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Abstract: Purpose: Pre-operative assessment of thoracic lymphonodal (LN) involvement in patients
with lung cancer (LC) is crucial when choosing the treatment modality. Visual assessment of F-18-
FDG-PET/CT (PET/CT) is well established, however, there is still a need for prospective quantitative
data to differentiate benign from malignant lesions which would simplify staging and guide the
further implementation of computer-aided diagnosis (CAD). Methods: In this prospective study,
37 patients with confirmed lung cancer (m/f = 24/13; age: 70 [52–83] years) were analyzed. All
patients underwent PET/CT and quantitative data (standardized uptake values) were obtained.
Histological results were available for 101 thoracic lymph nodes. Quantitative data were matched to
determine cut-off values for delineation between benign vs. malignant lymph nodes. Furthermore, a
scoring system derived from these cut-off values was established. Statistical analyses were performed
through ROC analysis. Results: Quantitative analysis revealed the optimal cut-off values (p < 0.01)
for the differentiation between benign and malignant thoracic lymph nodes in patients suffering
from lung cancer. The respective areas under the curve (AUC) ranged from 0.86 to 0.94. The highest
AUC for a ratio of lymph node to healthy lung tissue was 0.94. The resulting accuracy ranged from
78.2% to 89.1%. A dedicated scoring system led to an AUC of 0.93 with a negative predictive value
of 95.4%. Conclusion: Quantitative analysis of F-18-FDG-PET/CT data provides reliable results for
delineation between benign and malignant thoracic lymph nodes. Thus, quantitative parameters
can improve diagnostic accuracy and reliability and can also facilitate the handling of the steadily
increasing number of clinical examinations.

Keywords: PET/CT; lung cancer; lymph node metastases; quantification; computer aided diagnosis

1. Introduction

In 2014, the European Society of Thoracic Surgeons (ESTS) updated the algorithm for
preoperative mediastinal lymph node staging for non-small cell lung cancer (NSCLC). In
this algorithm, F-18-fluorodesoxyglucose (FDG) positron emission tomography/computer
tomography (PET/CT) imaging plays a key role in the characterization of hilar and medi-
astinal lymph nodes [1–3]. Nevertheless, a meta-analysis by Birim and colleagues demon-
strated that the overall sensitivity for the detection of lymph node metastases in PET was
about 83% and the overall specificity was 92% [4]. Therefore, invasive methods such as
transbronchial biopsy and mediastinoscopy are still the gold standard for the final exclusion
of lymph node metastases, because their specificity is, by definition, 100% [5,6].
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At present, there are several diagnostic criteria, occasionally with significant discrep-
ancies, to classify a lymph node in PET/CT as benign or malignant. The criterion of a
maximum standard uptake value (SUVmax) ≥ 2.5 achieved an overall sensitivity of 81.3%
and an overall specificity of 79.4%, as reported by Schmidt–Hansen and colleagues [7].
Another approach to classify a lymph node in PET/CT is the calculation of SUV ratios
to healthy tissues (e.g., liver) or the primary tumor. Mattes et al. were able to increase
the accuracy in prediction of nodal malignancy in certain lymph nodes by using a ratio
of lymph node to primary tumor [8]. With a ratio of lymph node to liver, Nguyen et al.
correctly classified 88.3% of the analyzed lymph nodes and achieved a sensitivity of 83.9%
with a specificity of 97.6% [9].

Analogous to the Deauville Score, for example, there are similar approaches for
visually comparing lymph nodes with other organs in patients with lung cancer [10]. With
a visual reading score, our institution achieved accuracies of 91.4% to 93.5% and negative
predictive values of 97.3–97.6%, as recently published [11,12].

Nevertheless, none of these parameters or scores have been implemented in clinical
routines so far, most likely due to missing reproducibility or unsatisfactory performance as
well as a lack of prospective data. Therefore, standardized, reproducible, and especially
prospective evaluated criteria are needed to optimize diagnostics and clinical care. Due to
the fast development of artificial-intelligence-based-quantitative-analysis and its expected
role in future medicine, these criteria preferably should be of a quantitative nature as they
represent a promising target for computer-aided diagnosis [9,13,14].

The aim of this prospective study was therefore to find reliable and reproducible
quantitative diagnostic parameters which (a) have a high diagnostic accuracy and (b) can
be easily obtained from PET/CT in clinical routine.

2. Materials and Methods
2.1. Patients

This monocentric prospective study was approved by the local ethics committee (registra-
tion number 115/17) and registered at the WHO-clinical-trial database (ID: DRKS00012624).

We prospectively recruited 73 (female, n = 22; male, n = 51) patients in our department
from August 2017 to February 2018. Due to the lack of at least one criterion (see below) in
the further course, 36 patients were excluded from evaluation (dropout rate: 49.3%).

37 patients (female, n = 13; male, n = 24; median age 70 years [range, 52–83 years])
with a total of 101 assessable lymph nodes (mean diameter, 13.7 ± 10 mm) and a PET/CT
during the course of clinical routine were prospectively included.

All analyzed lymph nodes were confirmed histologically (preferably through surgery or
mediastinoscopyor transbronchial needle biopsy), which served as the standard of reference.

Patients meeting the following criteria were included in the study: (a) histologically
confirmed lung cancer (primary tumor), (b) histologically confirmed or excluded lymph
node involvement, (c) fasting blood glucose level ≤ 8.3 mmol/L on the day of the PET/CT,
and (d) uptake time between 45–70 min after injection.

Histological subtypes included small cell lung cancer (n = 1), adenocarcinoma (AC,
n = 19), squamous cell carcinoma (SCC, n = 16), and non-small cell lung cancer not otherwise
specified (NSCLC NOS, n = 1).

2.2. PET/CT Imaging

PET/CT imaging was performed using an EARL-certified PET/CT device (Biograph
mCT 64®; Siemens Health-care, Erlangen, Germany). Imaging was performed in accor-
dance with the current procedural guidelines of the European Association of Nuclear
Medicine [15]. A median activity of 236 MBq F-18-FDG (IQR, 232–239 MBq; range,
226–245 MBq) was intravenously administered and the PET scan started after a median
uptake time of 56 min (IQR, 55–58 min; range, 46–68 min). PET data were acquired from
the base of the skull to mid-thigh (Six to eight bed position; three minutes each and axial
coverage of 216 mm per bed position and an overlap of 89 mm). The low-dose CT was
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used for attenuation correction and anatomical mapping (tube current, 50 mA; tube voltage,
120 kV; gantry rotation time 0.5 s; pitch 0.8).

2.3. PET/CT Image Reconstruction

PET raw data were reconstructed using iterative reconstruction with system-specific
point spread function (PSF) modelling and time of flight (TOF) analysis (Siemens TrueX®,
UltraHD PET®; iterations: 2; subsets: 21). Projection data were reconstructed with a
5 mm slice thickness (rows: 512; columns: 512; voxel size: 1.5 × 1.5 × 5.0 mm). After
reconstruction, a Gaussian filter (full width half maximum [FWHM], 2 mm) was applied.
CT raw data were reconstructed with a slice thickness of 5 mm and a special filter for
low-dose CT (convolution kernel, B19f).

2.4. Quantification

For quantitative image analysis of the corrected PET datasets, we used the software
ROVER® (Version: 2.1.40, ABX advanced biochemical compounds GmbH;
Radeberg; Germany).

Volumes of interest were manually assigned to the lymph node to be analyzed and
the respective quantitative parameters were measured. Liver standard uptake value was
calculated by placing a volume of interest with a diameter of 5 cm in the right lobe of the
liver. Standard uptake value of the brainstem was assessed with a 2 cm volume of interest
in the co-imaged brainstem. Standard uptake value in healthy lung tissue was evaluated by
placing a volume of interest with a diameter of 5 cm in the lung contralateral to the tumor.
Standard uptake value of the primary was calculated by placing an appropriate volume of
interest around the primary. We then compiled the quotients, which are detailed in Table 1.

Table 1. Calculation of the named ratios.

Lymph node/primary SUVmax lymph node/SUVmax primary
Lymph node/liver SUVmax lymph node/SUVmax liver

Lymph node/brainstem SUVmax lymph node/SUVmax brainstem
Lymph node/lung SUVmax lymph node/SUVmax healthy lung tissue

Additionally, we also addressed recently published data on visual reading [11,12].
In those publications, a visual reading score was utilized. The scoring system was de-
fined as follows: uptake of lymph node appears ≤ mediastinal blood pool structures
(score 1); uptake of lymph node appears > uptake of mediastinal blood pool structures but
< uptake of the liver (score 2); uptake of lymph node appears ≥ uptake of the liver but
not black (score 3); uptake of lymph node appears ‘black’ (score 4). With a cut-off score
higher than three, a sensitivity between 88.9% and 90.7% with a specificity between 92.0%
and 94.6% was achieved [11]. Addressing this publication, we now quantified this score as
follows: maximum uptake of lymph node ≤ maximum uptake of liver (score 1); maximum
uptake of liver < maximum uptake of lymph node ≤ maximum uptake of primary (score 2);
maximum uptake of primary < maximum uptake of lymph node (score 3).

Furthermore, we assessed a multifactorial scoring system, which consisted of these five
conditions: (I) SUVmax ≥ 5.495, (II) ratio lymph node to primary ≥ 0.457, (III) ratio lymph
node to liver ≥ 1.374, (IV) ratio lymph node to brainstem ≥ 0.749, and (V) ratio lymph
node to healthy lung tissue ≥ 4.593. For each fulfilled condition, a point was obtained.

2.5. Statistical Analyses

Data analysis was performed with IBM SPSS Statistics 24 (IBM Corporation, Armonk,
NY, USA).

Descriptive parameters were expressed as median, IQR, and range, unless otherwise
specified. Furthermore, we calculated receiver operating characteristic (ROC) curves and the
corresponding areas under the curve (AUC) with their 95% confidence interval (95%-CI).
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The optimal cut-off values were defined as the points with the smallest distance to the
point (0· 1) on the ROC curve and were calculated with the following formula:

d =

√
(1 − Sensitivity)2 + (1 − Speci f ity)2 (1)

The resulting diagnostic performance expressed by sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and accuracy at computed cut-off
values was evaluated using standard formulas.

Significance was assumed at p-values < 0.05.

3. Results

Overall, 101 lymph nodes could be identified in PET and low-dose CT data (median
lymph nodes per patient, n = 3; range, 1–6). The lymph nodes were classified into the
staging system according to Mountain and Dresler [16]. The distribution of lymph nodes
was as follows: EBUS 2 (n = 6), 4 (n = 21), 5 (n = 8), 6 (n = 3), 7 (n = 27), 10 (n = 18),
11 (n = 16), and 12 (n = 2). Twenty-nine of those lymph nodes (28.7%) were malignant and
seventy-two of those lymph nodes (71.3%) had a benign histology.

3.1. SUV Measurements

Significant differences between benign and malign lymph nodes were seen for SU-
Vmax, SUVmean, SUVpeak, ratio SUVmax lymph node to SUVmax primary, ratio SUVmax
lymph node to SUVmax liver, ratio SUVmax lymph node to SUVmax brainstem, and ratio
SUVmax lymph node to SUVmax of contralateral lung, with p < 0.05, respectively. Detailed
results are shown in Table 2.

Table 2. Quantitative parameters measured in PET/CT; values shown are median and range.

Benign Malign

SUVmax
3.45 (1.14–19.00) 11.00 (2.35–35.55)

p < 0.05

Lymph node/primary 0.22 (0.06–1.27) 0.75 (0.13–2.42)
p < 0.05

Lymph node/liver 0.92 (0.28–4.42) 3.18 (0.63–11.19)
p < 0.05

Lymph node/brainstem 0.52 (0.14–3.88) 1.63 (0.51–8.46)
p < 0.05

Lymph node/lung 3.47 (1.08–19.00) 14.67 (4.60–50.61)
p < 0.05

3.2. ROC Analyses and Diagnostic Performance

A SUVmax of 5.5 as the optimum cut-off value led to the highest overall accuracy
(89.1%) with a resulting AUC of 0.92 (Confidence interval (CI): 0.85–0.98). Sensitivity,
specificity, negative predictive value, and positive predictive value for SUVmax were
89.67%, 88.89%, 95.5%, and 76.5%, respectively.

The highest negative predictive value with 100% was achieved for ratio lymph node
to healthy lung tissue, with an AUC of 0.94 (CI: 0.89–0.98). Sensitivity, specificity, positive
predictive value, and accuracy were 100%, 73.6%, 60.4%, and 81.9%.

Ratio lymph node to brainstem led to the lowest observed accuracy (79.21%) with a
resulting AUC of 0.88 (CI: 0.81–0.95). Sensitivity, specificity, negative predictive value, and
positive predictive value were 82.7%, 77.8%, 91.8%, and 60.0%.

The lowest observed AUC was 0.86 (CI: 0.78–0.94) for ratio lymph node to primary
tumor, resulting in an overall accuracy of 80.2%. Sensitivity, specificity, negative predictive
value, and positive predictive value were 79.3%, 80.6%, 90.6%, and 62.2%.
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Ratio of lymph node to liver led to an accuracy of 84.2% with an area under the
curve of 0.91 (CI: 0.85–0.98). Sensitivity, specificity, negative predictive value, and positive
predictive value were 89.6%, 81.9%, 95.2%, and 66.7%.

The areas under the curves with their respective cut-off values are shown in Table 3;
for cross tables, see Table 4.

Table 3. ROC analyses and diagnostic performance of the above ratios and scores.

Cut-Off
(p < 0.001) AUC Sens Spez PPV NPV Acc

SUVmax 5.495 0.92
(CI: 0.85–0.98) 89.67% 88.89% 76.47% 95.52% 89.11%

Lymph node/primary 0.457 0.86
(CI: 0.78–0.94) 79.31% 80.56% 62.16% 90.63% 80.20%

Lymph node/liver 1.374 0.91
(CI: 0.85–0.98) 89.66% 81.94% 66.67% 95.16% 84.16%

Lymph node/brainstem 0.749 0.88
(CI: 0.81–0.95) 82.76% 77.78% 60.00% 91.80% 79.21%

Lymph node/healthy lung 4.593 0.94
(CI: 0.89–0.98) 100% 73.61% 60.42% 100% 81.89%

Adapted visual score ≥3 0.81
(CI: 0.72–0.89) 34.48% 95.83% 76.92% 78.41% 78.22%

Score ≥3 0.93
(CI: 0.88–0.98) 89.66% 86.11% 72.22% 95.38% 87.13%

Table 4. Cross tables for the respective ratios.

·· PET Neg PET Pos

SUVmax;
cut-off 5.495

Histo neg 64 8
Histo pos 3 26

Lymph node/primary;
cut-off 0.457

·· PET neg PET pos
Histo neg 58 14
Histo pos 6 23

Lymph node/liver;
cut-off 1.374

·· PET neg PET pos
Histo neg 59 13
Histo pos 3 26

Lymph node/brainstem;
cut-off 0.749

·· PET neg PET pos
Histo neg 56 16
Histo pos 5 24

Lymph node/lung;
cut-off 4.593

·· PET neg PET pos
Histo neg 53 19
Histo pos 0 29

3.3. Scoring System Adapted from Visual Reading Score

Addressing our recent publication with a visual reading score to predict malignancy
in thoracic lymph nodes, we now quantified this score as aforementioned [11,12]. The best
diagnostic performance was achieved for a cut-off score higher than two (maximum uptake
of primary < maximum uptake of lymph node) with an AUC of 0.81 (CI: 0.72–0.89). This
led to an accuracy of 78.2%. Sensitivity, specificity, negative predictive value, and positive
predictive value were 34.5%, 95.9%, 78.4%, and 76.9%.



Diagnostics 2023, 13, 1263 6 of 10

3.4. Dedicated Scoring System

Furthermore, we assessed a multifactorial scoring system, outlined above. The ROC
analyses for this score revealed an optimal cut-off point for a score higher than two with
an AUC of 0.93 (CI: 0.88–0.98) and an accuracy of 87.1%. Sensitivity, specificity, negative
predictive value, and positive predictive value were 89.7%, 86.1%, 95.4%, and 72.2%.

3.5. Patient Examples

In some cases, the quantitative values did not match the histological results.
In an 80-year-old patient, a perifocal inflammatory reaction was confirmed in the

pathological report of the lymph node, which was falsely classified in PET as being positive.
This inflammation led to an increase of the SUVmax of the lymph node of 10.1 and was
thus difficult to distinguish from a malignant lymph node.

In another case, PET/CT classified a lymph node with a SUVmax of 5.7 as malignant.
Nevertheless, histology outruled metastasis but showed a mixed dust pneumoconiosis.
Additionally, the consideration to balance those inflammatory-related uptake patterns by
using a ratio of lymph node to non-tumor-affected lung tissue did not work. With a value
of 7.0, this lymph node was evaluated as malignant.

A false negative lymph node (SUVmax: 3.45) was seen in a 77-year-old female patient.
Here, due to the presentation in CT images and the uptake pattern in PET, the presence of a
partly lepidic adenocarcinoma can be assumed. According to Suarez–Piñera and colleagues,
these led to a lower standard uptake value compared with other lung cancer entities [17].

4. Discussion

In this prospective study, we investigated whether there are quantifiable parameters
in FDG-PET/CT that distinguish between malignant and benign lymph nodes in patients
with lung cancer. The definition of these parameters are essential for the implementation of
computer-aided diagnosis and potentially machine learning, which are on the rise in the
field of medical applications. As of today, research and applications are mainly focusing on
the field of neurological research [18,19]. Nevertheless, this technology is also finding its
way into other research areas of medicine and medical imaging [20,21].

Individualized therapy is further gaining importance in lung cancer treatment, but
the necessary diagnostic procedures are becoming more complex and elaborate. Machine
learning and computer-aided diagnosis could help to save resources, especially physicians’
time in clinical practice. Furthermore, in this way, interrater differences common in the
visual interpretation of PET may be reduced. The results of imaging would show a better
reproducibility, which may facilitate its use in multicenter studies.

In this study, we investigated quantitative parameters that may be used further in
computer-aided diagnosis and machine learning. A clinical example is given in Figure 1.
A SUVmax threshold is a commonly used parameter, which was also examined in this
study [7,13]. On the basis of this threshold, an area under the curve of 0.92 (CI: 0.85–0.98),
a sensitivity of 89.7%, and a specificity of 88.9% were reached. Therefore, it allows for an
almost perfect differentiation between benign and malignant lymph nodes. In particular,
the very high negative predictive value might help reduce further diagnostic procedures
in PET-negative lymph nodes. Our data is consistent with the results of Perigaud and
colleagues, who concluded from their study that patients with PET-negative lymph nodes
can be referred resection of the primary tumor without invasive mediastinal staging [14].

Another quantitative parameter that we investigated was the ratio lymph node to
primary tumor, which has also been investigated in some studies [8,9,22]. A ratio to the
primary tumor can possibly equalize differences in uptake due to different histological
subtypes [23]. In our study, we found an area under the curve of 0.86 (CI: 0.78–0.94) for the
ratio of lymph node to primary with a sensitivity of 79.3% and a specificity of 80.6%, which
is higher compared with other authors such as Nguyen and colleagues who achieved a
sensitivity of 73.0% and a specificity of 77.1%, also resulting in a higher accuracy [9].
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lymph node in the region 4R (D) was positive as well. All findings were confirmed histologically. 

Figure 1. 78-year-old male with a histologically proven adeno carcinoma in the right lower lobe (A).
The left hilar region showed involvement in the EBUS region 10R (B) but not 11R (C). An additional
lymph node in the region 4R (D) was positive as well. All findings were confirmed histologically.

A possible explanation for this finding is the very strict institutional PET/CT protocol
in our study, including a very strict limit in uptake time (median uptake time: 56 min;
range: 46–68 min).

The ratio of lymph node to liver has not been frequently studied but is nevertheless of
interest [9,24]. As hepatic FDG uptake correlates closely with blood glucose levels, the ratio
of lymph node to liver uptake could be used for the correction of interindividual differences
in glucose metabolism [25,26]. For this approach, we were able to show an area under
the curve of 0.91 (CI: 0.85–0.98), a sensitivity of 89.7%, and a specificity of 81.9% which is
in line with Tournoy and colleagues who showed similar performances using a slightly
different patient preparation (e.g., use of diazepam) and the SUVmean of the liver instead
of the SUVmax [24]. Nevertheless, our results are not superior to simply using a SUVmax
threshold. Maybe the approach to correct interindividual differences in glucose metabolism
had a minor impact, due to the strict blood glucose limit (blood glucose ≤ 8.3 mmol/L
before injection) in our institution.

Moreover, we assessed two ratios to the brainstem and non-affected contralateral lung
tissue that were not found in the literature so far.

The ratio of lymph node to brainstem was calculated because we assumed that the
brainstem has a fairly constant FDG uptake rate and the SUV of this region more accurately
reflects the availability of FDG [27]. The respective ratio has an area under the curve of 0.88
(CI: 0.81–0.95) with a sensitivity of 82.8% and a specificity of 77.8%. With an accuracy of
79.2%, this was the least accurate ratio that we found. This is contradictory to preclinical
tumor to brain evaluations on tumor-bearing mice [28].
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However, preclinical data cannot be readily translated to humans. Vigliant and
colleagues found a strong dependency of brain SUV on blood glucose levels [29]. Another
study by Britz–Cunningham and colleagues found a superiority of uptake ratio with the
brain (cortex, basal ganglia, or cerebellum) as a reference [30]. In our study, we used the
brainstem because it was still located within the field of view (thighs to base of skull). Upon
visual evaluation, the area was free of artefacts in spite of being located at the end of the
field of view, however, quantitative parameters could still have been influenced, resulting
in our observation.

In addition, we were able to achieve a good performance with the ratio of lymph
node to the contralateral, non-tumor-affected lung tissue. Patients with lung cancer often
suffer from other lung diseases (e.g., chronic obstructive pulmonary disease), which af-
fects glucose metabolism in the mediastinal and hilar lymph nodes. Using a ratio to the
contralateral non-tumor-affected lung tissue could balance inflammatory-related changes
in FDG uptake, because FDG uptake of lung tissue in patients with chronic obstructive
pulmonary disease (COPD) is higher compared with patients with healthy lung tissue [31].
The ratio of lymph node to healthy lung tissue achieved an area under the curve of 0.94 (CI:
0.89–0.98) with a sensitivity of 100%, an accuracy of 81.9%, and a negative predictive value
of 100%. Even if the assumed effect of increasing specificity does not occur, high sensitivity
with acceptable specificity is very interesting for computer-aided diagnosis.

Scoring systems play a role in the diagnosis of various diseases, for example, the
TIRADS classification for the management of thyroid nodules [32]. The advantage of those
scoring systems is the integration of several characteristics. With an accuracy of 87.1%, this
score was very accurate in predicting nodal malignancy but had no advantage compared
with SUVmax or other parameters. Even though this approach had no benefit in this study,
further investigation could be valuable. Since CT parameters are automatically collected
in addition to PET parameters, it may be useful to include them in a further score. For
example, lymph node size or, even better, the change in lymph node size compared with
previous examinations could be included.

As demonstrated earlier, a strictly visual reading is suitable in clinical routine, deliv-
ering high accuracy rates [12]. Nevertheless, visual impressions are not numerical data
and therefore, implementation of progressive techniques such as computer-aided diagnosis
systems is impeded. Consequently, we tried to ‘translate’ visual reading into quantitation
as described. Unfortunately, the performance of this approach was not nearly as good as in
our initial study and was inferior to the aforementioned values and ratios. This might be
due to the fact that quantitation is intrinsically more precise than subjective image impres-
sion. In addition, the ‘translation’ of the condition ‘uptake of lymph node appears black’
was difficult and led to the condition uptake of primary < uptake of lymph node, which
is obviously inaccurate. This does not mean that visual reading is the wrong approach in
clinical routine at present; the data suggests that the thresholds we used initially are not
suitable for machine learning.

A potential limitation of this work is the considerably small number of patients
(n = 37) and lymph nodes examined (n = 101). Due to the monocentric approach with only
one PET/CT device, a direct application of the results to other institutions might only be
partially possible. The presence of the different histological subtypes of lung carcinoma can
limit the use of quantitative PET parameters, as demonstrated in one example. In further
studies with larger numbers of patients, a differentiation with regard to different subtypes
would be an interesting approach.

5. Conclusions

Lymph node SUVmax and ratio lymph node to lung tissue, derived from a dedicated
F-18-FDG-PET/CT, allow for a reliable differentiation between benign and malignant
thoracic lymph nodes in patients with lung cancer.

In the face of increasing examination numbers in PET/CT, those data could represent
a promising target for an effective and efficient diagnostic approach. This could not only
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help physicians in clinical routine but might also lead to a more precise and reproducible
practice in clinical care.
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