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Abstract: In the face of the COVID-19 pandemic, many studies have been undertaken to provide
assistive recommendations to patients to help overcome the burden of the expected shortage in
clinicians. Thus, this study focused on diagnosing the COVID-19 virus using a set of fine-tuned deep
learning models to overcome the latency in virus checkups. Five recent deep learning algorithms
(EfficientB0, VGG-19, DenseNet121, EfficientB7, and MobileNetV2) were utilized to label both CT
scan and chest X-ray images as positive or negative for COVID-19. The experimental results showed
the superiority of the proposed method compared to state-of-the-art methods in terms of precision,
sensitivity, specificity, F1 score, accuracy, and data access time.
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1. Introduction

The first confirmed COVID-19 case, according to the World Health Organization
(WHO) reports, was in the central Chinese city of Wuhan on 8 December 2019. COVID-19
was reported as an epidemic in January 2020. From that date onwards, new confirmed cases
were reported each day and the COVID-19 virus spread to every continent. According
to the WHO, the number of confirmed COVID-19 virus cases is more than 416,614,050
and the number of deaths is more than 5,844,095 [1]. COVID-19 has become a global
health crisis and the WHO has declared it a major pandemic. Understanding how the
disease spreads and determining how undetected and undocumented cases contribute
to the transmission of the virus are major challenges. Although COVID-19 vaccines are
available on the market, there is still an inevitable demand for smart healthcare systems
for the general population—and, especially, the elderly—so that the expected shortage in
doctors in the health sector during the crisis can be promptly addressed. With the spread
of COVID-19 to numerous countries in the world, considering the increases in the number
of people infected and the number of deaths from day to day, it has become mandatory to
diagnose and identify this COVID-19 virus.

All over the world, the COVID-19 virus remains a threat to the economies of countries
and the health of people. It has been proven that the disease is transmitted from one person
to another and, therefore, delays in discovering the disease lead to the spread of infection
through interactions between the healthy and infected patients [2–4].

The test to verify a person’s infection with the virus is often implemented by taking
samples from the patient’s throat, sputum, or nasopharynx to analyze the PCR of the
viral RNA. However, one of the limitations of such tests is their low accuracy [5–8]. The
diagnosis of COVID-19 based on laboratory tests is costly, laborious, time-consuming,
and involves a complicated manual process [9]. Therefore, it is recommended that this
type of test be replaced with chest CT images, which could be used as one type of early
investigative test [3]. The challenge of laboratory testing with CT image analysis is that
it demands a radiology expert and takes a significant amount of time. One solution for
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this challenge is to save valuable time for medical professionals by using an automated
analysis system.

Thus, the early diagnosis of COVID-19 would be invaluable in containing the disease
outbreak. However, as the diagnosis of COVID-19 based on laboratory tests still displays
a low positive rate, as well as being costly, laborious, time-consuming, and manually
complicated [9], suggestions have emerged from specialists recommending the use of
radiography screening as a primary tool for checking for COVID-19. With increased
numbers of infected patients on a daily basis, especially in the epidemiological setting, the
bottleneck for this method is the requirement for a large number of expert X-ray specialists
to interpret the CT images. Moreover, the similar and overlapping patterns of lung diseases
make it difficult for radiologists to point out these slight differences [10]. As a result,
there is an urgent need to develop intelligent systems to aid radiologists with fast and
accurate results.

Artificial intelligence (AI) has made great strides in recent years. Deep learning and
the accompanying innovations offer radiologists a chance to change the radiology scene
and improve survival rates. Deep learning neural system models have been applied to
a few imaging tasks to date, including image segmentation, classification, and object
detection. Deep learning techniques are unique compared to classic AI strategies, which
are the significant ones. The latter employ feature extraction strategies in preparation
for the computation, while deep learning techniques familiarize themselves with the
image information without the requirement for feature extraction. Deep learning provides
promising solutions for the analysis of medical images in future applications. With the
recent advances in machine learning and artificial intelligence applications, especially in
the medical field and including medical image processing, artificial intelligence has become
a promising tool that can change diagnosis methods. Deep learning networks, as an
artificial intelligence tool, have proven successful in image classification with their unique
characteristics of being able to learn image representations automatically and mapping
features onto continuous vectors that are subsequently used for predictions. AI applications
in radiology [11] are driven by the idea that medical images are sets of data that can be
computed by a machine to extract useful information from the properties of the image [12].

Thus, this paper presents a novel technique for the detection of the COVID-19 virus
early on based on X-ray and CT chest radiography image analysis using deep learning algo-
rithms. This methodology can be basically classified as image analysis as it comprises steps
such as image acquisition, image preprocessing, feature extraction, and the employment
of different classifiers. This paper’s contributions can be outlined as follows: (1) We built
promising, fine-tuned DL models capable of diagnosing chest X-ray and CT images that
showed improvements in their precision, sensitivity, specificity, F1-scores, accuracy, and
data access time. The models for COVID-19 detection were trained and their performances
were evaluated using novel samples in order to contribute to the control of the epidemic.
(2) The proposed system will reduce the pressure on the national healthcare budget by re-
ducing the cost of the physical tests performed in clinical laboratories. It has been reported
that the cost of a PCR test is about USD 120–130 [13]. (3) For radiologists, with the spread
of COVID-19, a daily flood of CT images need to be analyzed; the proposed techniques can
act as an aid for radiologists (regardless of the level of experience) by reducing not only the
time required to diagnose CT scans but also the pressure on the radiologist. (4) The disease
can be localized by using a Grad-CAM algorithm that visualizes the infected areas of the
lungs in chest X-ray and CT images.

The remainder of the paper is laid out as follows: Section 2 contains a literature review;
Section 3 presents the proposed methodology; Section 4 contains the experimental results
and discussion; and, finally, conclusions are drawn in Section 5.

2. Literature Review

The attention the COVID-19 virus has received from researchers has led to an enor-
mous number of publications. In this section, most of the recently developed systems ap-
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plying deep learning techniques to COVID-19 detection are explored. Barstugan et al. [14]
proposed a coronavirus classification technique for CT images based on machine learn-
ing methods. The dataset, consisting of patients from Italy, one of the most endemic
regions, comprised 618 images, including 219 images from COVID-19 patients, 224 images
from influenza-A viral pneumonia patients, and 175 images from healthy cases. Chowd-
hury [15] trained four convolutional neural networks (CNNs) to classify CT images into
two classes: normal and COVID-19 pneumonia. Linda et al. [9] proposed COVID-net,
which is a deep CNN that can recognize and identify the COVID-19 disease from CT
images. Shuai et al. [16] adapted the Inception transfer learning model to detect COVID-19
in CT images. Ghoshal et al. [17] presented a Bayesian deep learning classifier to estimate
model uncertainty using the transfer learning method with COVID-19 X-ray images. The
proposed system differs from the others in tracking disease progression through a deep
analysis of the periodical changes in the CT images from the same patient, making it
possible to modify treatment and help achieve improved results for patients. It also utilizes
an efficient parameterized transfer learning model and smart data augmentation.

Rahimzadeh et al. [18] proposed a linked CNN dependent on the Xception and
ResNet50V2 models to characterize COVID-19 cases from chest X-rays. The created frame-
work utilized a dataset that contained 180 images of COVID-19 patients, 6054 images of
pneumonia patients, and 8851 images of typical individuals. For each of the eight prepa-
ration stages, 633 pictures were selected. The test results exhibited 99.56% precision with
80.53% of COVID-19 cases. Fan et al. [19] proposed a multi-kernel attention network to
analyze chest X-ray images from COVID-19 patients. Their model has three stages: a feature
extraction stage followed by two parallel multi-kernel-size attention modules and, finally,
the classification stage. The experimental results demonstrated improved performance in
COVID-19 detection and an accuracy of 98.2%.

Loey et al. [20] presented a generative adversarial network (GAN) using deep learn-
ing to analyze COVID-19 from chest X-rays. Their study utilized the three pre-prepared
models AlexNet, GoogleNet, and RestNet18. Apostolopoulos et al. [21] presented an ex-
change learning technique with a CNN for the analysis of COVID-19 cases using chest
X-rays. The framework can detect COVID-19 images using five main models: VGG19,
Inception, MobileNet, Xception, and Inception-ResNetV2. VGG19 was chosen as the fun-
damental learning model and it showed 93.48% accuracy. To detect COVID-19 patients,
Panwar et al. [22] presented a binary image classification task. The input data were clas-
sified using a fine-tuned VGG model. Mishra et al. [23] used deep CNN-based image
classification models to differentiate COVID-19 instances using chest CT scan images.
Song et al. [24] employed a linear classifier to extract semantic features from CT scans.
Jaiswal et al. [2] used a DenseNet201-based deep transfer learning (DTL) model to identify
patients with COVID-19. The proposed model uses its own training weights to extract
features from the ImageNet dataset. Silva et al. [25] proposed CovidNet, an efficient,
voting-based technique for analyzing COVID-19 patterns in CT images.

Allioui et al. [26] proposed a multi-agent deep learning model for enhancement of
COVID-19 CT image segmentation. Their proposal was based on multi-agent deep re-
inforcement learning (DRL), which utilizes a modified version of the Deep Q-Network.
Khan et al. [27] proposed a COVID-19 detection method for CT images using deep learning,
entropy-controlled optimization, and parallel feature fusion techniques. Their method
mainly depends on the AlexNet and VGG16 models. The features are extracted and fused
using a parallel positive correlation approach. Then, the entropy-controlled firefly opti-
mization method is employed to select the optimal features. Their best achievement was
an accuracy rate of 98%. Rehman et al. [28] proposed a framework for the detection of
COVID-19 disease and 14 other types of chest diseases. They employed a convolutional
neural network architecture with a soft-max classifier. Then, transfer learning was applied
in order to extract deep features, which provided results similar to classic machine learning
classification methods. Guo et al. [29] studied COVID-19 diagnosis from chest CT scans
via an ensemble learning method based on ordinal regression. Their proposal relies on
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multi-binary, neuron stick-breaking, and soft label techniques. Mukherjee et al. [30] imple-
mented an advanced deep network architecture with two CT image datasets. The authors
utilized the transfer learning strategy with custom-sized input tailored to each type of deep
architecture in order to improve the performance. Their best models achieved an average
accuracy of 99.4%.

Nasiri and Hasani [31] proposed a method for diagnosing coronavirus disease from
X-rays. They used the DenseNet169 deep neural network (DNN). The extracted features
were then used as input for the Extreme Gradient Boosting (XGBoost) algorithm to perform
the classification task. They achieved accuracy up to 99.78%. Ullah et al. [32] developed an
effective COVID-19 detection technique using the Shufflenet CNN by employing three types
of images; i.e., chest radiographs, CT scans, and ECG trace images. Nasiri and Alavi [33]
proposed a pretrained network named DenseNet169 to extract features from X-ray images.
Analysis of variance (ANOVA) was employed as a feature selection method to reduce
the computation and time complexity. Then, the selected features were classified with
Extreme Gradient Boosting (XGBoost). Their proposed method reached 98.72% accuracy
for two-class classification and 92% accuracy for multiclass classification.

3. Proposed Methodology

When building the diagnostic DL model, the chest X-ray and CT images were initially
collected. In this study, as illustrated in Figure 1, a publicly available SARS-CoV-2 CT
scan dataset was used [34]. The dataset contained 1252 CT scans positive for COVID-
19 and 1230 CT scans from non-infected individuals. Another chest X-ray dataset [35]
with 6939 sample images was also considered in this study, which included three classes
(COVID-19, normal, and pneumonia) with 2313 samples for each category. Section 4.1
provides a detailed description of the datasets utilized. Preprocessing, one of the basic
phases in DL learning, is responsible for resizing images to fit the deep learning model.
Other processes are also performed to prepare the images for the next phase, such as data
augmentation to select the more diverse, more robust datasets to train the model; image
grayscale conversion; and image binarization.
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Figure 1. Overall architecture of the proposed methodology.

Transfer learning is an inevitable step for networks with sparse data (a few hundred
or thousand images). Transfer learning is applied to a vast, pretrained network of millions
of images. There are two main techniques for applying transfer learning: feature extraction



Diagnostics 2023, 13, 1268 5 of 21

and fine-tuning. For the first technique, only some of the newly added layers are updated
and improved during the training phase. In contrast, for the second technique, the weights
for all layers are updated, optimized, and customized for the new classification problem.
In general, fine-tuning is more effective than the feature extraction technique. Fine-tuning
DL models (EfficientB0, VGG-19, DenseNet121, MobileNetV2, etc.) requires extensive
resources and time. Initially, the convolution layers learn low-level features and, as the
network grows, mid/high-level features are learned. With fine-tuning, these trained low-
level features are retained, while the high-level features are trained for new classification
problems. In this study, five residual blocks were used: the input, two convolution layers, a
max-pooling layer, and an output layer. Subsequently, fine-tuning transfer learning was
employed for the first four head layers of the network. The trainable parameters were
adjusted along with the supplemented soft-max activation function, which consisted of
two or three output neurons relating to binary or three-way classification. Algorithm 1
summarizes the working steps for our DL model.

Algorithm 1: DL Model Working Steps

Input: τ1←Dataset containing SARSCOV2 CT—scans
τ2←Dataset containing chest X—ray images
α←Learning rate
β←Batch size

Output: ω←CNN final weights
Begin:
1: Set train and test data sizes
2: Calculate train class weights
3: Feed in a base model (IMAGENET weights) // EfficientB0, VGG-19, DenseNet121,
EfficientB7, or MobileNetV2
4: Generate a new model (transfer learning of low layers)
5: Set model’s top layers // average pooling, flatten, dense, dropout
6: Set the initial hyperparameters: α, β, ω

7: Train the base models and store the final weights (ω)
8: While (stopping condition not reached) do
9: Move forward and calculate cross-entropy Ec = −(ylog(p) + (1− y) log(1− p))
10: Move backward and update the optimizer
11: EndWhile

In this section, the architectures for the CNNs and the transfer learning approach are
described. Although CNNs are more similar to vanilla neural networks, the convolution
operation is carried out in more than one layer [36]. A simple neural network layer is
presented in Equation (1).

z[1] = g(W [1]a[0] + b[1]) (1)

where z[1] is the current layer; a[0] is the first or input layer; W [1] represents the weights
for the first layer; and b[1] is the bias. For instance, for the VGG19 Conv layer [37] in
Equation (2), for each channel of x, there is a corresponding channel in the first filter of
WC

[1]. Equation (3) illustrates the output of the final layer.

z[1]
(i,j,k) =

(
x ∗W [1]

c

)
(i, j, k) + b[1]

(k,1) (2)

z[1]
(i,j,k) = ∑3

(l,m,n)=1 W [1]
c(l,m,n,k)a

[0]
(i+l1,j+m1,n)

+ b[1]
(k,1) (3)

where i, j, and k correspond to the row, column, and channel for z[1], respectively; l, m, and
n refer to the row, column, and channel number for the filter, respectively; and k denotes
the filter being used for the present epoch.
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Figure 2 depicts the general convolution operation carried out by the CNNs, which
comprised input, convolution, pooling, fully connected, and output layers. The chest X-ray
and CT scan dataset images were fed into the input layer.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 20 
 

 

[37] in Equation (2), for each channel of x, there is a corresponding channel in the first 

filter of 𝑊𝐶
[1]

. Equation (3) illustrates the output of the final layer. 

𝑧(𝑖,𝑗,𝑘)
[1]

= (𝑥 ∗ 𝑊𝑐
[1]

) (𝑖, 𝑗, 𝑘) + 𝑏(𝑘,1)
[1]

  (2) 

𝑧(𝑖,𝑗,𝑘)
[1]

= ∑ 𝑊𝑐(𝑙,𝑚,𝑛,𝑘)
[1]3

(𝑙,𝑚,𝑛)=1 𝑎(𝑖+𝑙1,𝑗+𝑚1,𝑛)

[0]
+ 𝑏(𝑘,1)

[1]
  (3) 

where i, j, and k correspond to the row, column, and channel for 𝑧[1], respectively; l, m, 

and n refer to the row, column, and channel number for the filter, respectively; and k 

denotes the filter being used for the present epoch. 

Figure 2 depicts the general convolution operation carried out by the CNNs, which 

comprised input, convolution, pooling, fully connected, and output layers. The chest 

X-ray and CT scan dataset images were fed into the input layer. 

 

Figure 2. General convolution operation carried out by CNNs. 

Figure 3 illustrates an example of the convolution operation with a 6 × 6 matrix using 

a stride of 2 and a 3 × 3 filter. The stride value defines the moving filter window of the 

input matrix. The pooling layer, which comes after the convolutional layer, is responsible 

for reducing the network computational loss; it is a fully connected layer where all neu-

rons receive their inputs from the flattened form of the previous convolutional layer, as 

illustrated in Figure 4. An example of a flattening operation is depicted in Figure 5. In our 

study, some of the popular pooling functions considered were the average, L2 norm, 

minimum, and maximum functions. In addition, the output layer depends on the num-

ber of categories required to train the DL models. In our experiments, two different da-

tasets were utilized: the CT scan dataset, which has a binary classification of COVID and 

non-COVID; and the chest X-ray dataset, which has a triple classification of COVID-19, 

normal, and pneumonia classes. 

 

Figure 2. General convolution operation carried out by CNNs.

Figure 3 illustrates an example of the convolution operation with a 6 × 6 matrix
using a stride of 2 and a 3 × 3 filter. The stride value defines the moving filter window
of the input matrix. The pooling layer, which comes after the convolutional layer, is
responsible for reducing the network computational loss; it is a fully connected layer where
all neurons receive their inputs from the flattened form of the previous convolutional layer,
as illustrated in Figure 4. An example of a flattening operation is depicted in Figure 5. In
our study, some of the popular pooling functions considered were the average, L2 norm,
minimum, and maximum functions. In addition, the output layer depends on the number
of categories required to train the DL models. In our experiments, two different datasets
were utilized: the CT scan dataset, which has a binary classification of COVID and non-
COVID; and the chest X-ray dataset, which has a triple classification of COVID-19, normal,
and pneumonia classes.
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The proposed DL models consider the pretrained weights, which help in learning
COVID-19 cases. Three main steps follow: in the first step, the training and test datasets for
CT scan or chest X-ray images are prepared. Here, the first CT scan dataset was divided into
a training set and testing set, and the training data samples were used to learn the utilized
models. The split ratio for the training and testing sets was 978:274 for the COVID-19 class
and 1006:223 for the non-COVID class, as presented in Table 1. Further, for the second chest
X-ray dataset, there was an approximately equal distribution between COVID-19, normal,
and pneumonia classes, with 1850 for training and 463 for testing, as reported in Table 2.

Table 1. Frequency of training and testing images in the first dataset (CT scan).

Split COVID-19 Non-COVID

Training set 978 1006

Testing set 274 223

Total 1252 1229

Table 2. Frequency of training and testing images in the second dataset (chest X-ray).

Split COVID-19 Normal Viral Pneumonia

Training set 1850 1850 1850

Testing set 463 463 463

Total 2313 2313 2313

In the second step, the base model and the new model are generated. Here, five
main models with weights pretrained with ImageNet were used as the base models. The
experiments were run many times with the intention of reaching the most suitable hy-
perparameters, which, in turn, would provide the best results. Table 3 summarizes the
hyperparameters for the different DL models used in this study, and Table 4 presents
the characteristics of the DL model architectures used in our experiments. Finally, in the
third step, the trained weights are updated and then stored. Hence, once the forward
propagation is completed, the binary cross-entropy loss function (Equation (4)) is calculated
for the output layer.

Ec = −(ylog(p) + (1− y) log(1− p)) (4)

where y denotes the true value, and p denotes the probability predicted by the model. Then,
when the backpropagation process occurs, it counts the number of changes in the weights.
Traveling forward and backward is called one epoch, and during one epoch one sample
from the dataset is passed per batch size (BS).
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Table 3. Values for the hyperparameters used in the experiments.

Hyperparameters Value

Number of epochs 100

Batch size 64

Train–test split ratio 80–20

Optimizer Adam

Learning rate 1 × 10−3

Dropout 0.5

Table 4. Characteristics of the DL model architectures used in the experiments.

Model Default Input Size Custom Size No. of Layers No. of Parameters

EfficientB0 224 × 224 64 × 64 237 04,384,248

VGG-19 224 × 224 64 × 64 19 20,159,382

DenseNet121 224 × 224 64 × 64 121 07,305,622

EfficientB7 224 × 224 64 × 64 813 64,765,158

MobileNetV2 224 × 224 64 × 64 53 02,592,662

4. Experimental Results and Discussion
4.1. Description of Datasets

In this study, two different open-access sources were used as our basic experimental
datasets. The CT scan dataset [34] had a total number of 2481 CT images divided into
1229 normal cases and 1252 COVID-19 patients, whereas the chest X-ray dataset [35] had
6939 sample images consisting of three classes (COVID-19, normal, and pneumonia), with
2313 samples used for each category. Figure 6 shows samples from the CT scan dataset
and Figure 7 shows samples from the chest X-ray dataset. Next, the database was split
into training and testing sets. The details for the training and testing samples are shown
in Tables 1 and 2 for the CT scan and chest X-ray datasets, respectively, with the results
of the different models displayed in the subsequent tables. Table 1 describes the splitting
strategy used for the training and testing sets in the experiment for the CT scan dataset.
The 80–20 training–testing ratio was adopted in our experiments. The COVID-19 class had
1013 images for training and 239 images for testing, while the normal class had 971 images
for training and 258 for the testing set. Table 2 describes the splitting strategy used for
the chest X-ray dataset. This dataset had an equal distribution, with 1850 images for
training and 463 images for testing in each class. Data augmentation techniques were
employed here to effectively increase the number of training samples. The images were
augmented through cropping, noising, brightness modifications, contrast modifications,
and random flipping.
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4.2. Performance Metrics

In order to measure the performance of the proposed DL models, Equations (5)–(9)
were used.

Sensitivity =
TP

TP + FN
(5)

Speci f ity =
TN

TN + FP
(6)

Precision =
TP

TP + FP
(7)

Accuracy =
TP + TN

(TP + FP + TN + FN)
(8)

F1 =
2 ∗ Recall ∗ Precision
Recall + Precision

(9)
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4.3. Results for DL Models

Table 5 reports the results obtained for the five baseline DL models (EfficientB0, VGG-
19, DenseNet121, EfficientB7, and MobileNetV2) in the classification task for both the CT
scan and chest X-ray datasets. The maximum values are marked in red and underlined.
Moreover, Table 5 also reports the run time in seconds for the training and testing sets. The
minimum measured values are also marked in red and underlined. As presented in the
table, for the CT scan dataset, all five models provided an average accuracy greater than
95%, while for the chest X-ray dataset, all models provided an average accuracy greater
than 95% except for the EfficientB7 model, which had 89.04% average accuracy.

Table 5. Average classification results obtained for both the CT scan and chest X-ray datasets.

Model/Metric Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

CT-Scan Dataset

EfficientB0 99.00% 98.06% 98.06% 99.00% 98.18% 172.49 1.38

VGG-19 96.00% 95.93% 95.93% 96.00% 95.97% 194.88 0.19

DenseNet121 96.00% 97.92% 97.92% 96.00% 97.98% 242.62 1.75

EfficientB7 98.00% 98.82% 99.74% 98.00% 98.79% 866.35 4.88

MobileNetV2 98.00% 99.18% 99.18% 98.00% 99.19% 117.43 0.77

Chest X-Ray Dataset

EfficientB0 98.78% 99.77% 99.38% 98.77% 99.17% 2887.13 29.50

VGG-19 98.13% 98.11% 99.05% 98.12% 98.74% 3108.95 26.07

DenseNet121 99.57% 99.56% 99.78% 99.56% 99.71% 2906.43 32.16

EfficientB7 84.76% 83.55% 91.77% 83.79% 89.04% 2880.74 24.54

MobileNetV2 99.00% 98.98% 99.49% 98.99% 99.32% 2107.61 58.57

For the CT scan dataset, EfficientB0 achieved the highest results (99%) in terms of
precision and the F1-score, while VGG-19 and DenseNet121 attained the lowest average
scores (96%). The MobileNetV2 model achieved the highest averages (99.18% and 99.19) for
sensitivity and accuracy, respectively, while EfficientB7 achieved the highest score (99.74%)
in terms of specificity. In contrast, VGG-19 attained the lowest averages for sensitivity,
specificity, and accuracy. MobileNetV2 achieved the best results in terms of training and
testing run times, with 117.43 s for the training run time and 0.77 s for the testing run time,
respectively. In general, the MobileNetV2 model can be considered the superior model in
comparison to the other four models.

For the chest X-ray dataset, DenseNet121 achieved the highest average precision,
F1-score, specificity, and accuracy with 99.57%, 99.56%, 99.78%, and 99.71% respectively.
The EfficientB0 model achieved the highest average sensitivity with 99.77%. The VGG-19
model achieved the lowest average values for all metrics. In general, the DenseNet121
model can be considered the best model, despite MobileNetV2 having the lowest training
run time. For more details, see Appendix A.

Table 6 presents the detailed results for the two categories (COVID-19 vs. non-COVID)
obtained with the five mentioned DL models with regard to precision, sensitivity, specificity,
F1-score, and accuracy. As can be observed in the table, all models achieved accuracy greater
than 95%. Regarding the COVID-19 class, the highest values are underlined and marked
in red, while the non-COVID class is underlined and marked in green. For the COVID-19
category, the EfficientB0 model was the best in terms of precision and F1-score. However,
EfficientB7 achieved the highest sensitivity and specificity, while MobileNetV2 achieved
the highest accuracy. Regarding the non-COVID class, the EfficientB0 model was also the
best in terms of precision and F1-score. The MobileNetV2 model achieved the highest
sensitivity, specificity, and accuracy. For more details, see Appendix A.
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Table 6. Classification results of the five DL models for the two-category (COVID-19 vs. normal) CT
scan dataset.

Model Category Precision Sensitivity Specificity F1-Score Accuracy

EfficientB0
COVID-19 99.00% 99.27% 96.86% 99.00% 98.18%

Non-COVID 99.00% 96.86% 99.27% 99.00% 98.18%

VGG-19
COVID-19 96.00% 96.35% 95.51% 96.00% 95.97%

Non-COVID 96.00% 95.51% 96.35% 95.00% 95.97%

DenseNet121
COVID-19 96.00% 98.54% 97.30% 96.00% 97.98%

Non-COVID 96.00% 97.30% 98.54% 96.00% 97.98%

EfficientB7
COVID-19 97.00% 98.54% 99.26% 98.00% 98.79%

Non-COVID 99.00% 99.10% 98.22% 98.00% 98.79%

MobileNetV2
COVID-19 98.00% 99.27% 99.10% 98.00% 99.19%

Non-COVID 98.00% 99.10% 99.27% 98.00% 99.19%

Table 7 presents the detailed results for the three-category (COVID-19 vs. normal
vs. viral pneumonia) dataset. The highest values for the COVID-19 class are underlined
and marked in red, the highest values for the normal class are underlined and marked in
green, and, finally, the highest values for the viral pneumonia class are underlined and
marked in blue. As can be observed in the table, for the COVID-19 category, DenseNet121
achieved the highest precision, sensitivity, specificity, F1-score, and accuracy with 98.93%,
99.46%, 100%, 99.45%, and 99.63%, respectively. DenseNet121 also achieved the highest
values for the normal class for all metrics with 100%, 99.89%, 99.78%, 100%, and 99.92%,
respectively. Furthermore, for the viral pneumonia class, it achieved the best results in
terms of precision, specificity, and accuracy with 99.78%, 99.89%, and 99.56%, respectively.
However, MobileNetV2 surpassed DenseNet121 in terms of the F1-score and sensitivity,
achieving 99.35% and 98.91%, respectively. For more details, see Appendix A.

Table 7. Classification results for the five DL models for the three-category (COVID-19 vs. normal vs.
viral pneumonia) chest X-ray dataset.

Model Category Precision Sensitivity Specificity F1-Score Accuracy

EfficientB0

COVID-19 97.46% 99.35% 98.69% 98.40% 98.91%

Normal 99.56% 99.78% 99.78% 99.67% 99.78%

Viral pneumonia 99.34% 97.18% 99.67% 98.25% 98.84%

VGG-19

COVID-19 97.46% 99.35% 98.69% 98.40% 98.91%

Normal 99.55% 97.59% 99.78% 98.56% 99.05%

Viral pneumonia 97.40% 97.40% 98.69% 97.40% 98.26%

DenseNet121

COVID-19 98.93% 100% 99.45% 99.46% 99.63%

Normal 100% 99.78% 100% 99.89% 99.92%

Viral pneumonia 99.78% 98.91% 99.89% 99.35% 99.56%

EfficientB7

COVID-19 72.76% 85.96% 83.78% 78.81% 84.51%

Normal 92.58% 79.21% 96.86% 85.38% 91.02%

Viral pneumonia 88.96% 85.49% 94.67% 87.20% 91.60%

MobileNetV2

COVID-19 97.46% 99.56% 98.69% 98.50% 98.98%

Normal 100% 99.78% 100% 99.89% 99.92%

Viral pneumonia 99.56% 97.61% 99.78% 98.58% 99.05%
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Figure 8 illustrates the 80–20% confusion matrixes for the five models with the CT scan
dataset, showing support of 274 and 223 for the COVID-19 and normal classes, respectively.
The best model, MobileNetV2, misclassified only 2 out of 274 of the COVID-19 images as
normal. Moreover, 2 out of 223 of the normal images were also misclassified. In contrast, the
worst model, VGG-19, misclassified ten images in the COVID-19 class as normal. Figure 9
illustrates the 80–20% confusion matrixes for the five models with the chest X-ray dataset,
showing support of 457, 463, and 462 for the normal, COVID-19, and viral pneumonia
classes, respectively. As can be observed, DenseNet121 was the best model because it
classified all COVID-19 images (463 images) accurately. Classifying COVID-19 images
accurately with no errors is a remarkable result, as the control is spread among individuals.
Moreover, only one normal image was misclassified as pneumonia, and five pneumonia
images were misclassified as COVID-19. However, this is less severe than misclassifying
COVID-19 images. It can be observed that the DenseNet121 model was not confused with
respect to COVID-19 images.

Figure 10 shows the receiver operating characteristic (ROC) curves for the true-positive
rate (TPR) vs. false-positive rate (FPR) for the normal, viral pneumonia, and COVID-19
chest X-ray dataset images. Furthermore, the values of the area under the curve (AUC) are
shown in the figure for each category. In addition, Figure 11 shows the ROC curves for
the COVID-19 and non-COVID CT scan dataset images. Figure 12 illustrates the results of
applying the Grad-CAM algorithm to cover the chest X-ray and CT scan dataset images
with heat maps. In the chest X-ray images, the class activation mapping was undertaken
by concentrating on particular portions of the normal, viral pneumonia, and COVID-19
classes. In the CT scan images, we applied the Grad-CAM algorithm to COVID-19 and
non-COVID classes. In general, in the normal images in both datasets, there was not any
kind of opacity that distinguished normal patients from other patients. As depicted in
Figure 12, there were no significant localized regions in normal images. In other classes,
our models demonstrated the capability to detect the localized regions in the heat maps
generated.
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4.4. Comparative Study

Table 8 presents a comparison of the best proposed DL model and the state-of-the-
art method [38] that obtained the best results in the literature for the CT scan dataset.
The model proposed here surpassed the state-of-the-art method in terms of sensitivity,
specificity, and accuracy. Moreover, the authors of [38] relied on a deep feature fusion
stage extracted from the deep features of AlexNet, GoogleNet, ShuffleNet, and ResNet-
18. Therefore, their fusion demands an enormous number of parameters, which, in turn,
requires excessive processing time.

Table 8. The results obtained with the CT scan dataset compared to state-of-the-art methods.

Authors/Year Method Precision Sensitivity Specificity F1-Score Accuracy Drawbacks

Silva
et al. [25]/2020

EfficientNet
family 93.51% 79.59% 93.98% 86.19% 87.60% Low accuracy

Singh
et al. [39]/2020

Multi-objective
differential
evolution

(MODE) model

N/A 90.50% 90.50% N/A 93.00% Low accuracy

Panwar
et al. [22]/2020 VGG19 model N/A 94.04% 95.84% N/A 95.00%

High
computational

complexity

Jaiswal
et al. [2]/2021 DenseNet121 96.29% 96.29% 96.21% 96.29% 96.25%

Use of a dataset
with a limited

number of samples

Dina Ragaband
Omneya Attal-
lah [38]/2020

FUSI-CAD 99.00% 99.00% 99.00% 99.00% 99.00%
High

computational
complexity

This work MobileNetV2 98.00% 99.18% 99.18% 98.00% 99.19%

Does not use
hyperparameter

optimization (HPO)
algorithms

Table 9 presents a comparison of the best proposed DL model and the state-of-the-art
methods for the chest X-ray dataset. The worst results, such as for the model from [34],
were obtained with models pretrained for feature extraction instead of with the transfer
learning strategy. In general, the results demonstrate the superiority of the proposed model
for the chest X-ray three-class classification task, and a remarkably higher average accuracy
result of 99.32% was achieved in the case of the DenseNet121 model. Fine-tuning with
a moderate number of layers and parameters contributed to these results appreciably.
Similarly, dimension reduction promotes faster learning, which was reflected in the short
training time (2906.43 s).

Table 9. The results obtained for the chest X-ray dataset compared to the state-of-the-art methods.

Authors/Year Method Precision Sensitivity Specificity F1-Score Accuracy Drawbacks

Ozturk
et al. [40]/2020 DarkCovidNet 89.96% 85.35% N/A 87.37% 87.02% Low accuracy

Apostolopoulos and
Mpesiana [41]/2020 VGG-19 92.85% N/A 93.48% Low accuracy

Agrawal
et al. [10]/2021 FocusCovid 95.60% 95.20% N/A 95.20% 95.20% Use of a dataset with a

limited number of samples

Cengil et al. [4]/2022

AlexNet +
EfficientNet-B0 +
N2ASNetLarge+
Xception and SVM

99.80% 98.60% 99.90% 99.19% 95.70% High computational
complexity

Ouchicha
et al. [42]/2020 CVDNet 96.72% 96.84% N/A 96.68% 96.69% High computational

complexity
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Table 9. Cont.

Authors/Year Method Precision Sensitivity Specificity F1-Score Accuracy Drawbacks

Nasiri and
Alavi [31]/2022

DenseNet169
+ANOVA + XGBoost 99.02 93.18 100 97.57 98.72

Sensitivity to the number of
features selected by the
ANOVA

Nasiri et al. [12]
DenseNet169
+MobileNet
+LightGBM

95.12 95.20 97.16 95.60 98.54 Dependence on only the
patient’s chest X-ray

This work DenseNet121 99.00% 98.98% 99.49% 98.99% 99.32%

Does not use
hyperparameter
optimization (HPO)
algorithms

5. Conclusions

In this study, two primary benchmark datasets for CT and X-ray images were used. All
images were enhanced and preprocessed as part of the basic DL learning phase. COVID-19
images were classified as positive or negative using a set of fine-tuned transfer learning
models. A set of deep learning models were trained and tested in this research study. For
the CT scan dataset, all five models provided average accuracy greater than 95%, whereas,
for the chest X-ray dataset, all models provided average accuracy greater than 95% except
EfficientB7, which achieved 89.04% accuracy. Compared to the methods in the literature,
the results show that MobileNetV2 surpassed the best method in terms of sensitivity,
specificity, and accuracy, with a training run time of 117.43 s and testing run time of 0.77 s.
In addition, DenseNet121 achieved the highest precision, specificity, F1-score, and accuracy
for X-ray images with 99.57%, 99.78%, 99.56%, and 99.71% respectively. In the future, a
prediction approach based on a combination of these DL models will be considered in order
to improve the results. In addition, more complicated and larger datasets will be used for
training to assess the robustness of the proposed approach. Moreover, using CT scans for
COVID-19 detection may bring extra radiation to patients. In the future, we will consider
the radiation dose issue in our proposed models.
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Table A1. EfficientB0.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 98.5 97.81 99.1 98.5 98.39 172.603498 0.190268278

2 96.5 96.72 99.1 98 97.79 172.845818 0.180725336

3 99.5 99.27 100 100 99.6 172.845818 0.180725336

4 99 97.81 99.55 98.5 98.59 171.685683 0.164677143

5 98 97.81 98.21 98 97.99 170.939578 0.156193256

Average 98.3 97.884 99.192 98.6 98.472 172.765045 0.17451787

STDEVP 1.029563 0.8114579 0.593680049 0.734847 0.6309485 0.11423032 0.012310743

Table A2. VGG-19.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 94.5 93.8 95.07 94.5 94.37 194.469967 0.215785742

2 88 98.54 76.6 89.5 88.73 195.344422 0.228986979

3 88.5 82.12 95.07 88 87.93 194.913571 0.211827993

4 94.5 91.97 97.31 94.5 94.37 195.879034 0.212376118

5 62 100 61.43 65.5 65.39 194.292557 0.216182947

Average 85.5 93.286 85.096 86.4 86.158 194.97991 0.217031956

STDEVP 12.078907 6.314395 14.00289056 10.77219 10.732557 0.57934254 0.006228234

Table A3. DenseNet121.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 99 97.81 100 99 98.79 172.484457 0.215648413

2 97.5 96.35 98.65 97 97.38 248.973759 0.233531952

3 96.5 96.35 96.86 96.5 96.58 250.652627 0.235277414

4 95.5 90.88 100 95 94.97 241.603891 0.249029398

5 97 97.08 96.86 97 96.98 240.935437 0.248332977

Average 97.1 95.694 98.474 96.9 96.94 230.930034 0.236364031

STDEVP 1.1575837 2.4671327 1.40700533 1.280625 1.235168 29.4770471 0.012181999

Table A4. EfficientB7.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 98.5 98.9 98.21 98.5 98.58 857.0554817 0.78863883

2 97.5 99.64 96.86 97.5 98.3 868.8623106 0.829064846

3 98.5 96.72 99.55 98 98 866.0339637 0.782578707

4 98 99.64 96.41 98 98.19 860.6685259 0.793141842

5 97.5 99.27 95.52 98 97.59 870.467566 0.783352852

Average 98 98.834 97.31 98 98.132 864.6175696 0.795355415

STDEVP 0.4472136 1.0920366 1.417335528 0.316228 0.3296908 5.040368568 0.017283772
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Table A5. MobileNetV2.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 95 93.43 96.86 95 94.97 115.561078 0.133627653

2 91.5 89.42 94.17 91.5 9155 116.526959 0.135413647

3 92 96.72 88.79 93.16 93.16 118.17297 0.113469124

4 93 98.54 86.55 93.16 93.11 119.257729 0.146316767

5 80.5 80 91.48 85.5 85.11 116.967638 0.188757896

Average 90.4 91.622 91.57 91.664 1904.27 117.297275 0.143517017

STDEVP 5.0931326 6.5884274 3.679157512 3.274957 3625.3666 1.29047647 0.024983658

Three-class experiment results.

Table A6. EfficientB0.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 95.33 98.19 99.34 95.33 96.878002 447.695684 0.437743187

2 95.33 98.87 98.9 95.33 96.829971 432.421255 0.447622299

3 95 99.09 98.88 95 96.637848 425.374457 0.467562675

4 96.5 99.09 98.69 96.5 97.118156 431.332181 0.417729855

5 95 97.96 98.67 95 96.589817 425.298462 0.444066763

Average 95.432 98.64 98.896 95.432 96.810759 435.163799 0.442944956

STDEVP 0.5540181 0.4738776 0.241213598 0.554018 0.1887309 9.31666799 0.016074998

Table A7. VGG-19.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 96.3 99.09 99.13 96.3 97.358309 520.112408 0.527137995

2 96 98.87 98.7 96 97.358309 513.283731 0.539829969

3 95.3 99.77 98.61 95.6 96.829971 508.651526 0.510110378

4 96.6 99.55 99.34 96.3 97.646494 514.29095 0.525996685

5 96.3 99.32 98.7 96.6 97.646494 510.08004 0.54573822

Average 96.1 99.32 98.896 96.16 97.367915 513.283731 0.52976265

STDEVP 0.4427189 0.3196248 0.286537956 0.338231 0.298255 3.98412533 0.012360039

Table A8. DenseNet121.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 96.6 99.1 99.13 96.6 97.646494 562.344443 0.638468742

2 96 100 98.9 96.3 97.214217 547.1 0.624609947

3 96.6 99.77 98.91 96.3 97.502402 542.371586 0.577787161

4 96 99.55 99.12 96.3 97.214217 542.873865 0.610474825

5 95.6 98.64 99.13 96 97.166186 540.810979 0.623207569

Average 96.16 99.412 99.038 96.3 97.348703 547.100175 0.614909649

STDEVP 0.3878144 0.4870893 0.108701426 0.189737 0.1906766 7.90142936 0.020570508
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Table A9. EfficientB7.

Iteration Precision Sensitivity Specificity F1-Score Accuracy Train Time (S) Test Time (S)

1 96 99.32 98.48 96 97.358309 2354.27585 2.09230423

2 96.3 98.19 98.92 96.3 97.454371 2337.126517 2.091997385

3 95.3 97.72 99.13 96.3 97.070125 2339.053592 2.10710454

4 93.3 97.2 99.11 95.3 95.917387 2329.031113 2.064648151

5 95.6 98.42 98.92 96.3 97.070125 2326.145514 2.092447042

Average 95.3 98.17 98.912 96.04 96.974063 2337.126517 2.08970027

STDEVP 1.056409 0.7111681 0.23387176 0.387814 0.5501564 9.838000281 0.013784915

Table A10. MobileNetV2.

Iteration Precision Sensitivity Specificity F-Score Accuracy Train Time (S) Test Time (S)

1 89.66 98.46 98.34 98.6 93.17963497 314.252928 0.366166115

2 92.6 97.62 98.64 92.6 95.14889529 308.500018 0.305682182

3 93 92.74 99.13 92.6 95.77329491 308.500018 0.322913408

4 93.6 97.94 99.53 93.3 95.43707973 308.947497 0.323650837

5 93 99.54 94.16 92.3 95.05283381 301.514411 0.304165363

Average 92.372 97.26 97.96 93.88 94.91834774 308.342975 0.324515581

STDEVP 1.393103 2.3520544 1.943224125 2.382771 0.904917491 4.04899008 0.022391561
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Maskeliūnas, R. A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation.
J. Pers. Med. 2022, 12, 309. [CrossRef] [PubMed]

27. Khan, M.A.; Alhaisoni, M.; Tariq, U.; Hussain, N.; Majid, A.; Damaševičius, R.; Maskeliūnas, R. COVID-19 case recognition from
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28. Rehman, N.-u.; Zia, M.S.; Meraj, T.; Rauf, H.T.; Damaševičius, R.; El-Sherbeeny, A.M.; El-Meligy, M.A. A self-activated cnn
approach for multi-class chest-related COVID-19 detection. Appl. Sci. 2021, 11, 9023. [CrossRef]

29. Guo, X.; Lei, Y.; He, P.; Zeng, W.; Yang, R.; Ma, Y.; Feng, P.; Lyu, Q.; Wang, G.; Shan, H. An ensemble learning method based on
ordinal regression for COVID-19 diagnosis from chest CT. Phys. Med. Biol. 2021, 66, 244001. [CrossRef]

30. Mukherjee, H.; Ghosh, S.; Dhar, A.; Obaidullah, S.M.; Santosh, K.; Roy, K. Deep neural network to detect COVID-19: One architec-
ture for both CT Scans and Chest X-rays. Appl. Intell. 2021, 51, 2777–2789. [CrossRef]

31. Nasiri, H.; Hasani, S. Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost.
Radiography 2022, 28, 732–738. [CrossRef]

32. Ullah, N.; Khan, J.A.; El-Sappagh, S.; El-Rashidy, N.; Khan, M.S. A Holistic Approach to Identify and Classify COVID-19 from
Chest Radiographs, ECG, and CT-Scan Images Using ShuffleNet Convolutional Neural Network. Diagnostics 2023, 13, 162.
[CrossRef] [PubMed]

33. Nasiri, H.; Alavi, S. A novel framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19
cases from chest X-ray Images. arXiv 2021, arXiv:2110.06340. [CrossRef]

34. Angelov, P.; Soares, E.A. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification.
medRxiv 2020, 2020, 4.

35. Asraf, A. Covid19 Penumonia Normal Chest Xray PA Dataset. Mendeley Data 2021. [CrossRef]
36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
37. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
38. Ragab, D.A.; Attallah, O. FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features.

PeerJ. Comput. Sci. 2020, 6, e306. [CrossRef] [PubMed]
39. Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential

evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [CrossRef] [PubMed]
40. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep

neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1016/j.imu.2020.100360
http://doi.org/10.1016/j.patcog.2021.108055
http://www.ncbi.nlm.nih.gov/pubmed/34103766
http://doi.org/10.3390/sym12040651
http://doi.org/10.1007/s13246-020-00865-4
http://doi.org/10.1016/j.chaos.2020.110190
http://doi.org/10.1155/2020/8843664
http://doi.org/10.1007/s00259-020-04929-1
http://doi.org/10.1016/j.imu.2020.100427
http://www.ncbi.nlm.nih.gov/pubmed/32953971
http://doi.org/10.3390/jpm12020309
http://www.ncbi.nlm.nih.gov/pubmed/35207796
http://doi.org/10.3390/s21217286
http://www.ncbi.nlm.nih.gov/pubmed/34770595
http://doi.org/10.3390/app11199023
http://doi.org/10.1088/1361-6560/ac34b2
http://doi.org/10.1007/s10489-020-01943-6
http://doi.org/10.1016/j.radi.2022.03.011
http://doi.org/10.3390/diagnostics13010162
http://www.ncbi.nlm.nih.gov/pubmed/36611454
http://doi.org/10.1155/2022/4694567
http://doi.org/10.17632/jctsfj2sfn.1
http://doi.org/10.7717/peerj-cs.306
http://www.ncbi.nlm.nih.gov/pubmed/33816957
http://doi.org/10.1007/s10096-020-03901-z
http://www.ncbi.nlm.nih.gov/pubmed/32337662
http://doi.org/10.1016/j.compbiomed.2020.103792


Diagnostics 2023, 13, 1268 21 of 21

41. Haque, K.F.; Abdelgawad, A. A deep learning approach to detect COVID-19 patients from chest X-ray images. AI 2020, 1, 418–435.
[CrossRef]

42. Ouchicha, C.; Ammor, O.; Meknassi, M. CVDNet: A novel deep learning architecture for detection of coronavirus (COVID-19)
from chest x-ray images. Chaos Solitons Fractals 2020, 140, 110245. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ai1030027
http://doi.org/10.1016/j.chaos.2020.110245

	Introduction 
	Literature Review 
	Proposed Methodology 
	Experimental Results and Discussion 
	Description of Datasets 
	Performance Metrics 
	Results for DL Models 
	Comparative Study 

	Conclusions 
	Appendix A
	References

