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Abstract: One of the most frequent cancers in women is breast cancer, and in the year 2022, approxi-
mately 287,850 new cases have been diagnosed. From them, 43,250 women died from this cancer. An
early diagnosis of this cancer can help to overcome the mortality rate. However, the manual diagnosis
of this cancer using mammogram images is not an easy process and always requires an expert person.
Several AI-based techniques have been suggested in the literature. However, still, they are facing
several challenges, such as similarities between cancer and non-cancer regions, irrelevant feature
extraction, and weak training models. In this work, we proposed a new automated computerized
framework for breast cancer classification. The proposed framework improves the contrast using
a novel enhancement technique called haze-reduced local-global. The enhanced images are later
employed for the dataset augmentation. This step aimed at increasing the diversity of the dataset and
improving the training capability of the selected deep learning model. After that, a pre-trained model
named EfficientNet-b0 was employed and fine-tuned to add a few new layers. The fine-tuned model
was trained separately on original and enhanced images using deep transfer learning concepts with
static hyperparameters’ initialization. Deep features were extracted from the average pooling layer in
the next step and fused using a new serial-based approach. The fused features were later optimized
using a feature selection algorithm known as Equilibrium-Jaya controlled Regula Falsi. The Regula
Falsi was employed as a termination function in this algorithm. The selected features were finally
classified using several machine learning classifiers. The experimental process was conducted on
two publicly available datasets—CBIS-DDSM and INbreast. For these datasets, the achieved average
accuracy is 95.4% and 99.7%. A comparison with state-of-the-art (SOTA) technology shows that
the obtained proposed framework improved the accuracy. Moreover, the confidence interval-based
analysis shows consistent results of the proposed framework.

Keywords: breast cancer; mammogram images; contrast enhancement; augmentation; deep learning;
feature optimization; feature fusion; neural networks
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1. Introduction

Cancer affects people all over the world. Breast cancer is the most prevalent type
among women [1]. However, according to a Breast Cancer Care (BCC) survey, 42% of
NHS trusts claim they do not have enough staff to assign people, citing minimal specialist
nursing experience in breast cancer. It is the main factor that contributes to the low
global survival rate of breast cancer [2]. A shortage of breast cancer specialists among
medical professionals will delay disease detection, encourage noncompliance with the
best screening and treatment methods, and lead to unequal access to the best care [3].
Breast cancer detection was established to effectively detect abnormalities and categorize
breast cancer. This is done to help in breast cancer diagnosis [4]. Early detection is
crucial to lowering the death rate; however, due to the modest sizes of possible nodules
concerning the overall breast, early diagnosis of breast cancer by screening mammography
is difficult [5]. Compared to other cancer types, breast cancer has the highest probability of
being treated (around 90%). Cancer does not produce early pain, so it is not noticed until
serious health issues arise [6]. Age is a factor in both breast cancer mortality and incidence
rates. The average age of breast cancer diagnosis between 2010 and 2014 is 62.

Pakistan has Asia’s highest breast cancer incidence rate—annual reports of cases
totaling about 90,000 results include a fatality rate of 40,000 [7]. The patient survival rate is
the percentage of patients expected to live after a diagnosis for a pre-determined amount of
time with the expectation of leading a normal life. The stage at which cancer is discovered
affects the survival rate [8]. Due to its ability and low cost to satisfy medical requirements,
mammography has appeared as the most reliable tool for detecting breast cancer.

Mammography analysis is the doctor’s primary method to determine a diagnosis, but
this method is vulnerable to bias and doctor tiredness [1]. Unfortunately, mammography
has a low detection rate. It can produce false-negative results in the range of 5% to 30%,
based on the type of lesion, the density of the breasts and the patient’s age [9]. Therefore,
low-dose radiography is used in mammography, which allows us to see the inside structure
of the breast. Various signal processing methods are used to detect breast cancer, including
ultrasound imaging [10], microwave imaging [11], and curvelet transform [8,12].

Computer-aided detection (CAD) technologies for breast cancer are crucial therapeuti-
cally in order to lessen radiologists’ labor and increase their detection precision [5]. Pattern
recognition is the foundation of the conventional method for classifying medical infections,
such as breast masses, skin lesions, and brain tumors. For breast cancer, the mammogram
features are manually extracted, and the extracted features are then entered into a machine
learning classifier for categorization [1]. However, gaining an accurate classification is still
challenging due to several image issues and variations in the tumor regions. Therefore, AI
has been significantly involved in detecting and classifying medical infections in the last
decade, especially for breast cancer [13].

Thanks to the CAD system, this is based on several intermediate stages, such as the
preprocessing of original images, feature learning and extraction, feature selection and
reduction, and classification [14]. In the preprocessing step, the researcher attempts to pro-
duce good-quality images and overcome the noise if it exists. The objective of preprocessing
is to make the tumor region more visible, which can later help in accurately detecting a
region of interest (ROI) [15]. Several conventional approaches have been described in the
literature for ROI detection, such as fuzzy, clustering, and saliency-based techniques, to
name but a few. The next important step is the feature extraction, in which each image’s
key properties are computed. Several conventional feature extraction techniques, such as
the shape, texture, and point features, are introduced in the literature. Some researchers
also focused on feature reduction and selection for improved accuracy and less computa-
tional time [16]. The last important step in AI is the machine learning techniques based on
classifying cancer regions into relevant categories, such as cancerous or non-cancerous [17].

Recently, a convolutional neural network (CNN) has shown a remarkable performance
in medical imaging for detecting and classifying cancers. The effectiveness of the deep
learning models usually depends on the size of the training datasets. The conventional
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techniques did not perform well for the complex nature datasets; however, on the other
side, the deep learning-based techniques showed impressive performance. Truly, deep
learning uses the idea of CNN to classify breast cancer. A CNN model contains layers
(hidden layers), such as convolutional, pooling, activation, and fully connected layers. The
last layer of a CNN model is Softmax, which works as a classifier. Deep learning empowers
automated AI techniques in medical imaging. Several deep learning-based architectures
have been introduced in the literature for diagnosing and classifying medical infections [13].
The researchers introduced many deep learning approaches for breast cancer classification
and diagnosis; however, they still face challenges, such as imbalanced datasets, noisy
imaging data, and the downsampling of important features [18]. They focused on the
learning task of deep models based on transfer learning. Transfer learning is a method of
reusing a pre-trained model for another purpose or task [19]. Several hyperparameters
have been employed for the training process, such as the learning rate and mini-batch
size, etc.; however, for breast cancer, it is difficult to initialize the manual values of each
parameter. Obayya et al. [20] presented an optimized hyperparameter-based deep-learning
framework for classifying breast cancer. After the training, the researcher extracted the
deep features from the fully connected layer; however, based on the analysis, it was noticed
that several features were redundant and affected the classification accuracy of breast
cancer [21]. Recently, Atban et al. [22] presented an optimized deep learning approach
for improved breast cancer classification. Peirera et al. [23] presented a dialectical feature
selection technique for enhanced breast cancer classification; however, these techniques
face the problem of termination where the optimal values have been retrieved.

1.1. Major Challenges and Contributions

Several challenges exist in the medical image processing domain, especially for breast
cancer classification when using deep learning. The first challenge is fewer amounts of
available mammography image datasets because a deep learning model requires a larger
dataset for the training and a better understanding of the classification task [24]. The second
challenge is feature engineering. This step also extracts several redundant features that
cause a false-negative rate and high computational time [25]. In this paper, we proposed
a new framework based on original and enhanced mammogram images’ deep-learning
optimal features aggregation. Our main contributions to this work are listed as follows:

• We proposed a contrast enhancement approach based on the haze reduction concept
called haze-reduced local-global (HRLG).

• We performed data augmentation and trained the fine-tuned EfficientNet-b0 deep
learning model. For the training, hit- and trial-based values were selected for the
hyperparameters of the network. This model was trained using original and en-
hanced images and extracted deep features from the average pool layer instead of
a fully connected layer. The extracted deep features were later fused using a serial
nature approach.

• A feature selection technique is proposed and called Equilibrium-Jaya controlled
Regula Falsi. The best features are selected and fused using a new, short serial-
based technique.

1.2. Justification of the Contributions

The major objective of the proposed contrast enhancement strategy is to increase the
local information of the image, which is later helpful in the better learning of a deep model
and improved classification (the results-based justification is provided under Section 4). The
reason behind the selection of EfficientNet-b0 is based on the lesser number of parameters
and a better top-five accuracy. In addition, the hit- and trial-based hyperparameters
selection shows better model learning that increases the training accuracy. In addition, the
proposed feature selection technique reduces the problem of overfitting and lessens the
proposed framework’s computational cost (the results are given in Section 4).
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The remainder of the article is arranged in the following order. Section 2 defines the
related work of this manuscript. The proposed methodology, discussed in Section 3, in-
cludes the proposed contrast enhancement, augmentation, feature extraction, optimization,
fusion, and classification. The outcomes, in the form of numerical values, are presented in
Section 4. Finally, Section 5 concludes the manuscript.

2. Related Work

The most common type of cancer worldwide is breast cancer, with about 1.7 million
women affected by cancer being reported in 2012. Age, family history, and medical history
are just a few risk factors for breast cancer [4]. Most patients who die from cancer are
women, and 2.1 million of them are identified with breast cancer each year. According to a
recent survey, 627,000 women are estimated to have died from cancer in 2018, making up
15% of all cancer fatalities among women [5]. Breast cancer detection and its classification
via computer visualization are commonly performed through a deep learning-based model.
However, due to the complexity of early breast cancer and the dimming of mammography
images, it is challenging for clinicians to diagnose cancer from these images. As a result,
it is crucial to improve a doctor’s detection effectiveness using the CAD system of deep
learning approaches [26].

Tan et al. [4] suggested a CNN-based framework for classifying mammography im-
ages into normal, benign, and malignant to classify breast cancer. First, to visualize the
mammogram images, preprocessing was performed. Then, the preprocessed images were
trained on the deep learning model that extracted the features. The extracted features of the
last layer were finally classified using a CNN classifier called Softmax. The selected model
increased the classification accuracy of mammography images using the introduced frame-
work. The results clearly show that the suggested framework was more accurate than other
existing methods, having an accuracy of 0.8585 and 0.8271, respectively. Falconi et al. [27]
presented the preliminary findings for the classification of breast abnormalities as malig-
nancies using transfer learning. They used several deep learning models and found two top
models, ResNet50 and MobileNet. Both models produced the best outcomes, with 78.4%
and 74.3% accuracy, respectively. Additionally, they also applied several preprocessing
techniques to improve the classification’s precision. Finally, Samee et al. [28] presented a
novel hybrid processing method, which is based on both principal component analysis
(PCA) and logistic regression (LR).

The CAD system was evaluated using the INbreast and mini-MIAS benchmark
datasets. The presented CAD system achieved the best accuracies of 98.60% using the
INbreast dataset and 98.80% using the mini-MIAS dataset. Next, Hekal et al. [5] presented
a new computer-aided detection technique for classifying two mammography cancers. The
automated optimal Otsu thresholding approach was used in a CAD system to identify
tumor-like regions. Then, deep CNNs were used to investigate the AlexNet and ResNet50
architectures, which processed the retrieved TLRs to extract the relevant mammography
features. The experiment was acted upon on two datasets, yielding 91% and 84% accuracy
rates, respectively. Finally, Siddeeq et al. [29] presented a framework with a ResNet-based
customized neural network that was applied to an unbalanced dataset using the data aug-
mentation and pyramid of scales approaches. The results obtained from the mammograms
in the INbreast dataset show improved performance when the training dataset is increased.

Hikmah et al. [30] improved the diagnostic outcomes using an image-processing
architecture for multi-view screening. The tumor regions were segmented using first-
order local entropy, a texture-based method. The feature extraction results were used
to calculate the radius and area of likely malignancy. According to the outcomes of this
suggested method, the detection accuracy of the CC and MLO views for breast cancer
was 88.0% and 80.5%, respectively. Alruwaili et al. [31] presented a framework that
emphasized transferable learning. In order to avoid overfitting and achieve reliable results,
a variety of augmentation techniques are used to enhance the number of mammograms.
Almalki et al. [32] presented a technique on the large mammography images dataset. In the
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first stage, classification was performed, followed by extracting the pectoral muscle in the
next step. In the third stage, abnormal spots in a well-enhanced image were detected using
a new segmentation module to recognize breast cancer. The Breast Imaging and Reporting
and Data System’s dataset had five categories and obtained an accuracy of 92%.

Moreover, on the Mammographic Image Analysis Society database, the suggested
technique yields a result of about 97%. Karthiga et al. [33] presented a methodology
combining two main components: transfer learning and CNNs. The hyperparameters of
the CNN model were modified to enhance the classification performance. The outcome
showed that the presented strategies significantly improved accuracy for the combined
datasets (92.27%), for MIAS (95.95%), for DDSM (99.39%), and for INbreast (96.53%).
Several other methods were also introduced to classify breast cancer [34]. Few other studies
also existed in the literature that proposed deep learning-based frameworks for breast
cancer classification, such as the optimized stacking learning approach [35], fuzzy c-mean
and median support value-based CNN approach [36], and named a few more [37].

The above studies focused on the model’s information fusion, selection of manual
hyperparameter values, data augmentation, and tumor identification using thresholding
and CNN techniques. However, it was observed that they missed several important
steps that could help improve accuracy. Those steps are contrast enhancement and the
optimization of the extracted features. In the deep model, the SGD and ADAM optimizers
are normally employed for the weight optimizations. However, we also included a feature
optimization technique after the feature extraction process to overcome the computational
time, problem of overfitting, and improvement in accuracy.

3. Proposed Novel Framework

This section presents the proposed framework for classifying breast cancer using
mammogram images. Figure 1 highlights the architecture of this cancer classification.
According to this figure, for the experimentation, datasets from INbreast and CBIS-DDSM
are utilized. In the first phase, a contrast enhancement technique is employed on both
datasets and then data augmentation is performed. A modified EfficientNet-b0 model is
employed for training on both the original and improved datasets. For training purposes, a
deep transfer learning technique is used. After that, feature extraction is performed from
the average pool layer. Then, a hybrid optimization algorithm is employed to select the
best features. By using a serial-based approach, the best-selected features are fused and
classified using machine learning classifiers.
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3.1. Datasets

In this section, the details of selected datasets have been presented. Two datasets have
been employed for the experimentation of this work, such as the CBIS-DDSM (the Curated
Breast Imaging Subset of DDSM), where the digital database is a revised and standardized
version of scanning for breast cancer (DDSM) and INbreast. The DDSM dataset comprises
two classes, benign and malignant, as shown in Figure 2.
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The INbreast dataset comprises two classes that are benign and malignant. Figure 3
illustrates the sample images of this dataset, and it contains 410 images of 115 patients. The
size of the images is 2560 × 3328 and 3328 × 4084 pixels. For the experiment, 108 mass
mammogram images were employed.
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3.2. Novelty 1: Contrast Enhancement and Augmentation

Traditional haze-removal techniques aim to produce a high-quality rebuilt image by
adjusting the contrast and saturation. The visibility of the scene in the image can be made
substantially better by using the haze reduction procedure. In this work, we proposed
a new hybrid contrast enhancement technique based on haze removal and local-global
transformation. Mathematically, this technique is described as follows:

Consider ∆ as an entire image database having N number of images. Let I(x, y) be an
original image of dimensional N ×M× 3 and C̃F(x, y) is the final enhanced image. In the
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first step, we employed a haze reduction technique based on the dark channel and applied
it to the original image. Mathematically, the haze reduction process is defined as follows:

H(x) = Y(x)t(x) + L(1− t(x)) (1)

where H denotes the observed intensity value, Y denotes the scene radiance, t(x) denotes
the transmission map, and L denotes the atmospheric light. The employed dehazing
algorithm recovers the scene radiance Y from the estimation of the transmission map and
atmospheric light as follows:

Y(x) =
(H(x)− α)

(max(t(x), t0)
+ α (2)

The resultant Y(x) is later utilized to obtain the global contrast of an image based on
the following formulation:

g0 = (1 + Ck)× (gi − kmean) + σ (3)

where g0 is a resultant global contrast image, Ck denotes the global contrast gain factor, gi
denotes the input pixel value of Y(x), kmean is a global mean value of Y(x), and σ denotes
the standard deviation of Y(x). In the latter step, we computed the local contrast of the
haze reduction image by employing the following mathematical function:

L(x, y) = φ(x, y) +
LC

σ(i, j) + α
× [φ(x, y)− µ(x, y)] (4)

where φ(x, y) denotes the grayscale pixel of the dehazed image Y(x), LC denotes local
contrast, α denotes a small parameter value, and µ(x, y) denotes the mean value of the
dehazed image, respectively. Finally, we fused the local and global contrast resultant images
into a single image by employing the following mathematical equation and obtaining the
final enhanced image.

C̃F(x, y) = [g(x, y) + L(x, y)]− I(x, y) (5)

The final enhanced image is C̃F(x, y), which is further utilized for the augmentation
process. Visually, these enhanced images are shown in Figure 4.
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3.3. Data Augmentation

The small number of image datasets is useful for training traditional machine learning
techniques, such as shape features (HOG), point features, color features, and more. For
deep learning models, it is always essential to generate or collect some larger datasets.
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However, the publicly available datasets for breast cancer are not large enough; therefore,
we performed data augmentation in this work. In addition to growing the dataset, data
augmentation reduces the overfitting issues and strengthens the deep learning model’s
robustness. Eight more photos for each identified patch were created by rotating each
image four times at the angles of 0◦, 90◦, 180◦, and 270◦, and then by flipping the resulting
four images from left to right. After the process of augmentation, the summary of images
is presented in Table 1. Moreover, Figure 5 displays the sample images.

Table 1. Summary of augmented and original datasets.

CBIS-DDSM

Original Dataset Augmented Dataset

Class # Images Class # Images

Benign 557 Benign 4939
Malignant 637 Malignant 5096

INbreast Dataset

Original Dataset Augmented Dataset

Class # Images Class # Images

Benign 76 Benign 1216
Malignant 70 Malignant 1120
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3.4. EfficientNet-B0 Pre-Trained Model

EfficientNet uses a compound coefficient to scale both the design and sizing of its con-
volutional neural network. This compound coefficient uniformly scales the depth, width,
and resolution parameters to maintain consistency throughout the network. Unlike the
traditional approach of unconstrained scaling of these parameters, the EfficientNet scaling
approach employs a fixed set of scaling coefficients to uniformly adjust the resolution,
width, and depth of the network. The concept underlying the compound scaling method
is that, when the input images become larger, the network requires additional layers to
expand its receptive field and more channels to detect finer details within the larger im-
age. The fundamental EfficientNet-b0 network is composed of squeeze-and-excitation
blocks, as well as MobileNetV2 inverted bottleneck residual blocks. The architecture of the
EfficientNet-b0 model is shown in Figure 6.
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Fine-Tuned Model: Originally, the EfficientNet-b0 network was trained using more
than a million images of the ImageNet dataset that contains 1000 different object categories.
For fine-tuning, we initially excluded the last three layers and added three new layers,
such as the fully connected, softmax, and output layers. After that, we initialized some
hyperparameters, such as a learning rate of 0.005, momentum of 0.703, epochs of 100, and
the stochastic gradient descent as an optimizer. Finally, we trained this fine-tuned model
using deep transfer learning.

Knowledge transfer from one field or domain to another is called transfer learning.
Deep learning involves a great deal of training data, making it difficult and time-consuming
to learn specific patterns, especially in medical imaging. A labeled dataset serves as the
“source,” which is indicated as:

F$ = (G$, H$) (6)

where H$ ∈ Ir1 is the label, and G$ ∈ I∂Xr1 is a d-dimensional feature space. The r1 is
the total number of source samples. The “target” dataset is identified as Fτ=(Gτ), where
GτεI∂Xr2 and r2 are the total number of target samples. There are two important definitions
as follows:

The two primary components of a “domain” F = {G, ρ(i)} are the feature data G
and the associated marginal probability distribution ρ(i), which has a range of [0, 1]. The
(Task) can be defined as labels H and their matching function J(i), which anticipates them,
making up a “task” τ = {H, J(i)}. Overall, this process is shown in Figure 7.
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After the training of the deep learning models using deep transfer learning, deep
features were extracted. Deep features were extracted for both datasets, such as CBIS-DDSM
and INbreast. As shown in Figure 1, the training of the fine-tuned model is conducted
separately on original and enhanced images. The features were extracted from each trained
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model’s global average pool layers. After the feature extraction, we obtained feature vectors
of dimensions N × 1280 for the CBIS-DDSM dataset (two vectors of the same dataset) and
N × 1280 for the INbreast dataset (two vectors of the same dataset).

3.5. Novelty 2: Binomial Probability Serially Fusion

Consider that we have two feature vectors ∂1 and ∂2 of CBIS-DDSM, which have the
dimensions N × 1280 and N × 1280. Similarly, we have two feature vectors ∂̌1 and ∂̌2 of
the INbreast dataset, with the dimensions N × 1280 and N × 1280, respectively. Suppose
that ∂̌x and ∂̌x1 denote the fused feature vectors using a simple serial-based approach and
are mathematically defined as follows:

∂̌x =

(
∂1
∂2

)
(N×1280+N×1280)

(7)

∂̌x1 =

(
∂̌1
∂̌2

)
(N×1280+N×1280)

(8)

Both fused vectors ∂̌x and ∂̌x1 are analyzed and further refined using the proposed
serially extended mean deviation approach. In this approach, the binomial probability
distribution is initially computed for the entire feature vector and then defined as a final
activation function based on the resultant value used for the fusion process. Mathematically,
this process is defined as follows:

P
(

∂̌x

)
= nC∂̌x

p∂̌x (1− p)n−∂̌x (9)

P
(

∂̌x1

)
= nC∂̌x1

p∂̌x1(1− p)n−∂̌x1 (10)

Using P
(

∂̌x

)
and P

(
∂̌x1

)
, the final activation functions have been defined for the final fusion.

Act1 =

{
FU1 f or ∂̌x ≥ P

(
∂̌x

)
Ignore Elsewhere

(11)

Act2 =

{
FU2 f or ∂̌x1 ≥ P

(
∂̌x1

)
Ignore Elsewhere

(12)

where FU1 and FU2 denote the fused feature vectors of the CBIS-DDSM and INbreast
datasets, respectively. In our work, the dimensions of these feature vectors were N × 1726
and N × 1702, respectively. Furthermore, the resultant feature vectors were optimized
further using the proposed Equilibrium-Jaya controlled Regula Falsi method.

3.6. Novelty 3: Proposed Features Selection Method

This work selects the best features by employing a hybrid optimization algorithm
named Equilibrium-Jaya controlled Regula Falsi. The main purpose of the hybridization of
both algorithms is to obtain the most optimal features that can help in improved accuracy
and a reduction in computational time.

Equilibrium Optimizer Algorithm

Initialization: In this stage, the equilibrium optimizer employs a collection of particles,
each representing a concentration vector that holds the answer to the optimization issue.
By using the following formula, a random initial concentrations vector is created in the
search space [41]:

→
xj = umin + (umax − umin) ∗ v j = 1, 2, 3 . . . , n (13)
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where
→
xj represents the particle n’s concentration vector and umin, umax set the upper and

lower bounds, respectively. For each dimension in the challenge, v is an arbitrary number
in the range of [0, 1], and n indicates the number of particles present.

Equilibrium Pool and Candidates: Each meta-heuristic algorithm attempts to attain a
goal based on its nature. For instance, WOA looks for predators. An artificial bee colony
(ABC) looks for a food supply, and in relation to EO, it looks for the system’s equilibrium
state. The near-optimal solution to the optimization issue may be reached by EO when
it reaches the equilibrium state. During optimization, EO is unaware of the degree of
levels of concentration that reach equilibrium. The four best particles identified in the
community at equilibrium have members assigned, along with another candidate with
the average of the four best particles. These five equilibrium members assist EO in its
role as an exploitation and exploration operator, with the first four members assisting
EO in improving its capacity for diversification and exploitation on average. These five
candidates are kept in an equilibrium pool vector as follows [41]:

→
ωEq,pool =

[→
ωEq(1),

→
ωEq(2),

→
ωEq(3),

→
ωEq(4),

→
ωEq(Avg)

]
(14)

Updating the Concentration: Using the following phrase aids EO in maintaining a
tenable balance between intensification and diversity. Since the turnover rate in a real
control volume can change over time, k is meant to be a random vector between 0 and 1.

→
H = e−

→
δ (IT−IT0) (15)

IT =

(
1− Iter

ITmax

)(α2∗( Iter
ITmax ))

(16)

where the current and maximum iterations are denoted by Iter and ITmax, respectively.
Additionally, the exploitation capability is managed by the constant variable α2. Another
factor is α1, which is employed to enhance the diversification and intensity of EO:

→
IT0 =

1
→
δ

ln
(
−α1 Sign

(→
v − 0.5

)
[1− e−

→
δ IT
)
+ IT (17)

where α1 is a constant used to control the exploration capabilities; as α1 increases, diversi-
fication improves while the intensity decreases. Unlike α1, α2 is a fixed value utilized to
regulate the exploitation capacity. The intensification capability is good, and the diversi-
fication capability is worse when α2 is higher. Another term that is used to increase the
intensification operator is the generation rate (GR), which is defined as follows [41]:

→
GR =

→
GR0 ∗ e−

→
δ ∗(IT−IT0) (18)

where, GR0 is the beginning value, and δ is an arbitrary vector with a range from 0 to 1:

→
GR0 =

→
GRC ∗

(
→

uEq −
→
δ ∗
→
U
)

(19)

→
GRC =

{
0.65v1 v2 > RC
0 Otherwise

(20)

where the random values v1 and v2 range from 0 to 1. The generation rate control parameter

in this equation is denoted by
→

GRC, that, based on a probability, RC determines whether
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the generation rate will be implemented in the updating process. Last but not least, the EO
updating equation is as follows:

→
U =

→
uEq +

(→
U − →

uEq

)
+
→
H +

→
GR
→
δ ∗ x

(
1−

→
H
)

(21)

The output of this algorithm
→
U is again analyzed and modified with the Jaya algorithm.

The working principle of the algorithm is that the seeking agents or particles continuously
try to approach the goal by ignoring the worst solution in each iteration. By retaining the
best position and completely discarding all other positions, the seeking agent updates its
position based on this method. As a result, all solutions produced by iteration are better
than the prior worst solution. Every suggested solution or searching agent in JA is known
as a particle Vσ,∅,ρ. Each particle searches for the best and optimal solution and avoids the
worst solution of the objective or cost function in the search region. With ”a” candidates
(i.e., σ = 1, 2, . . . , a) and “b” design variables (i.e., ∅ = 1, 2, . . . , b), this is accomplished
in order to maximize the objective function (J). The particle locations are mathematically
updated as follows:

V′σ,∅,ρ = Vσ,∅,ρ + z1,σ,ρ

(
Vσ,best,ρ −

∣∣Vσ,∅,ρ
∣∣)− z2,σ,ρ

(
Vσ,worst,ρ −

∣∣Vσ,∅,ρ
∣∣) (22)

where Vq,r,s represents the ∅th candidate’s σth variable during the ρth iteration. Random
numbers with values between [0, 1] are z1,σ,ρ and z2,σ,ρ. The Vσ,best,ρ and Vσ,worst,ρ, respec-
tively, are the best and worst candidate values. The updated value of Vσ,∅,ρ is V′σ,∅,ρ. If
the value returned by Vσ,∅,ρ is better than V′σ,∅,ρ then the V′σ,∅,ρ value is retained. The
cost function is employed in each iteration, and the resultant features are used to compute
the best value using the Regula Falsi method. Mathematically, the Regula Falsi method is
defined as follows:

RF = x0 −
[

f (x0)×
x1 − x0

f (x1)− f (x0)

]
(23)

RFn = xn−2 −
[

f (xn−2)×
xn−1 − xn−2

f (xn−1)− f (xn−2)

]
(24)

The output of this function is passed to the fitness function to check the accuracy. The
fine KNN is employed in this work as a function. The selected features, after this process,
are finally passed to the classifiers for classification. The dimensions of the proposed
selected features are N × 826 and N × 812, which was previously N × 1726 (the fusion of
dataset 1, and 1702 for the fusion of dataset 2). This shows that the proposed technique
significantly reduced the size of the feature vector.

The reasons for feature selection (FS): The aim of feature selection is to reduce the
problem of overfitting and the overall computational cost. In this work, the purpose
of the proposed FS technique is to choose the most optimal features that maintain the
classification accuracy or improve the accuracy but significantly reduce the computational
time. We compared the proposed FS technique with other techniques, such as the principal
component analysis (PCA), genetic algorithm (GA), and PSO. In PCA, the features are
reduced as per the experience, but in the GA and PSO, 20–30% of the features are reduced,
and 70% (maximum) of the features are selected (in our experiments).

4. Results

The proposed architecture results for breast cancer classification have been presented
in this section in terms of numeric values, confusion matrix, and plots. The augmented CBIS-
DDSM and INbreast publicly available datasets have been employed for the experimental
process (details of the datasets have been given under Section 3.1). The training and testing
ratio is defined as 50: 50, with a cross-validation value of 10. Several classifiers have been
utilized for classification, such as ensemble subspace KNN, fine KNN, cubic SVM, medium
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Gaussian SVM, medium neural networks, wide neural networks, and weighted KNN, to
name but a few. The outcomes are calculated using several experiments: (i) a classification
using deep features on the original dataset; (ii) a classification using deep features on an
enhanced dataset; (iii) a fusion of the original and improved dataset deep features using
the proposed fusion technique; and (iv) a feature selection using the proposed Equilibrium-
Jaya controlled Regula Falsi method. The entire experimental process was conducted on
MATLAB 2022a using a desktop computer with 16 GB of RAM and an 8 GB graphics card.

4.1. CBIS-DDSM Results

Table 2 describes the outcomes of the classification of the CBIS-DDSM dataset using
the original dataset’s deep features. The ensemble subspace KNN classifier obtained the
best-obtained accuracy of 92%. The sensitivity rate of this classifier is 92.05, the precision
rate is 92.05, the F1 score is 92.05, and the FNR is 7.95%, respectively. The second best-
obtained accuracy is 91.8%, achieved by fine KNN. The newly added classifiers, such as the
narrow neural network (N3), medium NN, wide NN, and bi-layered NN, obtained 87.5,
88.7, 88.4, and 87.2% accuracy, respectively. The computational time of each classifier is
listed in this table. Based on the mentioned time, the fine KNN classifier execution is less
than the other classifiers, such as 50.021 (s); however, the maximum noted time for the
ensemble subspace KNN classifier is 584.69 (s).

Table 2. Classification results of original dataset after deep feature extraction using fine-tuned
EfficientNet-b0. * ESKNN denotes the ensemble subspace KNN, F-KNN denotes fine KNN, C-SVM
denotes cubic SVM, MGSVM denotes medium Gaussian SVM, MNN denotes the medium neural
network, WNN denotes wide neural network, N3 denotes the narrow neural network, and BN2

denotes the bi-layered neural network.

* Classifier Sensitivity Rate % Precision Rate % F1 Score AUC Accuracy % FNR Time (s)

ESKNN 92.05 92.05 92.05 0.96 92 7.95 584.69
F-KNN 91.9 91.85 91.87 0.92 91.8 8.1 50.021
C-SVM 90.35 90.35 90.35 0.96 90.4 9.65 95.967

MGSVM 88.7 88.7 88.7 0.95 88.7 11.3 120.35
MNN 88.7 88.65 88.67 0.93 88.7 11.3 55.385

Wide NN 88.4 88.45 88.42 0.94 88.4 11.6 103.12
WKNN 88.1 88.1 88.1 0.95 88.1 11.9 51.004
QSVM 87.6 87.6 87.6 0.95 87.6 12.4 97.295

N3 87.55 87.55 87.55 0.92 87.5 12.45 100.66
BN2 87.25 87.25 87.25 0.92 87.2 12.75 247.92

Table 3 describes the outcomes of the classification of the CBIS-DDSM dataset after
the proposed contrast enhancement technique. The best-obtained accuracy of 95% was
achieved by the ensemble subspace KNN classifier. The sensitivity rate of this classifier
is 95.05, the precision rate is 95, the F1 score is 95.02, and the FNR is 4.95%. The second
best-obtained accuracy is 94.7%, achieved by fine KNN. The noted accuracy for N3 is 90.1,
the medium NN is 90.6, the wide NN is 90.5, and the bi-layered NN is 89.9%, respectively.
Comparing these obtained accuracies after the proposed contrast enhancement step shows
that the performance is more improved than the original dataset, as shown in Table 2.
Computationally, the fine KNN classifier execution is less than the other classifiers, such as
54.658 (s); however, the maximum noted time is 633.3 (s) for the ensemble subspace KNN.
Compared to Table 2, it is observed that the accuracy of this experiment is improved, which
shows the strength of this classifier.
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Table 3. Classification results after employing the proposed contrast enhancement step for deep
features extraction.

Classifier Sensitivity
Rate (%)

Precision
Rate (%) F1 Score (%) AUC Accuracy (%) FNR (%) Time

Complexity (s)

ESKNN 95.05 95 95.02 0.97 95.0 4.95 633.3
F-KNN 94.7 94.7 94.7 0.95 94.7 5.3 54.658
C-SVM 92.15 92.15 92.15 0.97 92.1 7.85 90.261

MGSVM 91.5 91.5 91.5 0.97 91.5 8.5 114.64
MNN 90.55 90.55 90.55 0.94 90.6 9.45 86.577

Wide NN 90.5 90.5 90.5 0.96 90.5 9.5 99.719
WKNN 90 90 90 0.96 89.9 10 60.308
QSVM 90.4 90.45 90.42 0.96 90.4 9.6 92.179

N3 90.1 90.15 90.12 0.94 90.1 9.9 105.76
BN2 89.85 89.85 89.85 0.94 89.9 10.15 308.88

Table 4 describes the outcomes of the classification of the CBIS-DDSM dataset using
the proposed feature fusion approach. The best-obtained accuracy after the feature fusion
is 94.1% by ensemble subspace KNN. The sensitivity rate of this classifier is 94.15, the
precision rate is 94.15, the F1 score is 94.15, and the FNR is 5.85%. The second best-obtained
accuracy is 93.8%, achieved by fine KNN. The accuracy is also computed for several
neural networks, such as N3, MNN, WNN, and Bi-NN, which are 90.3, 92.2, 92.2, and 90.5%,
respectively. A comparison of these values with Table 2 shows that the accuracy is enhanced
after the fusion process. Figure 8 illustrates the confusion matrix of the ESKNN classifier.
This figure shows that the malignant class has a correct prediction rate of 93.4%. Moreover,
Figure 9 displays that the computational time after the fusion process is increased, which is
a drawback of this step; thus, this is why we proposed a feature selection technique.

Table 4. Classification results of CBIS-DDSM using proposed feature fusion approach. The bold
represent the significant value.

Classifier Sensitivity
Rate %

Precision
Rate % F1 Score AUC Accuracy % FNR Time Complexity

(sec)

ESKNN 94.15 94.15 94.15 0.97 94.1 5.85 961.1
F-KNN 93.75 93.75 93.75 0.94 93.8 6.25 127.76
C-SVM 93.6 93.6 93.6 0.99 93.6 6.4 167.34

MGSVM 93.1 93.1 93.1 0.98 93.1 6.9 170.19
MNN 92.2 92.25 92.22 0.98 92.2 7.8 94.742

Wide NN 92.1 92.1 92.1 0.98 92.1 7.9 145.807
WKNN 91.75 91.75 91.75 0.97 91.7 8.25 140.53
QSVM 93.15 93.2 93.17 0.98 93.2 6.85 175.34

N3 90.35 90.3 90.32 0.94 90.3 9.65 149.832
BN2 90.55 90.5 90.52 0.94 90.5 9.45 405.4

Table 5 describes the outcomes of the classification of the CBIS-DDSM dataset using
the proposed feature selection algorithm. The best-obtained accuracy of 95.4%, achieved
by ensemble subspace KNN, is more improved than the originally extracted features,
enhanced image features, and proposed fusion. The sensitivity rate of this classifier is 95.4,
the precision rate is 95.35, the F1 score is 95.37, and the FNR is 4.6%. The classification
accuracy for the neural networks is also improved after the proposed selection method, such
as N3 is 94.1, MNN is 94.7, WNN is 90.7, and Bi-NN is 94.9%, respectively. Figure 10 shows
the confusion matrix of the ESKNN classifier that shows the correct predicted values in a
diagonal. The computational time is also reduced after the proposed selection method and
is plotted in Figure 11. Overall, the accuracy is enhanced after the proposed feature selection
method. Moreover, time is also reduced when compared to the previous experiments.
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Table 5. Classification of CBIS-DDSM using the proposed feature selection algorithm.

Classifier Sensitivity
Rate (%)

Precision
Rate (%) F1 Score (%) AUC Accuracy (%) FNR (%) Time Complexity

(sec)

Classifier 95.4 95.35 95.37 0.98 95.4 4.6 164.06
ESKNN 95.25 95.25 95.25 0.95 95.3 4.75 25.859
F-KNN 91.75 91.75 91.75 0.97 91.8 8.25 37.899
C-SVM 90.75 90.75 90.75 0.96 90.7 9.25 52.97

MGSVM 92.05 92.05 92.05 0.97 92 7.95 36.853
MNN 94.7 94.7 94.7 0.95 94.7 5.3 47.295

Wide NN 90.7 90.65 90.67 0.96 90.7 9.3 25.815
WKNN 89.75 89.75 89.75 0.95 89.1 10.25 39.806
QSVM 91.5 91.5 91.5 0.97 91.5 8.5 50.785

N3 94.9 94.85 94.87 0.98 94.9 5.1 117.13
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4.2. INbreast Dataset Results

The outcomes of the classification of the INbreast cancer dataset have been discussed
in this subsection. Table 6 describes the outcomes of the classification of the INbreast
dataset using the original images dataset. Deep features are extracted from the deep model
and obtained the maximum accuracy of 98.3% on medium Gaussian SVM (MGSVM). The
sensitivity rate of this classifier is 98.25, the precision rate is 98.25, the F1 score is 98.25, and
the FNR is 1.75%. The computational time is noted for each classifier, listed in this table.
Based on the mentioned time, the quadratic SVM (QSVM) classifier execution is less than
the other classifiers.
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Table 6. Classification results of INbreast dataset using original images based on fine-tuned deep
model features.

Classifier Sensitivity
Rate %

Precision
Rate % F1 Score AUC Accuracy % FNR Time Complexity

(sec)

MGSVM 98.25 98.25 98.25 0.99 98.3 1.75 7.1611
ESKNN 98.15 98.15 98.15 0.98 98.2 1.85 38.082
QSVM 98.08 98.05 98.06 1 98.1 1.95 6.6397
F-KNN 98.05 98.05 98.05 0.98 98.1 1.95 9.1516
LSVM 97.95 97.95 97.95 1 98 2.05 7.5417
Bi-NN 98 98 98 1 98 2 20.558

EBT 97.85 97.85 97.85 0.99 97.9 2.15 11.611
Tri-NN 97.9 97.9 97.9 1 97.9 2.1 30.736
C-SVM 97.7 97.7 97.7 0.99 97.7 2.3 6.837

N3 97.7 97.7 97.7 0.99 97.7 2.3 17.319

Table 7 describes the outcomes of the classification of the INbreast dataset using the
proposed enhanced images. After the training on enhanced images, we obtained a testing
accuracy of 98.1% on MGSVM. The sensitivity rate of MGSVM for this experiment is 98.05,
the precision rate is 98.15, the F1 score is 98.09, and the FNR is 1.95%, respectively. The
computational time is noted for each classifier, listed in this table. However, it was discov-
ered that the accuracy remains consistent after the enhancement, but the computational
time is reduced.

Table 7. Classification results of INbreast dataset using proposed enhanced images based on fine-
tuned deep model features.

Classifier Sensitivity
Rate %

Precision
Rate % F1 Score AUC Accuracy % FNR Time Complexity

(sec)

MGSVM 98.05 98.15 98.09 0.99 98.1 1.95 6.8656
ESKNN 98 98.1 98.04 0.98 98.0 2 38.111
QSVM 97.9 98 97.94 0.99 97.9 2.1 6.3209
F-KNN 97.9 98 97.94 0.98 97.9 2.1 9.3578
LSVM 97.25 95.5 96.36 1 97.3 2.75 6.844
Bi-NN 97.35 97.3 97.32 1 97.3 2.65 18.814

EBT 96.45 96.5 96.47 0.99 96.5 3.55 11.588
Tri-NN 97.35 97.35 97.35 0.99 97.3 2.65 27.701
C-SVM 97.85 97.85 97.85 0.99 97.7 2.15 6.3782

N3 97.7 97.7 97.7 0.99 97.7 2.3 14.795

Table 8 displays the outcomes of the proposed feature fusion for the INbreast dataset.
After the proposed fusion, we obtained an accuracy of 99.6% on MGSVM. The sensitivity
rate of this classifier is 99.55, the precision rate is 99.6, the F1 score is 99.57, and the FNR
is 0.45%. These values can be further calculated through a confusion matrix, given in
Figure 12. In this figure, the diagonal values display the correct or accurate predicted
values. The computational time is noted for each classifier, and it is observed that the
time is increased after the proposed fusion process. However, the accuracy is significantly
increased, which is the strength of this step. We proposed a feature selection approach to
resolve the high computational time problem.

The outcomes of the proposed features are presented in Table 9 and achieved the
maximum accuracy of 99.4% on cubic SVM. The sensitivity rate of this classifier is 99.4,
the precision rate is 99.4, the F1 score is 99.4, and the FNR is 0.6%. A confusion matrix
is illustrated in Figure 13, in which the diagonal values show the correct prediction. The
computational time is noted for each classifier, listed in this table, and the noted minimum
time is 2.1975 for the cubic SVM classifier. Compared to the original image features,
contrast-enhanced image features, and fused features, the proposed selection method
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shows improved performance for both accuracy and time. The visual comparison, in terms
of the computational time, is shown in Figure 14, which shows the clear strength of the
proposed feature selection.

Table 8. Classification results of proposed feature fusion on INbreast dataset.

Classifier Sensitivity
Rate (%)

Precision
Rate (%) F1 Score AUC Accuracy (%) FNR Time Complexity

(sec)

MGSVM 99.55 99.6 99.57 1 99.6 0.45 20.066
ESKNN 97.9 98 97.94 0.99 97.9 2.1 54.093
QSVM 99.45 99.5 99.47 1 99.5 0.55 15.09
F-KNN 97.8 97.9 97.84 0.98 97.9 2.2 20.399
LSVM 99.45 99.5 99.47 1 99.5 0.55 15.352
Bi-NN 99.15 99.2 99.17 1 99.1 0.85 13.076

EBT 98.85 98.9 98.87 1 98.9 1.15 18.83
Tri-NN 99.15 99.2 99.17 1 99.1 0.85 13.374
CSVM 99.45 99.5 99.47 1 99.5 0.55 16.174

N3 99.3 99.35 99.32 1 99.3 0.7 13.36
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Table 9. Classification results of proposed feature selection technique on INbreast dataset.

Classifier Sensitivity
Rate %

Precision
Rate % F1 Score AUC Accuracy % FNR Time Complexity

(sec)

MGSVM 99.05 99.1 99.07 1 99.1 0.95 2.2698
ESKNN 98 98.1 98.04 1 98.0 2 15.915
QSVM 99.2 99.25 99.22 1 99.2 0.8 2.2299
F-KNN 97.55 97.55 97.55 0.98 97.6 2.45 3.5232
LSVM 99.2 99.2 99.2 1 99.2 0.8 2.51
Bi-NN 98.2 98.2 98.2 1 98.2 1.8 2.4121

EBT 98.2 98.2 98.2 1 98.3 1.8 7.1051
Tri-NN 98.6 98.6 98.6 0.99 98.5 1.4 2.896
CSVM 99.4 99.4 99.4 1 99.4 0.6 2.1975

N3 99.05 99.05 99.05 1 99.1 0.95 2.6468
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Finally, we compare the proposed framework with some state-of-the-art techniques
which used similar datasets. Table 10 compares the proposed framework with the recent
techniques, and it is noted that Surendiren et al. [42] obtained an accuracy of 93.3% on
the CBIS-DDSM dataset. Houbey et al. [43] obtained an improved accuracy of 96.52% on
the INbreast dataset. In [44], the authors obtained 85.38% and 99% accuracy for the CBIS-
DDSM and INbreast datasets. This work achieves an accuracy of 95.4% for CBIS-DDSM
and 99.7% for the INbreast cancer dataset, which shows an improvement.

Table 10. Comparison of the proposed framework with recent state-of-the-art techniques.

Reference Year Datasets Accuracy

[42] 2015 CBIS-DDSM 93.3%
[45] 2019 CBIS-DDSM 87.2%
[46] 2020 INbreast 90.9
[47] 2020 CBIS-DDSM 93.47
[1] 2021 CBIS-DDSM 94.7

[43] 2021 INbreast 96.52%
[48] 2022 CBIS-DDSM, INbreast 90.68%, 91.28%
[44] 2022 CBIS-DDSM, INbreast 85.38%, 99%

Proposed CBIS-DDSM, INbreast 95.4%, 99.7%
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5. Conclusions

This work proposes a novel framework for breast cancer classification from mam-
mography images. The proposed framework comprises important steps, starting with
image acquisition and classification. In the first phase, a contrast enhancement technique is
proposed. The resultant enhanced images have been used to train the deep learning model
(EfficientNet-b0) and compare the results with the original image’s deep feature accuracy.
The results show that the accuracy of the proposed enhancement technique is better, but the
recently obtained accuracy was not met; therefore, a new fusion technique is proposed. The
original image and enhanced image features have been fused using the proposed fusion
technique and thus show a significant improvement in accuracy. The drawback of this
step was the increase in computational time; therefore, a new feature selection technique is
proposed, called Equilibrium-Jaya controlled Regula Falsi. After employing the proposed
selection technique, time is significantly reduced for both datasets.

Limitations and Future Directions

The limitation of this work is the fusion process that consumes much time compared
to the feature selection technique. In addition, the manual initialization of the hyperpa-
rameters is not an efficient method. These limitations will be resolved in the future by
employing the following steps:

- The tumor segmentation step will be added using image fusion techniques [49], and
later-stage segmented regions will be considered for the feature extraction.

- An optimized feature fusion technique will be considered for resolving the computa-
tional time problem.

- The Bayesian optimization technique will have opted for the hyperparameters’ initial-
ization.
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