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Abstract: Breast cancer (BRCA) has an undesirable prognosis and is the second most common cancer
among women after lung cancer. A novel mechanism of programmed cell death called cuproptosis
is linked to the development and spread of tumor cells. However, the function of cuproptosis
in BRCA remains unknown. To this date, no studies have used machine learning methods to
screen for characteristic genes to explore the role of cuproptosis-related genes (CRGs) in breast
cancer. Therefore, 14 cuproptosis-related characteristic genes (CRCGs) were discovered by the feature
selection of 39 differentially expressed CRGs using the three machine learning methods LASSO,
SVM-RFE, and random forest. Through the PPI network and immune infiltration analysis, we found
that PRNP was the key CRCG. The miRTarBase, TargetScan, and miRDB databases were then used to
identify hsa-miR-192-5p and hsa-miR-215-5p as the upstream miRNA of PRNP, and the upstream
lncRNA, CARMN, was identified by the StarBase database. Thus, the mRNA PRNP/miRNA hsa-
miR-192-5p and hsa-miR-215-5p/lncRNA CARMN ceRNA network was constructed. This ceRNA
network, which has not been studied before, is extremely innovative. Furthermore, four cuproptosis-
related lncRNAs (CRLs) were screened in TCGA-BRCA by univariate Cox, LASSO, and multivariate
Cox regression analysis. The risk model was constructed by using these four CRLs, and the risk
score = C9orf163 ∗ (1.8365) + PHC2-AS1 ∗ (−2.2985) + AC087741.1 ∗ (−0.9504) + AL109824.1 ∗ (0.6016).
The ROC curve and C-index demonstrated the superior predictive capacity of the risk model, and the
ROC curve demonstrated that the AUC of 1-, 3-, and 5-year OS in all samples was 0.721, 0.695, and
0.633, respectively. Finally, 50 prospective sensitive medicines were screened with the pRRophetic
R package, among which 17-AAG may be a therapeutic agent for high-risk patients, while the
other 49 medicines may be suitable for the treatment of low-risk patients. In conclusion, our study
constructs a new ceRNA network and a novel risk model, which offer a theoretical foundation for the
treatment of BRCA and will aid in improving the prognosis of BRCA.

Keywords: cuproptosis; breast cancer; PRNP; ceRNA; risk model; machine learning

1. Introduction

Breast cancer, following lung cancer, is the second-most common cancer among women
overall [1]. Breast cancer is a heterogeneous illness with unique biological traits, molecular
traits, and clinical consequences [2]. Currently, breast cancer is treated with surgery, chemo,
radiation, endocrine, and biological targeting therapy. However, the therapeutic impact
and prognosis of breast cancer are not optimal, and the recurrence rate and medication
resistance of certain patients after therapy are still high. According to the latest statistical
research, mortality patterns reflect incidence trends, with BRCA mortality declining more
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slowly, suggesting that progress in breast cancer research has stalled [3]. The pursuit of
biomarkers that aid in the diagnosis, prognosis, and prediction of BRCA has significant
implications for monitoring BRCA recurrence and identifying new therapeutic targets
during the course of treatment.

As a frequent trace metal, copper plays a significant role in numerous biological pro-
cesses, including detoxification, iron absorption, mitochondrial respiration, and oxidation
resistance. It has been established that Alzheimer’s disease, metabolic syndrome, blood
disorders, cardiovascular illnesses, and cancer are all related to the dysregulation of copper
homeostasis [4]. Recent research has identified a novel cell death mechanism that is distinct
from the conventional cell death pathways, including apoptosis, pyroptosis, and ferropto-
sis [5]. The pathogenic mechanism is that copper interacts with the fatty acylated parts of
the tricarboxylic acid (TCA) cycle directly, which causes excessive fatty acylated protein
aggregation and the loss of iron–sulfur cluster proteins, which promotes proteotoxic stress
and cell death [5]. Glutathione consumption and the presence of copper ion carriers can
promote copper-mediated cell death. Recent research [5] has shown that copper cell death
is highly linked to cancer in people, demonstrating that cuproptosis is directly related to
the emergence of human cancer. However, the mechanism of BRCA is yet unknown. As a
result, we can investigate novel BRCA treatment approaches based on the cuproptosis
mechanism to address the drawbacks of conventional therapy.

There is growing evidence according to which non-coding RNAs play critical roles
in the incidence, development, and metastasis of many malignancies, thanks to the fast
advancement of genomics and transcriptomics. An interaction between RNAs is thought
to be mediated by competing endogenous RNA (ceRNA). The miRNAs negatively regulate
the expression of their target genes via transcriptional degradation or repression, resulting
in gene silencing [6], while ceRNA can regulate gene expression by competitively binding
miRNA. The ceRNA disables miRNA by combining miRNA response elements (MREs)
with miRNA. The ceRNA regulatory network is crucial in the emergence of various cancers,
according to a growing body of research [7], including BRCA [8]. However, the function of
ceRNA regulatory networks in BRCA has yet to be well understood. Under the mechanism
of cuproptosis, the role of the ceRNA regulatory network in the occurrence and progression
of BRCA is almost blank.

Since the concept of cuproptosis, studies on several lncRNAs related to cuproptosis
in various human cancers have been continuously carried out. LncRNA is a functional
RNA that significantly impacts the development and spread of a variety of malignancies
through various processes it mediates [9]. For example, recent studies have confirmed
that lncRNA NEAT1 is essential for metabolic changes that promote BRCA growth and
metastasis [10]. A study has suggested that lncRNA MALAT1, as a novel oncogenic
lncRNA, promotes the progression of BRCA by targeting miR-570-3p [11]. The lncRNA
SEMA3B-AS1 targets the miR-3940/KLLN axis to impede the advancement of BRCA [12].
Nonetheless, the role of CRLs in BRCA is still ambiguous. In the recent reports on breast
cancer, only two articles [13,14] used cuproptosis-related lncRNAs to construct prognostic
models. This suggest that more prognostic models may be needed to explain the role of
CRLs in breast cancer.

To sum up, in this study, cuproptosis-related characteristic genes (CRCGs) were
screened from the perspective of machine learning. The expression and immune signifi-
cance of CRCGs in breast cancer were comprehensively clarified. A key CRCG and related
ceRNA regulatory networks were identified, and the prospective sensitive medicines of
CRGs were screened. Then, we constructed a risk model with prognostic significance based
on cuproptosis-related lncRNAs (CRLs). We construct a new ceRNA regulatory network
and a novel risk model under the mechanism of cuproptosis, which is the main contribution
of this study. It is worth noting that the ceRNA network constructed by us has never been
studied before and is very novel. We anticipate that our results will help us further understand
the role of CRCGs and CRLs in BRCA and lay a theoretical foundation for BRCA therapy.
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2. Materials and Methods
2.1. The Gathering and Pretreatment of Microarray Data

Data on corresponding BRCA normal and tumor samples were retrieved from Gene
Expression Omnibus (GEO) databases (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 16 September 2022) and The Cancer Genome Atlas (TCGA) databases
(https://portal.gdc.cancer.gov/, accessed on 29 September 2022). The GSE54002, GSE29431,
GSE42568, GSE139038, and GSE205185 gene expression profile matrix files were down-
loaded from the GEO database. The GSE54002, GSE29431, and GSE42568 dataset are all
from the GPL570 platform. The GSE54002 dataset contains 433 samples with 16 breast
non-tumor samples and 417 breast tumor samples. The GSE29431 contains 66 samples, in-
cluding 12 breast normal tissue samples and 54 breast tumor tissue samples. The GSE42568
dataset contains 121 samples, with 17 normal breast samples and 104 breast cancer samples.
The GSE139038 dataset is from the GPL27630 platform with a total of 65 samples, including
24 normal breast samples (6 of which are apparently normal samples and 18 are paired nor-
mal samples) and 41 breast cancer samples. The GSE205185 dataset is from the GPL21185
platform, with a total of 22 samples containing 5 normal breast samples and 17 breast
cancer samples. The aforementioned GEO datasets’ series matrix and platform text files
were acquired from the GEO database. RNA-Seq data and clinical information from the
TCGA-BRCA project from the TCGA database was obtained, and the dataset contains
1226 samples with 113 normal samples and 1113 tumor samples. The platform files’ gene
symbols are changed from the matrix files’ gene probe IDs using the Perl (v5.30.0; available
at https://strawberryperl.com/, accessed on 29 July 2022) software to obtain a matrix file
with the gene name that is recognized internationally. The sva (v3.42.0) R package was then
used to merge five datasets from the GEO database, i.e., the gene expression was merged.
If we encounter the same gene, we take the mean of the expression of these same genes as the
final gene expression. Before further analysis, each dataset was normalized with the limma
(v3.50.3) R package. All gene expression data were transformed using the log2 function.

2.2. Obtainment, Differential Expression Analysis, and Correlation Analysis of CRGs

A total of 57 CRGs genes were obtained based on prior reports [5,15,16]. Next,
the limma package was used for differential expression analysis of the combined GEO
expression data, and the same operation was performed for TCGA-BRCA. It is worth
noting that the data in TCGA-BRCA are normalized to fragments per kilobase of transcript
per million (FPKM). The screening criteria for differential expression genes (DEGs) was set
as |logFC| > 2 and p < 0.05. Finally, the corrplot (v0.92) R package was used to visualize
the correlation of 39 DEGs.

2.3. Screening of Cuproptosis-Related Characteristic Genes

According to previous studies [17], the least absolute shrinkage and selection operator
(LASSO), recursive feature elimination by support vector machine (SVM-RFE [18]), and
random forest (RF) methods can be used to screen characteristic genes. Here, we hypothe-
sized that these three machine learning methods could also screen out characteristic genes
from cuproptosis-related genes and obtain meaningful biomarkers in subsequent analysis.
Therefore, these three machine learning methods were applied for the feature selection
of CRGs to screen out cuproptosis-related characteristic genes (CRCGs). Compared with
regression analysis, LASSO is a dimension reduction method that is superior in evaluating
high-dimensional data. The LASSO analysis was implemented by constructing a penal-
ized function with 10-fold cross-validation via the glmnet (v4.1-4) R package. SVM-RFE
is superior to linear discriminant analysis (LDA) and the mean squared error (MSE) in
selecting relevant features and eliminating redundant features, for this was applied for
feature selection of CRGs via the e1071 (v1.7-11) package with 10-fold cross-validation. The
RF algorithm, an approach of supervised machine learning, was used to rank the CRGs via
randomForest (v4.7-1.1). We set the random forest tree to 500, and the predictive perfor-
mance was estimated via 10-fold cross-validation. Eventually, the differential visualization

https://www.ncbi.nlm.nih.gov/geo/
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of 14 CRCGs in the form of heatmaps was performed using pheatmap (v1.0.12) and ggpubr
(v0.4.0) R packages, besides using the RCircos (v1.2.2) R package to show the location of
CRCGs on chromosomes.

2.4. GO, KEGG Enrichment Analysis

The clusterprofiler (v4.2.2) R package was primarily used to conduct the GO and
KEGG enrichment analysis. The GO database was utilized to examine these CRCGs’
biological characteristics, and the signaling pathway of CRCGs was detected via the KEGG
database. p < 0.05 was used as the screening condition to gain the main GO enrichment
function and KEGG pathway.

2.5. Immune Cell Infiltration Analysis and Correlation Analysis with CRCGs

We utilized the CIBERSORT algorithm in the CIBERSORT script to determine the
fraction of immune infiltrating cells in each sample. Correlation analyses between the
CRCGs and immune cells were conducted by the Pearson method. Finally, immune cell
differences were plotted using the vioplot (v0.3.7) R package, and correlations between
CRCGs and immune cells were visualized using the ggplot2 (v3.3.6) R package.

2.6. Identification of Key CRCG and Construction of ceRNA Regulatory Network

The protein–protein interaction (PPI) network of 14 CRCGs was constructed using
the STRING database (https://cn.string-db.org/, accessed on 10 October 2022) and Cy-
toscape software (v3.7.2; https://cytoscape.org/, accessed on 10 October 2022), and the
MCC algorithm of the cytoHubba plugin in Cytoscape software screened the hub CRCGs.
After the hub CRCGs were identified, a key CRCG was identified by combining the cor-
relation between CRCGs and immune cells. TargetScan (https://www.targetscan.org/,
accessed on 10 October 2022), miRTarBase (https://mirtarbase.cuhk.edu.cn/, accessed
on 10 October 2022), and miRDB (http://www.mirdb.org/, accessed on 10 October 2022)
databases were used to predict miRNA targets associated with the key CRCG. Then, the
intersection of the prediction results of these three databases was considered as the key
miRNA targets associated with the key CRCG. Next, lncRNA targets linked to the key
miRNAs were predicted using the StarBase database. Finally, we constructed a biologically
significant regulatory network of ceRNA based on the prediction results obtained above,
combined with the expression level in TCGA-BRCA.

2.7. Identification of CRLs and Construction of the Risk Model

Firstly, mRNA and lncRNA in TCGA-BRCA data were extracted, and then the limma
package was used to calculate the correlation between 57 CRGs and lncRNAs. In total,
85 CRLs were obtained with correlation coefficients |R| > 0.3 and p < 0.05 as screening
criteria. Next, combined with the expression profile of CRLs and the survival time of
patients, we obtained prognosis-related CRLs for BRCA patients using univariate Cox
regression analysis and evaluated their prognostic value. The CRLs with prognostic
value were randomly split into training and test sets at a ratio of 1:1, and predictors were
chosen using LASSO regression analysis to prevent overfitting. Finally, a risk model
of the CRLs with prognostic value was built in the training set using multivariate Cox
regression analysis. The risk score of CRLs with prognostic value was calculated using the
following formula:

RiskScore =
N

∑
i=1

(Ei ∗ Ci) (1)

In the formula, the variables N, Ei, and Ci stand for the number of CRLs having a
prognostic value in the risk model, the expression value of each CRL, and the regression
coefficient of each CRL in multivariate Cox regression analysis, respectively. Patients were
divided into high-risk group and low-risk group according to the median risk score of
the calculated results. The viability of the high- and low-risk groups was then assessed

https://cn.string-db.org/
https://cytoscape.org/
https://www.targetscan.org/
https://mirtarbase.cuhk.edu.cn/
http://www.mirdb.org/
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using Kaplan–Meier curves. Independent prognostic variables were then screened out
using univariate Cox regression analysis and multivariate Cox regression analysis, and the
model’s accuracy was assessed using the receiver operating characteristic curve (ROC)
curve and concordance index (C-index).

2.8. Screening of Potentially Sensitive Medicines and Analyzing the Correlation between Drug
Sensitivity and Risk Score

To better apply this model to clinical treatment, we used the pRRophetic (v0.5) R pack-
age to calculate the half maximal inhibitory concentration (IC50) of anti-BRCA medicines.
Then, two built-in data sets from the pRRophetic package, cgp2016ExprRma and PAN-
CANCER_IC_Tue_Aug_9_15_28_57_2016, were used to screen out potentially sensitive
medicines in BRCA patients, and the screening condition was p < 0.001. Next, the correla-
tion between risk scores and sensitivity of potential medicines was visualized by ggplot2
and ggpubr packages. In addition, differential expressions of drug sensitivity in the high-
and low-risk groups were presented as shown in boxplots.

2.9. Statistical Analysis

The correlation of CRGs in BRCA samples was evaluated using Pearson’s correlation
test. To determine the level of significance between the two groups, Wilcoxon tests or
Student t-tests were used, using the log-rank test to assess the significance between Kaplan–
Meier survival curves. To determine the hazard ratios (HRs) and 95% confidence intervals
(CIs) for the risk scores and other key clinical indicators, we also conducted univariate and
multivariate Cox regression analysis. R (v 4.1.2; https://www.r-project.org/, accessed on
16 July 2022) software was used to conduct all statistical analyses. ***, p < 0.001; **, p < 0.01;
*, p < 0.05. p < 0.05 was considered statistically significant.

3. Results

The flow chart of the whole study is displayed in (Figure 1). It is worth noting that two
databases, GEO and TCGA, were used in this study. The five datasets in the GEO database
are mainly used for screening key CRCG and constructing related ceRNA regulatory
networks. At the same time, TCGA-BRCA was used to verify the expression of PRNP and
lncRNA CARMN in ceRNA in breast cancer, as well as to construct a risk model by CRLs
with prognostic value.

Figure 1. The flow chart of this study.

https://www.r-project.org/


Diagnostics 2023, 13, 1203 6 of 21

3.1. Differential Expression Analysis and Correlation Analysis of CRGs

Firstly, we divided the data into an experimental (tumor) group and a control (nor-
mal) group through the sample information from the five GEO datasets. The results of
differential analysis (Figure 2A) showed that 39 out of 57 CRGs were differentially ex-
pressed in tumor samples compared to normal samples. Genes such as ARF1, SLC25A5,
and CDKN2A were significantly up-regulated in tumor samples, while genes such as
SNCA, PRNP, and GLS were significantly down-regulated in tumor samples. Correla-
tion analysis (Figure 2B) showed that MT1H and MT2A had the most significant positive
correlation, while CDKN2A and SLC22A5 had the most significant negative correlation.

Figure 2. (A) 39 CRGs differentially expressed in breast cancer tumor samples compared to normal
samples in GEO. Orange means up-regulated, and chrysanthemum blue means down-regulated.
The darker the color, the more significant the difference. (B) Correlation between 39 cuproptosis-
related genes. Orange (positive) indicates a positive correlation between genes, while chrysanthemum
blue (negative) indicates a negative correlation. ***, p < 0.001; **, p < 0.01; *, p < 0.05. p < 0.05 was
considered statistically significant.

3.2. Selection of CRCGs via LASSO, SVM-RFE, and RF Methods

For screening out characteristic genes among 39 CRGs, we used three methods,
i.e., LASSO, SVM-RFE, and RF. The 10-fold cross-validation result shows that the op-
timal lambda for the LASSO method was 0.003 (Figure 3A,B). Next, we constructed a
LASSO model with the highest accuracy. This resulted in 28 characteristic genes being
found, including SLC25A5, NDUFB2, PDHX, DLST, CCS, SLC22A5, CCDC22, PDHA1,
FDX1, MT2A, MT1E, MT1F, MT1G, MT1H, MT1X, LIAS, LIPT1, PRNP, GLS, SNCA, PDHB,
BACE1, SLC31A2, CDKN2A, NFE2L2, ATP7A, and BECN1. For the SVM-RFE method,
when the feature number was 27, the accuracy (0.975) of the classifier was the highest,
which means the error was the smallest at this time (Figure 3C,D). Therefore, 27 feature
genes are screened, containing MT1X, MT2A, CDKN2A, MT1E, SLC25A5, DLST, MT1F,
NFE2L2, PRNP, BECN1, CCDC22, PDHB, GLS, BACE1, FDX1, CCS, ATP7A, MT1G, ATOX1,
LIAS, SNCA, SLC22A5, PRND, NDUFB2, DLAT, NDUFA1, ATP7B, and NDUFB1. Further-
more, the third method, the RF algorithm, identified 24 characteristic genes with relative
importance greater than 2 as the screening condition (Figure 3E,F): SNCA, CDKN2A, FDX1,
BACE1, MT1X, PRNP, SLC6A3, ARF1, DAXX, NFE2L2, SLC25A5, LIPT1, LIAS, SLC31A2,
BECN1, CYP1A1, MT1E, DLST, PDHX, DLD, PDHA1, PDHB, GLS, and ATOX1. A total
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of 14 CRCGs were produced by combining the screening findings from the aforemen-
tioned three methods (Figure 3G), namely SLC25A5, DLST, FDX1, MT1E, MT1X, LIAS,
PRNP, GLS, SNCA, PDHB, BACE1, CDKN2A, NFE2L2, and BECN1. Therefore, these
three machine learning methods can screen out CRCGs, which proves the validity of our
previous hypothesis. Finally, we show the position of 14 CRCGs on chromosomes by a loop
graph (Figure 3H).

Figure 3. Selection of cuproptosis-related characteristic genes and visualization of the position of
14 CRCGs on chromosomes: (A) LASSO coefficient profiling. A solid hammer line represents binomial
deviance. A bold dotted line indicates the optimal lambda value. (B) Each curve, i.e., each color
represented a feature corresponding to a gene. (C) 10-fold cross-validation was used for feature
dimension reduction. When n = 28, the accuracy is the highest, i.e., (D) the error is the smallest.
(E) The CRCGs are ranked according to their relative importance. The first 30 CRCGs are shown here.
(F) The relationships between the quantity of trees and the error rate in random forest. (G) Venn
diagram. The CRCGs were screened out via LASSO, SVM-RFE, and RF algorithms. (H) The position
of 14 CRCGs on chromosomes.

3.3. Differential Expression Analysis, GO, and KEGG Enrichment Analysis of CRCGs

We first analyzed the differential expression of 14 CRCGs in five GEO datasets, and the
results (Figure 4A,B) displayed that SLC25A5 and CDKN2A were significantly up-regulated
in tumor samples. DLST, FDX1, MT1E, MT1X, LIAS, PRNP, GLS, SNCA, PDHB, BACE1,
NFE2L2, and BECN1 were significantly down-regulated in tumor samples. We subse-
quently analyzed the GO functional enrichment and KEGG pathway of these 14 CRCGs to
clarify the potential roles of these CRCGs. The findings demonstrated that the 14 CRCGs
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were mostly enriched in the cellular response to copper ion (GO:0071280), response to cop-
per ion (GO:0046688), mitochondrial matrix (GO:0005759), terminal bouton (GO:0043195),
copper ion binding (GO:0005507), and iron–sulfur cluster binding (GO:0051536) via GO
functional enrichment analysis (Figure 4C–E). Additionally, the KEGG pathway analysis
(Figure 4F,G) indicated that the 14 CRCGs mainly participated in Alzheimer’s disease
(hsa05010), the pathways of multiple neurodegeneration diseases (hsa05022), Parkinson’s
disease (hsa05012), citrate cycle (TCA cycle) (hsa00020), mineral absorption (hsa04978),
central carbon metabolism in cancer (hsa05230), and carbon metabolism (hsa01200).

Figure 4. Differential expression analysis of CRCGs in GEO and enrichment analysis. (A) Boxplot of
differential expression of 14 CRCGs in tumor group and normal group, and (B) heat map. (C) Barplot
(D), Bubble plot, and (E) loop graph of GO enrichment analysis results of 14 CRCGs in breast cancer.
(F) Barplot (G) and Bubble plot of KEGG enrichment analysis results of 14 CRCGs in breast cancer.
***, p < 0.001; **, p < 0.01. p < 0.05 was considered statistically significant.
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3.4. Identification of Key CRCG and Immune Cell Infiltration Analysis

We constructed the PPI network of 14 CRCGs through the STRING database and then
sorted the 14 CRCGs through the MCC algorithm of cytoHubba plug-in Cytoscape software.
The results (Figure 5A) show that SNCA, PRNP, and BECN1 were hub genes. These three
hub genes can be used as breast cancer diagnostic genes, and their diagnostic performance
was evaluated using AUC (Figure S1A). The results of immune infiltration (Figure 5B)
reveal that immune cells such as macrophages M0 and M1 were more infiltrated in the
tumor group compared to the normal group, whereas immune cells such as macrophages
M2 and resting mast cells were less infiltrated in the tumor group. Next, we conducted the
correlation analysis on 14 CRCGs and immune cells, and the findings (Figure 5C) reveal
that PRNP was significantly correlated with 13 different types of immune cells. BECN1 and
CDKN2A were next, with significant correlations to 11 and 10 different types of immune
cells, respectively. Based on the above analyses, we identified PRNP as the key CRCG.

Figure 5. PPI network, immune infiltration analysis of CRGs. (A) Interaction network of the first ten
CRCGs. The darker the color, the more important the gene. Red represents the hub gene. (B) The
relative content of immune cells in tumor and normal group. (C) Correlation between 14 CRCGs and
immune cells, and the darker the color, the more significant the correlation.

3.5. Construct and Verify PRNP-Related ceRNA Regulatory Network

PRNP was the key CRCG identified according to the above. We then used three
online databases, TargetScan, miRDB, and miRTarBase, to screen PRNP-related miR-
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NAs in BRCA. In total, 569 PRNP-related miRNAs were screened from the TargetScan
database. 109 PRNP-related miRNAs were screened from the miRDB database. Further-
more, 57 PRNP-related miRNAs were screened from the miRTarBase database. By taking
the intersection (Figure 6A) of the screening results of the three databases, 10 PRNP-related
miRNAs, namely hsa-miR-148a-3p, hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-8073,
hsa-miR-495-3p, hsa-miR-5688, hsa-miR-215-5p, hsa-miR-192-5p, hsa-miR-188-3p, and
hsa-miR-3156-3p, were obtained. Before screening these 10 miRNA-related lncRNAs, we
verified the expression of PRNP and these 10 miRNAs in BRCA. The expression of PRNP in
the tumor group of TCGA-BRCA was significantly underexpressed (Figure 6C), which was
consistent with the expression of PRNP in the GEO database. Through the online database
dbDEMC (https://www.biosino.org/dbDEMC/, accessed on 12 October 2022), we veri-
fied the expression of these 10 miRNAs in breast cancer and obtained two miRNAs, i.e.,
hsa-miR-192-5p and hsa-miR-215-5p that were overexpressed in breast cancer (Figure 6D,E).
Obviously, these two miRNAs have a negative regulatory relationship with PRNP. Then,
we used the StarBase database to screen lncRNAs related to the hsa-miR-192-5p and hsa-
miR-215-5p in breast cancer and found that 31 lncRNAs had a regulatory relationship with
these two miRNAs. The miRNA-lncRNA regulatory network diagram (Figure 6G) was also
drawn. According to the scientific hypothesis of the ceRNA regulatory network, we next
looked for lncRNAs that were underexpressed in breast cancer. Therefore, down-regulated
lncRNA in tumor samples were screened out from lncRNAs with differential expression of
TCGA-BRCA, and then these lncRNAs will be intersected with those 31 lncRNAs to obtain
one lncRNA (Figure 6B), which was CARMN. Next, we verified CRAMN’s expression in
the TCGA-BRCA dataset, and the results (Figure 6F) showed that CARMN was signifi-
cantly underexpressed in tumor samples. Finally, we constructed a new ceRNA regulatory
network (Figure 6H) associated with BRCA, namely mRNA PRNP/miRNA hsa-miR-215-5p
and hsa-miR-192-5p/lncRNA CARMN. This further confirms our previous hypothesis.

3.6. Identified CRLs and Constructed Risk Model

First, we conducted a co-expression analysis of CRGs and lncRNAs in TCGA-BRCA,
the visualized results of which are presented by Sankey diagrams in the Supplementary
Materials (Figure S2). The correlation coefficient of |R| > 0.3 and p < 0.05 was set as the
screening threshold, and 85 CRLs were finally identified. Then, the expression profiles
of these 85 CRLs were combined with clinical information. All samples were split into
training and test sets at a ratio of 1:1, and a univariate Cox regression analysis was carried
out in the training sets to assess the prognostic significance of these CRLs (Figure 7A). Then,
we used LASSO (Figure 7B,C) to reduce the feature dimension of these CRLs, in which
lambda was equal to 0.021, and the effect was optimal. A total of 7 CRLs with significant
prognostic value were obtained, namely C9orf163 (p-value = 0.045, HR = 2.556), THBS3-AS1
(p-value = 0.038, HR = 0.306), PHC2-AS1 (p-value = 0.004, HR = 0.088), ZNF197-AS1
(p-value = 0.039, HR = 0.225), AC087741.1 (p-value = 0.035, HR = 0.534), AC073569.3
(p-value = 0.049, HR = 0.115), and AL109824.1 (p-value = 0.008, HR = 1.785). Then, a risk
model linked to CRLs with prognostic value was built using multivariate Cox regres-
sion analysis, and four CRLs were screened, namely C9orf163, PHC2-AS1, AC087741.1,
and AL109824.1; (Figure 7D) shows the correlation between CRGs and these four CRLs
with prognostic value. The four CRLs and their corresponding regression coefficients
are shown in Table S3. According to the formula we set up before, we can derive the
risk score = C9orf163 ∗ (1.8365) + PHC2-AS1 ∗ (−2.2985) + AC087741.1 ∗ (−0.9504) +
AL109824.1 ∗ (0.6016). We used the risk score formula to calculate the risk score of all
breast cancer patients and the median risk score. According to the median risk score, all
breast cancer patients were split into high- and low-risk groups. After performing a survival
analysis (Figure 8A–C) on samples from the high- and low-risk groups, overall survival (OS)
curves were drawn, and deletions at different time points during follow-up were shown.
The findings demonstrated that high-risk patients had considerably poorer prognoses than
low-risk patients, with the median survival times of high-risk patients in the training and

https://www.biosino.org/dbDEMC/
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test groups falling short of 10 years. Patients had a greater chance of dying and a shorter
survival time as their risk scores increased. Figure 8D–I shows the length of survival and
current health of breast cancer patients with increased risk scores. Finally, the constructed
risk model is then put to the test using the test sets. Patients in the low-risk group in the test
sets have lower risk scores and live longer than those in the high-risk group, as shown by
the survival curves. Using the previously mentioned method again, risk curves and scatter
plots were utilized to display survival time and survival status. The findings demonstrate
that as the risk score rose, so did the patient’s mortality risk. The test set’s findings and
the training set’s results agree, proving that the risk model constructed by these four CRLs
is reliable.

Figure 6. Construction and validation of ceRNA regulatory network in BRCA. (A) 10 PRNP-related
miRNAs were identified, the intersection of TargetScan, miRDB, and miRTarBase database screening
results. (B) The intersection of lncRNA (CRLs related with hsa-miR-192-5p and hsa-miR-215-5p)
and down_lnRNA (down-regulated lncRNAs in TCGA-BRCA tumor samples), CARMN, a CRL that
fit the ceRNA regulatory network hypothesis was identified. (C) Verify the expression of PRNP in
TCGA-BRCA samples. (D) Verify the expression of the hsa-miR-192-5p and (E) hsa-miR-215-5p in
breast cancer by the online database dbDEMC. (F) Verify the expression of CARMN in TCGA-BRCA
samples. (G) miRNA-lncRNA regulatory network. (H) mRNA PRNP/miRNA hsa-miR-192-5p and
hsa-miR-215-5p/lncRNA CARMN ceRNA regulatory network.
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Figure 7. Univariate Cox, LASSO, and multivariate Cox regression analysis. (A) Forest plots of 7
prognostic CRLs. Red represents the HR value of risk CRLs and green represents the HR value of
favorable CRLs. (B) Partial likelihood deviance of the 7 prognostic CRGs. (C) LASSO coefficients
of the six prognostic CRLs. (D) Correlation heatmap of 57 CRGs and 4 CRLs. the darker the color,
the more significant the correlation.
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Figure 8. Survival curves and identified independent prognostic factors for high- and low-risk groups.
(A) OS curves of all, (B) training, and (C) test samples in high and low groups of breast cancer patients.
(D) Risk score distribution for all samples, (E) training samples, and (F) test samples of breast cancer.
(G) Survival status of all samples, (H) training samples, and (I) test samples of BRCA in the high- and
low-risk group. Different colors represent different states of existence. (J) Forest plots of risk models
and clinical traits using univariate Cox and (K) multivariate Cox regression analysis.

3.7. Independent Prognostic Analysis and Building a Nomogram

To determine whether the risk model could be employed as an independent prognostic
factor for breast cancer, univariate and multivariate Cox regression analyses were carried
out. Three independent prognostic factors, namely age, stage, and risk score, were discov-
ered by univariate Cox regression analysis (Figure 8J) and were all shown to be significantly
linked with OS. Fortunately, the results of multivariate Cox regression analysis (Figure 8K)
obtained consistent results with the univariate Cox regression analysis. Age, stage, and risk
score were all significantly correlated with OS. This demonstrates that the risk model we
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constructed can be seen as an independent prognostic factor. Following that, ROC curves
and area under the curve (AUC) were used to assess the specificity and sensitivity of the
risk model for the prognosis of BRCA. The findings reveal that the AUC of 1-, 3-, and 5-year
OS was, respectively, 0.721, 0.695, and 0.633 in all samples (Figure 9A). The AUC of the
1-, 3-, and 5-year OS was, respectively, 0.740, 0.776, and 0.715 in the training set samples
(Figure 9B). The AUC of the 1-, 3-, and 5-year OS was, respectively, 0.697, 0.604, and 0.550
in the test set samples (Figure S1B). In addition, both the AUC values and the risk model’s
C-index were higher than the clinical traits (Figure 9C,D). Finally, to better forecast the 1-,
3-, and 5-year survival rates of breast cancer patients, we combined the clinical features
and the risk model to create a nomogram (Figure 9E). The accuracy of the nomogram
was confirmed using the calibration curve (Figure 9F). The outcomes demonstrate that the
actual observed value and the predicted value may be well matched, demonstrating the
excellent accuracy of the nomogram.

Figure 9. Assessment of the performance of the risk model and construction of the nomogram.
(A) The ROC of 1-, 3-, and 5-year OS for all samples and (B) training samples. (C) The ROC for
risk model and clinical traits. (D) C-index for risk models and clinical traits. (E) Construction of
the nomogram by risk model and clinical trait. The red circle represents the patient’s score for
different clinical traits, the red diamond represents the overall score, and the red triangle represents
the patient’s 1-, 3-, and 5-year survival rate. (F) Calibration curves. ***, p < 0.001. p < 0.05 was
considered statistically significant.
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3.8. Drug Sensitivity Analysis

The cgp2016ExprRma and PANCANCER_IC_Tue_Aug_9_15_28_57_2016, two built-in
datasets in the pRRophetic software package, were used to identify potential medicines in
connection with the onset and progression of BRCA. Following the screening, we discovered
50 drugs that had a significant correlation to risk score, with 17-AAG (Figure 10A) having
a negative correlation with the risk score. Forty-nine medicines, including, among oth-
ers, 5-Fluorouracil, AP-24534, BAY 61-3606, Cytarabine, Epothilone B, Bleomycin (50 uM),
and BI-2536 (Figure 10B–H), showed a positive correlation with the risk score. We then veri-
fied the differential expression of these 50 potential agents in the high- and low-risk groups.
The results reveal that, in addition to the significantly underexpressed 17-AAG (Figure 10I)
in the high-risk group, forty-nine other medicines, including 5-Fluorouracil, AP-24534,
BAY 61-3606, Cytarabine, Epothilone B, Bleomycin (50 uM), and BI-2536 (Figure 10J–P),
were all significantly overexpressed in the high-risk group. These findings imply that
17-AAG may be used as a therapeutic medicine for people at high risk. In contrast, the other
49 medicines may be suitable for treating low-risk patients. The correlation between 50
medicines and risk score, as well as the differential expression of these medicines in the
high- and low-risk group, is shown in the Supplementary Materials (Figure S3).

Figure 10. Screening for potentially sensitive medicines associated with BRCA. (A–H) 17-AAG
showed a negative correlation with the risk score, while 5-Fluorouracil, AP-24534, BAY 61-3606,
Cytarabine, Epothilone B, Bleomycin (50 uM), and BI-2536 showed a positive correlation with
the risk score. (I–P) 17-AAG is significantly underexpressed in the high-risk group. Significantly
overexpression of 5-Fluorouracil, AP-24534, BAY 61-3606, Cytarabine, Epothilone B, Bleomycin
(50 uM), and BI-2536 was seen in the high-risk group.
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4. Discussion

Breast cancer currently has a dismal prognosis and treatment, making it the second
most frequent kind of cancer that threatens women. Therefore, a thorough research of
the pathogenesis of BRCA is necessary to improve its prognosis and promote precision
medicine. Cuproptosis-related genes are crucial in regulating breast cancer progression,
prognosis, immune cell infiltration, and response to immunotherapy [19]. Therefore, we
explored the regulatory role of a key CRCG in constructing a ceRNA network under the
mechanism of cuproptosis, and in order to improve the prognosis of breast cancer and
promote precision medicine, a risk model based on four CRLs was constructed.

First, we conducted a differential expression study on 57 CRGs, which revealed that
39 CRGs’ mRNA levels had a significantly differential expression in tumor samples and
normal samples. Through the screening of three machine learning methods, LASSO,
SVM-RFE, and RF, 14 characteristic genes were obtained, namely SLC25A5, DLST, FDX1,
MT1E, MT1X, LIAS, PRNP, GLS, SNCA, PDHB, BACE1, CDKN2A, NFE2L2, and BECN1.
SLC25A5 and CDKN2A were found to be significantly up-regulated in tumor samples
after we conducted differential analysis on these 14 CRCGs. However, DLST, FDX1, MT1E,
MT1X, LIAS, PRNP, GLS, SNCA, PDHB, BACE1, NFE2L2, and BECN1 were significantly
down-regulated in tumor samples. Some studies have shown that SLC25A5 is a gene
related to lipid metabolism, which is closely connected to BRCA patients’ prognoses [20].
CDKN2A is crucial in the immunotherapy of triple negative breast cancer (TNBC) and
can be acted as a prognostic factor of TNBC [21]. In TNBC, the depletion of DLST inhibits
cell growth and induces cell death [22]. The expression of LIAS is related to hypoxia,
angiogenesis, and DNA repair, and the high expression of LIAS in lung cancer patients is
adverse to the prognosis of patients [23]. SNCA enhances sensitivity to commonly used anti-
tumor agents and immune cell infiltrating and prevents EMT and metastasis of BRCA [24].
NFE2L2 was abnormally expressed in human pan-cancer and highly linked with the degree
of DNA methyltransferase expression and mismatch repair (MMR) gene mutation [25].
The decrease in BECN1 degradation induced by SLC9A3R1 resulted in enhanced autophagy
stimulating activity of breast cancer cells [26]. These findings suggest that the 14 CRCGs
were somewhat involved in the emergence of breast cancer and other cancer types. These
14 CRCGs were mainly enriched in GO functions, such as cell response to copper ions,
indicating that these CRCGs were closely related to the process of cell death induced by
copper ions. The enrichment of CRCGs in some disease pathways, such as Alzheimer’s
pathways, suggests that these 14 CRCGS are associated with Alzheimer’s disease and other
diseases. In in vitro and mouse xenografts, the accumulation of exogenous or endogenous
citrate in the cytoplasm dramatically increased the motility, invasion, and metastasis of
hypoxic TNBC cells [27].

According to the results of immune infiltration, we found that, compared with the
normal group, there was more infiltration of macrophages M0, macrophages M1, and other
immune cells within the tumor group. In comparison, there was less infiltration of
macrophages M2 and mast cells resting. In breast cancer, DRD2 regulates the microenvi-
ronment because it promotes the M1-polarization of macrophages and triggers thermal
apoptosis performed by GSDME [28]. Macrophage M2 polarization was inhibited by PM37,
and radiation resistance of IBC (inflammatory breast cancer) was prevented by down-
regulating PRKCZ [29]. Macrophage M2 produces CHI3L1, which promotes the spread
of breast and stomach cancer cells both in vitro and in vivo [30]. In comparison to the
high-risk group for breast cancer, the proportion of stationary resting dendritic and mast
cells was higher in the low-risk group [31], which is consistent with our immune infiltration
analysis results.

The arrangement and mapping of PPI networks allow for further knowledge to be
extracted about the evolutionary relationships between species [32]. By constructing the PPI
network for 14 CRCGs, we found that the hub CRCGs are SNCA, PRNP, and BECN1. Com-
bined with the correlation of CRCGs with immune infiltration, we identified a key CRCG,
PRNP. In neuroblastoma cells, IR activates ATM, causes JNK to be phosphorylated by
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TAK1 in a manner that then activates AP-1 transcription factor, which in turn increases the
transcriptional activity of the PRNP promoter by interacting with AP-1 binding sites [33].
Experimental investigation [34] has presented that the expression of PrPC, including p53 ag
and the prion protein coding gene (PRNP), are intimately linked to the development and
spread of malignancies (tumor suppressor gene). It is interesting to note that this matches
the outcomes of our TCGA-BRCA validation, with a low expression of PRNP in tumor
samples. Next, we constructed PRNP-related ceRNA regulatory networks, namely mRNA
PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN. It was verified by
the dbDEMC database that these two miRNAs were significantly up-regulated in BRCA
tumor samples, while CARMN was significantly down-regulated in BRCA tumor samples.
Therefore, this regulatory network satisfies the ceRNA scientific hypothesis. A recent
study [35] has found that miR-192-5p is significantly up-regulated in LABC (locally ad-
vanced breast cancer) patients, which is consistent with our verification results. However,
hsa-miR-215-5p’s expression in BRCA was not found in previous reports. Encouragingly,
studies [36] have shown that CARMN is down-regulated at different stages of malignant
transformation of breast tissue and can also inhibit the occurrence of TNBC tumors and
improve the sensitivity to cisplatin. PRNP is an ER stress regulatory gene, which can raise
BRCA’s survival rate [37]. No somatic mutation of the PRNP gene has been found in breast
cancer and glioblastoma, indicating that PRNP is a tumor suppressor gene [38]. According
to the PRNP transcript levels in tumor specimens taken before treatment classified as
relapse-free survival following neoadjuvant anthracycline therapy, it is known from this
study that PRNP is associated with breast cancer [39]. Therefore, in summary, the mRNA
PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN regulatory net-
works discovered in our study are very promising to offer a theoretical foundation for
inhibiting the occurrence and development of BRCA. Moreover, it is worth noting that this
regulatory network has not been reported before.

Four CRLs with prognostic value were found by univariate Cox, LASSO, and multi-
variate Cox regression analysis, namely C9orf163, PHC2-AS1, AC087741.1, and AL109824.1.
The construction of a novel risk model employing these four CRLs was followed by the
verification that the risk model may function as an independent prognostic factor. We then
used the ROC curve to assess the specificity and sensitivity of this model for predicting
the prognosis of breast cancer. The findings reveal that the 1-, 3-, and 5-year AUC of all
samples was, respectively, 0.721, 0.695, and 0.633. The performance of the risk model was
then compared to that of other clinical traits using the ROC curve and C-index, and the
findings indicate that the risk model performed better than the majority of clinical traits.
Finally, we construct a nomogram with high accuracy to help the diagnosis of breast cancer.
Cuproptosis-related lncRNAs’ prognostic model has only been reported in a few stud-
ies [13,14]. In these two studies, 11 and 37 CRLs were used to construct prognostic models
of breast cancer, while only four CRLs were used in this study. It is worth noting that
fewer CRLs were used as predictors in this study, but the accuracy of prediction was not
much different from that in studies [13,14]. The comparison of the three models are shown
in Table S4. It can be seen that the risk model we built is not only simple, but also has
good prediction performance. This shows that the risk model is more in line with people’s
expectations and has greater application value. Therefore, the risk model we constructed
is expected to provide theoretical support for the treatment of breast cancer. In addition,
this risk model may be applied to clinical practice. For example, some studies [40,41]
developed clinical calculators. These calculators may be used to forecast patient outcomes
and could be helpful to doctors when formulating treatment plans. Therefore, if validated
by experiments, the risk model constructed in this study may be used clinically to assess
the risk of breast cancer patients and predict the prognosis of patients.

Finally, we screened 50 medicines that had a significant correlation with a risk score
and confirmed how these medicines differed in their expression between the high- and low-
risk groups. Except for 17-AAG, which was considerably underexpressed in the high-risk
group, forty-nine medicines, including 5-Fluorouracil, AP-24534, BAY 61-3606, Cytarabine,
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Epothilone B, BI-2536, and Bleomycin (50 uM), were all significantly overexpressed in
the high-risk group. Therefore, we conjecture that 17-AAG may be a therapeutic agent
for high-risk patients. In contrast, the other 49 medicines may be suitable for treating
low-risk patients. 17-AAG, a competitive inhibitor of heat shock protein Hsp90, has an
inhibitory effect on tumor development. SAL, along with 17-AAG, induces apoptosis,
inhibits autophagy, and has a synergistic inhibitory impact on the development of breast
cancer cells [42]. Treatment with minimally hazardous doses of 17-AAG and SQD triggered
apoptosis and increased the suppression of BC cell proliferation [43]. Interestingly, this is
consistent with our findings that 17-AAG could be an effective treatment for breast cancer
patients. TQ can help 5-Fluorouracil work more effectively against TNBC cells by coordi-
nating its anticancer effects [44]. Mcl-1 expression in breast cancer cells is down-regulated
by BAY 61-3606, making cancer cells more susceptible to TRAIL-mediated apoptosis [45].
It is feasible for LM patients with breast cancer to respond rapidly to the quick start of
intracellular liposomal cytarabine treatment [46]. BI-2536 is a mitotic inhibitor that blocks
the growth and invasion of cancer cells [47]. BI-2536 was demonstrated to decrease tumor
development and metastasis in vivo using TAMR-MCF-7 cells injected into xenografts and
spleen-liver metastasis models [48]. This shows that most of the medicines we screened
have a significant role in the treatment of BRCA, and these 50 medicines provide more
options for treating BRCA.

In summary, we explored the role of CRGs and CRLs in breast cancer. Through a
series of bioinformatics analyses, this study identified PRNP as a key CRCG, identified
the function and pathways of CRCGs enrichment, and obtained four prognostic CRLs
and 50 drugs related to breast cancer treatment. Most importantly, this study constructs a
new ceRNA network and a novel risk model, which has not been seen in previous studies.
However, our study also has some shortcomings. The ceRNA regulatory network we
constructed has not been verified by biological experiments, and whether the risk model
has practical application value needs to be verified by relevant clinical trials. Therefore,
future work should include two aspects: On the one hand, to verify the application value
of the ceRNA network and risk model constructed in this study in biomedicine. On the
other hand, improving the machine learning methods used in this study could lead to the
development of more novel biomarkers and prognostic models.

5. Conclusions

In conclusion, we combined machine learning and bioinformatics methods to conduct
the analysis in this study. A total of 14 CRCGs were screened using three machine learning
methods, and then a key CRCG was identified. More importantly, we developed a new
ceRNA regulatory network related to this key CRCG. In addition, we constructed a novel
risk model through four CRLs. Therefore, the key contributions of this work are that
we developed a new ceRNA regulatory network and a novel risk model. It is important
to note that the ceRNA network that we constructed is rather new and has never been
investigated previously. This study provides strong theoretical support for the discovery
of new treatment strategies that may improve the prognosis of BRCA and decrease the
mortality of patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13061203/s1, Figure S1: (A) The diagnostic performance
these three hub genes used as breast cancer diagnostic genes. (B) The ROC of the 1-, 3-, and
5-year OS for test set samples; Figure S2: Visualization of co-expression analysis of CRGs and CRLs;
Figure S3: The correlation between 50 medicines and risk score, as well as the differential expression of
these medicines in the high- and low-risk group. Table S1: Source of datasets and related information;
Table S2: Classification and description of references. Table S3: Four CRLs and their corresponding
regression coefficients. Table S4: Compared with other prognostic models constructed using CRLs.
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ROC receiver operating characteristic curve
AUC area under curve
TCA tricarboxylic acid
MREs miRNA response elements
CRLs cuproptosis-related lncRNAs
FPKM fragments per kilobase of transcript per million
DEGs differential expression genes
LDA linear discriminant analysis
MSE mean squared error
C-index concordance index
IC50 the half maximal inhibitory concentration
HR hazard ratios
CI confidence intervals

References
1. Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics,

2022. CA Cancer J. Clin. 2022, 72, 524–541. [CrossRef] [PubMed]
2. Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [CrossRef] [PubMed]
3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [CrossRef] [PubMed]
4. Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human

diseases. Pfl. Arch.-Eur. J. Physiol. 2020, 472, 1415–1429. [CrossRef]
5. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.;

Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.
[CrossRef]

6. Vannini, I.; Fanini, F.; Fabbri, M. Emerging roles of microRNAs in cancer. Curr. Opin. Genet. Dev. 2018, 48, 128–133. [CrossRef]
[PubMed]

7. Chan, J.J.; Tay, Y. Noncoding RNA: RNA regulatory networks in cancer. Int. J. Mol. Sci. 2018, 19, 1310. [CrossRef]
8. Jiang, B.; Zhu, H.; Feng, W.; Wan, Z.; Qi, X.; He, R.; Xie, L.; Li, Y. Database Mining Detected a Cuproptosis-Related Prognostic

Signature and a Related Regulatory Axis in Breast Cancer. Dis. Markers 2022, 2022, 9004830. [CrossRef]
9. Peng, W.X.; Koirala, P.; Mo, Y.Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017, 36, 5661–5667. [CrossRef]

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://doi.org/10.3322/caac.21754
http://www.ncbi.nlm.nih.gov/pubmed/36190501
http://dx.doi.org/10.1001/jama.2018.19323
http://www.ncbi.nlm.nih.gov/pubmed/30667505
http://dx.doi.org/10.3322/caac.21654
http://www.ncbi.nlm.nih.gov/pubmed/33433946
http://dx.doi.org/10.1007/s00424-020-02412-2
http://dx.doi.org/10.1126/science.abf0529
http://dx.doi.org/10.1016/j.gde.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29429825
http://dx.doi.org/10.3390/ijms19051310
http://dx.doi.org/10.1155/2022/9004830
http://dx.doi.org/10.1038/onc.2017.184


Diagnostics 2023, 13, 1203 20 of 21

10. Park, M.K.; Zhang, L.; Min, K.W.; Cho, J.H.; Yeh, C.C.; Moon, H.; Hormaechea-Agulla, D.; Mun, H.; Ko, S.; Lee, J.W.; et al. NEAT1
is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab. 2021, 33, 2380–2397. [CrossRef]

11. Yue, X.; Wu, W.Y.; Dong, M.; Guo, M. LncRNA MALAT1 promotes breast cancer progression and doxorubicin resistance via
regulating miR-570–3p. Biomed. J. 2021, 44, S296–S304. [CrossRef]

12. Hu, J.; Huang, H.; Xi, Z.; Ma, S.; Ming, J.; Dong, F.; Guo, H.; Zhang, H.; Zhao, E.; Yao, G.; et al. LncRNA SEMA3B-AS1 inhibits
breast cancer progression by targeting miR-3940/KLLN axis. Cell Death Dis. 2022, 13, 800. [CrossRef] [PubMed]

13. Jiang, Z.R.; Yang, L.H.; Jin, L.Z.; Yi, L.M.; Bing, P.P.; Zhou, J.; Yang, J.S. Identification of novel cuproptosis-related lncRNA
signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front. Oncol. 2022, 12, 988680.
[CrossRef] [PubMed]

14. Zhang, L.; Zhang, Y.; Bao, J.; Gao, W.; Wang, D.; Pan, H. Cuproptosis Combined with lncRNAs Predicts the Prognosis and
Immune Microenvironment of Breast Cancer. Comput. Math. Methods Med. 2022, 2022, 5422698. [CrossRef] [PubMed]

15. Jiang, R.; Huan, Y.; Li, Y.; Gao, X.; Sun, Q.; Zhang, F.; Jiang, T. Transcriptional and genetic alterations of cuproptosis-related genes
correlated with malignancy and immune-infiltrate of esophageal carcinoma. Cell Death Discov. 2022, 8, 370. [CrossRef] [PubMed]

16. Chen, B.; Zhou, X.; Yang, L.; Zhou, H.; Meng, M.; Zhang, L.; Li, J. A Cuproptosis Activation Scoring model predicts neoplasm-
immunity interactions and personalized treatments in glioma. Comput. Biol. Med. 2022, 148, 105924. [CrossRef] [PubMed]

17. Wei, P.; Dong, M.; Bi, Y.; Chen, S.; Huang, W.; Li, T.; Liu, B.; Fu, X.; Yang, Y. Identification and validation of a signature based on
macrophage cell marker genes to predict recurrent miscarriage by integrated analysis of single-cell and bulk RNA-sequencing.
Front. Immunol. 2022, 13, 1053819. [CrossRef] [PubMed]

18. Sanz, H.; Valim, C.; Vegas, E.; Oller, J.M.; Reverter, F. SVM-RFE: Selection and visualization of the most relevant features through
non-linear kernels. BMC Bioinform. 2018, 19, 432. [CrossRef]

19. Song, S.; Zhang, M.; Xie, P.; Wang, S.; Wang, Y. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment
infiltration characterization in breast cancer. Front. Immunol. 2022, 13, 978909. [CrossRef] [PubMed]

20. Wang, Z.; Wang, F. Identification of Ten-Gene Related to Lipid Metabolism for Predicting Overall Survival of Breast Invasive
Carcinoma. Contrast Media Mol. Imaging 2022, 2022, 8348780. [CrossRef]

21. Cheng, T.; Wu, Y.; Liu, Z.; Yu, Y.; Sun, S.; Guo, M.; Sun, B.; Huang, C. CDKN2A-mediated molecular subtypes characterize the
hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front. Immunol. 2022, 13,
970950. [CrossRef] [PubMed]

22. Shen, N.; Korm, S.; Karantanos, T.; Li, D.; Zhang, X.; Ritou, E.; Xu, H.; Lam, A.; English, J.; Zong, W.X.; et al. DLST-dependence
dictates metabolic heterogeneity in TCA-cycle usage among triple-negative breast cancer. Commun. Biol. 2021, 4, 1289. [CrossRef]
[PubMed]

23. Cai, Y.; He, Q.; Liu, W.; Liang, Q.; Peng, B.; Li, J.; Zhang, W.; Kang, F.; Hong, Q.; Yan, Y.; et al. Comprehensive analysis of the
potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers. Front. Oncol. 2022,
12, 952129. [CrossRef] [PubMed]

24. Zhou, L.x.; Zheng, H.; Tian, Y.; Luo, K.f.; Ma, S.j.; Wu, Z.w.; Tang, P.; Jiang, J.; Wang, M.H. SNCA inhibits epithelial-mesenchymal
transition and correlates to favorable prognosis of breast cancer. Carcinogenesis 2022, 43, 1071–1082. [CrossRef]

25. Ju, Q.; Li, X.; Zhang, H.; Yan, S.; Li, Y.; Zhao, Y. NFE2L2 is a potential prognostic biomarker and is correlated with immune
infiltration in brain lower grade glioma: A pan-cancer analysis. Oxidative Med. Cell. Longev. 2020, 2020, 3580719. [CrossRef]

26. Liu, H.; Ma, Y.; He, H.W.; Wang, J.P.; Jiang, J.D.; Shao, R.G. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast
cancer cells. Autophagy 2015, 11, 2323–2334. [CrossRef]

27. Peng, M.; Yang, D.; Hou, Y.; Liu, S.; Zhao, M.; Qin, Y.; Chen, R.; Teng, Y.; Liu, M. Intracellular citrate accumulation by oxidized
ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell
Death Dis. 2019, 10, 228. [CrossRef]

28. Tan, Y.; Sun, R.; Liu, L.; Yang, D.; Xiang, Q.; Li, L.; Tang, J.; Qiu, Z.; Peng, W.; Wang, Y.; et al. Tumor suppressor DRD2 facilitates
M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics 2021, 11, 5214. [CrossRef]

29. Rahal, O.M.; Wolfe, A.R.; Mandal, P.K.; Larson, R.; Tin, S.; Jimenez, C.; Zhang, D.; Horton, J.; Reuben, J.M.; McMurray, J.S.; et al.
Blocking interleukin (IL) 4-and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages
and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018,
100, 1034–1043. [CrossRef]

30. Chen, Y.; Zhang, S.; Wang, Q.; Zhang, X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2
macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 2017, 10, 36. [CrossRef]

31. Yin, X.; Liu, J.; Wang, X.; Yang, T.; Li, G.; Shang, Y.; Teng, X.; Yu, H.; Wang, S.; Huang, W. Identification of Key Transcription
Factors and Immune Infiltration Patterns Associated With Breast Cancer Prognosis Using WGCNA and Cox Regression Analysis.
Front. Oncol. 2021, 11, 5404. [CrossRef]

32. Athanasios, A.; Charalampos, V.; Vasileios, T. Protein-protein interaction (PPI) network: Recent advances in drug discovery. Curr.
Drug Metab. 2017, 18, 5–10. [CrossRef]

33. Bernardino-Sgherri, J.; Siberchicot, C.; Auvré, F.; Busso, D.; Brocas, C.; El Masri, G.; Lioutsko, A.; Ferri, F.; Radicella, J.P.;
Romeo, P.H.; et al. Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the
cellular prion protein. Oncogene 2021, 40, 3460–3469. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cmet.2021.11.011
http://dx.doi.org/10.1016/j.bj.2020.11.002
http://dx.doi.org/10.1038/s41419-022-05189-7
http://www.ncbi.nlm.nih.gov/pubmed/36123344
http://dx.doi.org/10.3389/fonc.2022.988680
http://www.ncbi.nlm.nih.gov/pubmed/36203428
http://dx.doi.org/10.1155/2022/5422698
http://www.ncbi.nlm.nih.gov/pubmed/36213577
http://dx.doi.org/10.1038/s41420-022-01164-5
http://www.ncbi.nlm.nih.gov/pubmed/35995782
http://dx.doi.org/10.1016/j.compbiomed.2022.105924
http://www.ncbi.nlm.nih.gov/pubmed/35964468
http://dx.doi.org/10.3389/fimmu.2022.1053819
http://www.ncbi.nlm.nih.gov/pubmed/36439123
http://dx.doi.org/10.1186/s12859-018-2451-4
http://dx.doi.org/10.3389/fimmu.2022.978909
http://www.ncbi.nlm.nih.gov/pubmed/36341328
http://dx.doi.org/10.1155/2022/8348780
http://dx.doi.org/10.3389/fimmu.2022.970950
http://www.ncbi.nlm.nih.gov/pubmed/36052076
http://dx.doi.org/10.1038/s42003-021-02805-8
http://www.ncbi.nlm.nih.gov/pubmed/34785772
http://dx.doi.org/10.3389/fonc.2022.952129
http://www.ncbi.nlm.nih.gov/pubmed/35982953
http://dx.doi.org/10.1093/carcin/bgac078
http://dx.doi.org/10.1155/2020/3580719
http://dx.doi.org/10.1080/15548627.2015.1074372
http://dx.doi.org/10.1038/s41419-019-1475-7
http://dx.doi.org/10.7150/thno.58322
http://dx.doi.org/10.1016/j.ijrobp.2017.11.043
http://dx.doi.org/10.1186/s13045-017-0408-0
http://dx.doi.org/10.3389/fonc.2021.742792
http://dx.doi.org/10.2174/138920021801170119204832
http://dx.doi.org/10.1038/s41388-021-01746-0
http://www.ncbi.nlm.nih.gov/pubmed/33767435


Diagnostics 2023, 13, 1203 21 of 21

34. Yousaf, S.; Ahmad, M.; Wu, S.; Zia, M.A.; Ahmed, I.; Iqbal, H.M.; Liu, Q.; Rehman, S.U. Cellular Prion Protein Role in Cancer
Biology: Is It A Potential Therapeutic Target? Biomedicines 2022, 10, 2833. [CrossRef] [PubMed]

35. Tripathi, S.K.; Mathaiyan, J.; Kayal, S.; Nachiappa Ganesh, R. Identification of Differentially Expressed Mirna by Next Generation
Sequencing in Locally Advanced Breast Cancer Patients of South Indian Origin. Asian Pac. J. Cancer Prev. 2022, 23, 2255–2261.
[CrossRef]

36. Sheng, X.; Dai, H.; Du, Y.; Peng, J.; Sha, R.; Yang, F.; Zhou, L.; Lin, Y.; Xu, S.; Wu, Y.; et al. LncRNA CARMN overexpression
promotes prognosis and chemosensitivity of triple negative breast cancer via acting as miR143-3p host gene and inhibiting DNA
replication. J. Exp. Clin. Cancer Res. 2021, 40, 205. [CrossRef] [PubMed]

37. Déry, M.A.; Jodoin, J.; Ursini-Siegel, J.; Aleynikova, O.; Ferrario, C.; Hassan, S.; Basik, M.; LeBlanc, A.C. Endoplasmic reticulum
stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res. 2013, 15, R22. [CrossRef] [PubMed]

38. Kim, Y.C.; Won, S.Y.; Jeong, B.H. Identification of prion disease-related somatic mutations in the prion protein gene (PRNP) in
cancer patients. Cells 2020, 9, 1480. [CrossRef]

39. Wiegmans, A.P.; Saunus, J.M.; Ham, S.; Lobb, R.; Kutasovic, J.R.; Dalley, A.J.; Miranda, M.; Atkinson, C.; Foliaki, S.T.; Ferguson, K.;
et al. Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight
2019, 4, e124092. [CrossRef]

40. Polley, M.Y.C.; Leon-Ferre, R.A.; Leung, S.; Cheng, A.; Gao, D.; Sinnwell, J.; Liu, H.; Hillman, D.W.; Eyman-Casey, A.; Gilbert, J.A.;
et al. A clinical calculator to predict disease outcomes in women with triple-negative breast cancer. Breast Cancer Res. Treat. 2021,
185, 557–566. [CrossRef]

41. Polley, M.Y.C.; Dickler, M.N.; Sinnwell, J.; Tenner, K.; de la Haba, J.; Loibl, S.; Goetz, M.P.; Bergh, J.; Roberston, J.; Couch, F.; et al.
A clinical calculator to predict disease outcomes in women with hormone receptor-positive advanced breast cancer treated with
first-line endocrine therapy. Breast Cancer Res. Treat. 2021, 189, 15–23. [CrossRef] [PubMed]

42. He, D.; Wu, B.; Du, J.; Li, L.; Zhao, J. Synergistic inhibition of the growth of MDA-MB-231 cells in triple-negative breast cancer by
salinomycin combined with 17-AAG and its mechanism. Oncol. Lett. 2022, 23, 1–10. [CrossRef] [PubMed]

43. Esgandari, K.; Mohammadian, M.; Zohdiaghdam, R.; Rastin, S.J.; Alidadi, S.; Behrouzkia, Z. Combined treatment with
silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J. Cell. Physiol. 2021,
236, 2817–2828. [CrossRef]

44. Zheng, M.; Mei, Z.; Junaid, M.; Tania, M.; Fu, J.; Chen, H.C.; Khan, M.A. Synergistic Role of Thymoquinone on Anticancer
Activity of 5-Fluorouracil in Triple Negative Breast Cancer Cells. Anti-Cancer Agents Med. Chem. Formerly Curr. Med. Chem.
Anti-Cancer Agents 2022, 22, 1111–1118. [CrossRef]

45. Kim, S.Y.; Park, S.E.; Shim, S.M.; Park, S.; Kim, K.K.; Jeong, S.Y.; Choi, E.K.; Hwang, J.J.; Jin, D.H.; Chung, C.D.; et al. Bay 61-3606
sensitizes TRAIL-induced apoptosis by downregulating Mcl-1 in breast cancer cells. PLoS ONE 2015, 10, e0146073. [CrossRef]

46. Laakmann, E.; Witzel, I.; Müller, V. Efficacy of Liposomal Cytarabine in the treatment of leptomeningeal metastasis of breast
cancer. Breast Care 2017, 12, 165–167. [CrossRef]

47. Song, C.; Lowe, V.J.; Lee, S. Inhibition of Cdc20 suppresses the metastasis in triple negative breast cancer (TNBC). Breast Cancer
2021, 28, 1073–1086. [CrossRef]

48. Jeong, S.B.; Im, J.H.; Yoon, J.H.; Bui, Q.T.; Lim, S.C.; Song, J.M.; Shim, Y.; Yun, J.; Hong, J.; Kang, K.W. Essential Role of
Polo-like Kinase 1 (Plk1) Oncogene in Tumor Growth and Metastasis of Tamoxifen-Resistant Breast CancerRole of Plk1 in
Tamoxifen-Resistant Breast Cancer. Mol. Cancer Ther. 2018, 17, 825–837. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/biomedicines10112833
http://www.ncbi.nlm.nih.gov/pubmed/36359353
http://dx.doi.org/10.31557/APJCP.2022.23.7.2255
http://dx.doi.org/10.1186/s13046-021-02015-4
http://www.ncbi.nlm.nih.gov/pubmed/34162418
http://dx.doi.org/10.1186/bcr3398
http://www.ncbi.nlm.nih.gov/pubmed/23497519
http://dx.doi.org/10.3390/cells9061480
http://dx.doi.org/10.1172/jci.insight.124092
http://dx.doi.org/10.1007/s10549-020-06030-5
http://dx.doi.org/10.1007/s10549-021-06319-z
http://www.ncbi.nlm.nih.gov/pubmed/34218359
http://dx.doi.org/10.3892/ol.2022.13258
http://www.ncbi.nlm.nih.gov/pubmed/35317027
http://dx.doi.org/10.1002/jcp.30046
http://dx.doi.org/10.2174/1871520621666210624111613
http://dx.doi.org/10.1371/journal.pone.0146073
http://dx.doi.org/10.1159/000464400
http://dx.doi.org/10.1007/s12282-021-01242-z
http://dx.doi.org/10.1158/1535-7163.MCT-17-0545

	Introduction
	Materials and Methods
	The Gathering and Pretreatment of Microarray Data
	Obtainment, Differential Expression Analysis, and Correlation Analysis of CRGs
	Screening of Cuproptosis-Related Characteristic Genes
	GO, KEGG Enrichment Analysis
	Immune Cell Infiltration Analysis and Correlation Analysis with CRCGs
	Identification of Key CRCG and Construction of ceRNA Regulatory Network
	Identification of CRLs and Construction of the Risk Model
	Screening of Potentially Sensitive Medicines and Analyzing the Correlation between Drug Sensitivity and Risk Score
	Statistical Analysis

	Results
	Differential Expression Analysis and Correlation Analysis of CRGs
	Selection of CRCGs via LASSO, SVM-RFE, and RF Methods
	Differential Expression Analysis, GO, and KEGG Enrichment Analysis of CRCGs
	Identification of Key CRCG and Immune Cell Infiltration Analysis
	Construct and Verify PRNP-Related ceRNA Regulatory Network
	Identified CRLs and Constructed Risk Model
	Independent Prognostic Analysis and Building a Nomogram
	Drug Sensitivity Analysis

	Discussion
	Conclusions
	References

