlapping molecular phenotypes.

We first built a model of the source domain based on a large CRC dataset. Although
breast cancer and sentinel lymph node metastasis, like CRC, are both adenocarcinomas,
the CRC model cannot effectively recognize the former two types of cancer, indicating that
the source domain model considers the image features of breast cancer and sentinel lymph
node metastasis to be different from those of CRC. Moreover, the CRC model shows a
significant difference in AUC for breast cancer and sentinel lymph node metastasis, which
suggests that although lymph node metastasis originates from breast cancer, there may be
morphological changes between the metastatic and primary cancer.

When using a certain amount of breast cancer and sentinel lymph node metastasis im-
ages and combining them with the CRC model in heterogeneous transfer learning, precise
classification results for the first two types of cancer can be achieved. However, without
using the CRC model, the performance of the models trained on these images would
significantly decrease. These experiments may demonstrate that the colon cancer model
can provide some common image features of adenocarcinomas, while the images of other
adenocarcinomas provide unique image features for each specific type of adenocarcinoma.
Heterogeneous transfer learning can integrate both types of features to obtain accurate
recognition models for other adenocarcinomas, similar to the results of massive labeled SL.

Our work demonstrates that when there is an accurately trained HAI based on a
large dataset, it is not necessary to collect and label a large amount of data for other
similar cancers. Therefore, HTL can reduce the data and labeling costs of these cancers,
especially for some cancers that are difficult to obtain data for. In clinical practice, it is
often observed that a large amount of data has been collected for one type of cancer, but
not enough data has been collected for similar types of cancer, Therefore, HTL has broad
application prospects.

We have demonstrated, for the first time, that the presented HTL method has the
potential to quickly develop HAI models for similar cancers by reducing the amount of
required data. However, a main limitation of this study is the limited number of cancer
types and validation data. In future studies, we aim to investigate the applicability of
the HTL method to other cancers to further validate our findings. If HTL can be widely
applied to learning across cancers, it may overcome the data bottleneck and accelerate the
deployment of HAI across diseases.
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5. Conclusions

We proposed a novel HTL approach for HAI across various cancers. We conducted
experiments on publicly available datasets for sentinel lymph node metastasis and breast
cancer and demonstrated that our proposed method can create high-accuracy models using
limited datasets by transferring features across different types of cancer. Our findings verify
the ability of HTL to reduce data volume in the target domain, indicating its potential for
deployment in HAI applications.

Author Contributions: Conceptualization, G.Y.; Data curation, K.S., Y.C., B.B., Y.G. and J.X.; Formal
analysis, K.S. and Y.C.; Investigation, K.S., Y.C. and B.B.; Project administration, G.Y. and J.X.; Re-
sources, Y.G.; Software, K.S. and B.B.; Supervision, J.X. and G.Y.; Writing—original draft preparation:
K.S. and B.B.; Writing—Review and Editing, G.Y., K.S., Y.G. and J.X. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Tongxing Pathology Public Welfare Project from Peking Union
Medical College Foundation (G.Y.) and Emergency Management Science and Technology Project of
Hunan Province (#2020YJ004, #2021-QYC-10050-26366) (G.Y.).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of School of Basic Medical Sciences,
Central South University (protocol code 2022-KT74 and 14 March 2022 of approval).

Informed Consent Statement: Patient consent was waived due to all data come from the public
dataset of the network.

Data Availability Statement: The Camelyon16 dataset can be find in: https://camelyon16.grand-
challenge.org/Home/, the NCT-CRC-HE-100K and CRC-VAL-HE-7K dataset can be find in: https:
//www.zenodo.org/record/1214456#.ZCFCDcpBxD8 and the BreakHis dataset can be find in: https:
//web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United

States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [CrossRef]
2. Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Vega, J.E.V.; Brat, D.J.; Cooper, L.A.D. Predicting

cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979.
[CrossRef] [PubMed]

3. Metter, D.M.; Colgan, T.J.; Leung, S.T.; Timmons, C.F.; Park, J.Y. Trends in the US and Canadian Pathologist Workforces From 2007
to 2017. JAMA Netw. Open 2019, 2, e194337. [CrossRef]

4. Sayed, S.; Lukande, R.; Fleming, K.A. Providing Pathology Support in Low-Income Countries. J. Glob. Oncol. 2015, 1, 3–6.
[CrossRef] [PubMed]

5. Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261.
[CrossRef] [PubMed]

6. Wang, K.S.; Yu, G.; Xu, C.; Meng, X.H.; Zhou, J.; Zheng, C.; Deng, Z.; Shang, L.; Liu, R.; Su, S.; et al. Accurate diagnosis of
colorectal cancer based on histopathology images using artificial intelligence. BMC Med. 2021, 19, 76. [CrossRef]

7. Kanavati, F.; Toyokawa, G.; Momosaki, S.; Rambeau, M.; Kozuma, Y.; Shoji, F.; Yamazaki, K.; Takeo, S.; Iizuka, O.; Tsuneki, M.
Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 2020, 10, 9297. [CrossRef] [PubMed]

8. Chen, X.; Wang, X.; Zhang, K.; Fung, K.-M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and
clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. [CrossRef] [PubMed]

9. van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
10. Peikari, M.; Salama, S.; Nofech-Mozes, S.; Martel, A.L. A Cluster-then-label Semi-supervised Learning Approach for Pathology

Image Classification. Sci. Rep. 2018, 8, 7193. [CrossRef]
11. Yu, G.; Sun, K.; Xu, C.; Shi, X.-H.; Wu, C.; Xie, T.; Meng, R.-Q.; Meng, X.-H.; Wang, K.-S.; Xiao, H.-M.; et al. Accurate recognition of

colorectal cancer with semi-supervised deep learning on pathological images. Nat. Commun. 2021, 12, 6311. [CrossRef] [PubMed]
12. Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif.

Intell. Rev. 2020, 53, 907–948. [CrossRef]
13. Sari, C.T.; Gunduz-Demir, C. Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon

Tissue Images. IEEE Trans. Med. Imaging 2018, 38, 1139–1149. [CrossRef] [PubMed]

https://camelyon16.grand-challenge.org/Home/
https://camelyon16.grand-challenge.org/Home/
https://www.zenodo.org/record/1214456#.ZCFCDcpBxD8
https://www.zenodo.org/record/1214456#.ZCFCDcpBxD8
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
http://doi.org/10.1097/CM9.0000000000002108
http://doi.org/10.1073/pnas.1717139115
http://www.ncbi.nlm.nih.gov/pubmed/29531073
http://doi.org/10.1001/jamanetworkopen.2019.4337
http://doi.org/10.1200/JGO.2015.000943
http://www.ncbi.nlm.nih.gov/pubmed/28804765
http://doi.org/10.1016/S1470-2045(19)30154-8
http://www.ncbi.nlm.nih.gov/pubmed/31044723
http://doi.org/10.1186/s12916-021-01942-5
http://doi.org/10.1038/s41598-020-66333-x
http://www.ncbi.nlm.nih.gov/pubmed/32518413
http://doi.org/10.1016/j.media.2022.102444
http://www.ncbi.nlm.nih.gov/pubmed/35472844
http://doi.org/10.1007/s10994-019-05855-6
http://doi.org/10.1038/s41598-018-24876-0
http://doi.org/10.1038/s41467-021-26643-8
http://www.ncbi.nlm.nih.gov/pubmed/34728629
http://doi.org/10.1007/s10462-019-09682-y
http://doi.org/10.1109/TMI.2018.2879369
http://www.ncbi.nlm.nih.gov/pubmed/30403624


Diagnostics 2023, 13, 1277 13 of 13

14. Li, J.; Liu, J.; Yue, H.; Cheng, J.; Kuang, H.; Bai, H.; Wang, Y.; Wang, J. DARC: Deep adaptive regularized clustering for
histopathological image classification. Med. Image Anal. 2022, 80, 102521. [CrossRef]

15. Qi, G.-J.; Luo, J. Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised
Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2168–2187. [CrossRef]

16. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved
liver lesion classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 289–293. [CrossRef]

17. Quiros, A.C.; Murray-Smith, R.; Ke, Y. Learning a low dimensional manifold of real cancer tissue with pathology GAN. arXiv
2020, arXiv:2004.06517.

18. Gupta, L.; Klinkhammer, B.M.; Boor, P.; Merhof, D.; Gadermayr, M. GAN-Based Image Enrichment in Digital Pathology
Boosts Segmentation Accuracy. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer: Cham,
Switzerland, 2019; pp. 631–639. [CrossRef]

19. Kazeminia, S.; Baur, C.; Kuijper, A.; van Ginneken, B.; Navab, N.; Albarqouni, S.; Mukhopadhyay, A. GANs for medical image
analysis. Artif. Intell. Med. 2020, 109, 101938. [CrossRef]

20. Wetstein, S.C.; de Jong, V.M.T.; Stathonikos, N.; Opdam, M.; Dackus, G.M.H.E.; Pluim, J.P.W.; van Diest, P.J.; Veta, M. Deep
learning-based breast cancer grading and survival analysis on whole-slide histopathology images. Sci. Rep. 2022, 12, 15102.
[CrossRef]

21. Rubin, R.; Strayer, D. Rubin’s Pathology: Clinicopathologic Foundations of Medicine; Lippincott Williams & Wilkins: Philadelphia, PA,
USA, 2008.

22. Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep Subdomain Adaptation Network for Image
Classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1713–1722. [CrossRef]

23. Xu, G.X.; Liu, C.; Liu, J.; Ding, Z.; Shi, F.; Guo, M.; Zhao, W.; Li, X.; Wei, Y.; Gao, Y.; et al. Cross-Site Severity Assessment of
COVID-19 From CT Images via Domain Adaptation. IEEE Trans. Med. Imaging 2022, 41, 88–102. [CrossRef]

24. Li, W.; Zhao, Y.; Chen, X.; Xiao, Y.; Qin, Y. Detecting Alzheimer’s Disease on Small Dataset: A Knowledge Transfer Perspective.
IEEE J. Biomed. Health Inform. 2018, 23, 1234–1242. [CrossRef] [PubMed]

25. Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.-A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al.
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med.
2019, 16, e1002730. [CrossRef] [PubMed]

26. Ehteshami Bejnordi, B.; Veta, M.; Johannes van Diest, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.W.M.;
the CAMELYON16 Consortium. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases
in Women with Breast Cancer. JAMA 2017, 318, 2199–2210. [CrossRef] [PubMed]

27. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE
Trans. Biomed. Eng. 2015, 63, 1455–1462. [CrossRef]

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

29. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
30. Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 97–105.
31. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13,

723–773.
32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.
33. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009

IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
34. Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. J. Math. Methods Biosci.

2005, 47, 458–472. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.media.2022.102521
http://doi.org/10.1109/TPAMI.2020.3031898
http://doi.org/10.1109/isbi.2018.8363576
http://doi.org/10.1007/978-3-030-32239-7_70
http://doi.org/10.1016/j.artmed.2020.101938
http://doi.org/10.1038/s41598-022-19112-9
http://doi.org/10.1109/TNNLS.2020.2988928
http://doi.org/10.1109/TMI.2021.3104474
http://doi.org/10.1109/JBHI.2018.2839771
http://www.ncbi.nlm.nih.gov/pubmed/29994324
http://doi.org/10.1371/journal.pmed.1002730
http://www.ncbi.nlm.nih.gov/pubmed/30677016
http://doi.org/10.1001/jama.2017.14585
http://www.ncbi.nlm.nih.gov/pubmed/29234806
http://doi.org/10.1109/TBME.2015.2496264
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1002/bimj.200410135

	Introduction 
	Methods 
	Datasets 
	Data Preprocess Pipeline 
	HTL Framework 
	Experiment Setting 
	Sentinel Lymph Node Metastasis Models 
	Breast Cancer Models 


	Results 
	Classification of CRC, Breast and Sentinel Lymph Node Metastasis by Source Domain Model 
	Classification of Sentinel Lymph Node Metastasis 
	Classification of Breast Cancer 

	Discussion 
	Conclusions 
	References

