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Abstract: Acid–base disorders occur when the body’s normal pH is out of balance. They can be
caused by problems with kidney or respiratory function or by an excess of acids or bases that the
body cannot properly eliminate. Acid–base and potassium imbalances are mechanistically linked
because acid–base imbalances can alter the transport of potassium. Both acid–base and potassium
imbalances are common in critically ill patients. This study investigated machine learning models for
predicting the occurrence of acid–base and potassium imbalances in intensive care patients. We used
an institutional dataset of 1089 patients with 87 variables, including vital signs, general appearance,
and laboratory results. Gradient boosting (GB) was able to predict nine clinical conditions related to
acid–base and potassium imbalances: mortality (AUROC = 0.9822), hypocapnia (AUROC = 0.7524),
hypercapnia (AUROC = 0.8228), hypokalemia (AUROC = 0.9191), hyperkalemia (AUROC = 0.9565),
respiratory acidosis (AUROC = 0.8125), respiratory alkalosis (AUROC = 0.7685), metabolic acidosis
(AUROC = 0.8682), and metabolic alkalosis (AUROC = 0.8284). Some predictions remained relatively
robust even when the prediction window was increased. Additionally, the decision-making process
was made more interpretable and transparent through the use of SHAP analysis. Overall, the results
suggest that machine learning could be a useful tool to gain insight into the condition of intensive
care patients and assist in the management of acid–base and potassium imbalances.

Keywords: critical care; machine learning; acid–base balance; prediction; big data; health informatics

1. Introduction

Patients in intensive care units (ICUs) usually suffer from severe or life-threatening
diseases and injuries [1]. Patients are provided with multiple life support systems to
maintain their physiological functions. They are at high risk of clinical deterioration, which
can occur frequently, abruptly, and without warning. Such problems need to be identified
early and treated immediately. They require attentive and specific care with state-of-the-art
diagnostic and curative technologies to ensure their normal body function.

Acid–base balance refers to the balance of acidity and alkalinity in the human body [2].
Carbon dioxide (CO2) is crucial for acid–base balance in the body [3]. Patients may have a
variety of conditions that can affect carbon dioxide balance, including respiratory disorders,
renal dysfunction, and certain medications. Carbon dioxide balance is maintained by a
delicate balance between the body’s production of carbon dioxide and its removal by the
respiratory and renal systems. The respiratory system removes carbon dioxide through
breathing, while the kidneys regulate carbon dioxide levels by controlling the excretion
of bicarbonate through the urine. Proper carbon dioxide balance is important. Excess
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carbon dioxide in the blood (hypercapnia) can lead to acidosis. On the other hand, a lack of
carbon dioxide in the blood (hypocapnia) can lead to alkalosis. In the ICU, carbon dioxide
balance is carefully monitored to ensure that patients are receiving the appropriate level
of ventilation and that their kidneys are functioning properly. If an imbalance is detected,
medical intervention may be needed to correct it. This may include administering oxygen
or mechanical ventilation to assist breathing, or administering medications to regulate
carbon dioxide levels.

Acid–base status is a key factor in understanding the physiological changes occurring
in critically ill patients, as well as in making diagnoses, developing treatment plans, and
monitoring progress [4]. Acid–base imbalance is a deviation from the usual balance of acids
and bases in the body that causes the plasma pH to deviate from its normal range [2]. The
balance of acids and bases in the body is tightly regulated because even tiny deviations
from the normal range can have serious consequences for numerous organs, some of
which are life-threatening. The body regulates the acid–base balance of the blood through
various processes, such as the lungs (change in respiratory rate), the kidneys (excretion
of excess acid or base), and buffer systems (use of bicarbonate, ammonia, proteins, and
phosphate) [5]. An excess of acid is called acidosis, while an excess of base is called alkalosis.
The process causing the imbalance is classified according to the source of the disturbance
(respiration or metabolism) and the direction of the pH change. This results in the four main
processes: respiratory acidosis, respiratory alkalosis, metabolic acidosis, and metabolic
alkalosis. Metabolic acidosis and metabolic alkalosis can occur due to an imbalance in the
production and excretion of acids and bases by the kidneys, while respiratory acidosis and
respiratory alkalosis are caused by changes in carbon dioxide exhalation due to lung or
respiratory disease. Patients may experience multiple acid–base disturbances. To determine
a patient’s acid–base balance, the physician needs to monitor the pH and the levels of
carbon dioxide and bicarbonate in the blood. When an acid–base imbalance occurs, the
body automatically attempts to compensate and restore the blood pH to normal through the
respiratory and metabolic systems [2]. If the blood pH has changed significantly, this may
indicate that the body’s ability to adapt is failing and further investigation and treatment of
the underlying cause of the acid–base disorder is needed.

Over half of the body’s weight is made up of water. Electrolytes are minerals that
carry an electric charge when they are dissolved in a liquid such as blood [6]. The kidneys
help maintain electrolyte concentrations by filtering electrolytes and water from blood,
returning some to the blood, and excreting any excess into the urine. Potassium is one of
the electrolytes in the human body needed for the normal functioning of cells, neurons,
and muscles. The body must maintain blood potassium levels within a certain range.
High (hyperkalemia) or low (hypokalemia) levels of potassium in the blood can have
disastrous consequences, such as cardiac arrhythmias or even cardiac arrest. The body can
use the large reserves of potassium in the cells to keep blood potassium levels constant.
Healthy kidneys can adjust potassium excretion to match fluctuations in potassium intake.
Some medications and diseases can interfere with the transport of potassium, significantly
affecting blood potassium levels. The interaction between acid–base and potassium balance
involves transcellular cation exchange as well as changes in kidney function [7]. An
imbalance in acid–base balance can lead to shifts in the transport of potassium into and
out of cells [5]. This is particularly evident in metabolic acidosis, metabolic alkalosis, and,
to a lesser extent, respiratory acid–base disorders. Hyperkalemia and hypokalemia can
be detected during a routine blood test or when a physician detects certain abnormalities
in an electrocardiogram. Physicians may assess the amount of potassium excreted in the
urine or look for signs of diabetes, acidosis, or kidney disorders.

Generally, patients admitted to the ICU are evaluated based on clinical, pathological,
and physiological data. They may experience worsening of symptoms or complications
due to conditions such as heart failure. Often, the patient’s worsening condition and
dysfunction is not directly indicated, resulting in a delay in assessing the patient’s risk
and response to changes in the patient’s condition. This can lead to more severe disease
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and loss of life. Timely treatment is therefore essential. Therefore, early detection can help
patients have a better chance of survival. It can also reduce the use of medical resources.

Early detection of critical clinical conditions can lead to better health outcomes and
lower healthcare costs [8]. Early warning scores (EWS) have been used to assess and
determine a patient’s severity based on clinical parameters routinely collected during
an ICU stay [9]. Examples include Acute Physiology and Chronic Health Evaluation
(APACHE) [10], Simplified Acute Physiology Score (SAPS) [11], Modified Early Warning
Score (MEWS) [9], and National Early Warning Score (NEWS) [12]. These EWS scores
employ pathological data, physiological data, and patient responses for calculation. They
alert clinical staff when a patient’s severity falls into the abnormality range, prompting them
to immediately attend to the patient and plan treatment. However, most assessment tools
were originally developed for manual bedside calculation. As electronic health records
(EHRs) become ubiquitous, these tools are now closely integrated with modern EHRs. This
allows scores to be calculated automatically based on patient data in EHRs. This makes
patient care more convenient, faster, and more timely.

Machine learning has been shown to be able to find relationships in medical data that
change over time with different patient conditions [13]. With patient data available in EHRs
and real-time vital signs at the bedside, such as patient personal data (gender, age, and
underlying disease), treatment history, physiological data, and laboratory results, it could
be possible to develop an algorithm to determine the relationship between dynamic medical
data and critical patient conditions by examining the relationships that occur around the
patient at a critical time [14]. This could lead to modern data-driven EWS development
that could be more accurate, specific, and real-time. It could also help physicians make
informed decisions, making the process of patient care safer.

Many studies have shown that machine learning can predict or classify the clinical
condition and clinical outcomes in intensive care patients [15–29]. For early prediction of
sepsis, Kam et al. [15] developed a long short-term memory (LSTM) model, a deep learning
model that incorporates past information, for early detection of systemic inflammatory
response syndrome (SIRS) conditions that could lead to sepsis. Nemati et al. [16] developed
a modified Weibull–Cox proportional hazards model for sepsis detection using data from
EHR and high-resolution bedside monitoring. Zhang et al. [17] developed an LSTM model
to predict sepsis using data (demographics, vital signs, laboratory values, and nutrition)
from over 10,000 individual patients. Although these studies examined similar outcomes,
the results cannot be compared because they used different datasets, and the definition of
the outcomes was also different. Several studies investigated other critical clinical condi-
tions. Kwon et al. [18] developed a deep learning algorithm for in-hospital cardiac arrest
prediction. Tomasev et al. [19] developed a recurrent neural network model for continuous
prediction of acute kidney injury. Wanyan et al. [20] developed a recurrent neural network
model with contrastive loss to predict mortality, intubation, and ICU transfer in hospi-
talized COVID-19 patients. More recently, some studies employed more comprehensive
clinical data and examined less critical clinical events. Lee et al. [21] used an autoregressive
event time series model to predict the future occurrence of clinical events defined as drug
administration, laboratory orders, medical procedures, and physiological measurements.
Their model consists of three mechanisms with LSTM to process information from the
distant past, a linear transformation model module to process recent information, and a
probabilistic model to process periodicity. Their model can handle complex multivariate
temporal time series of ICU data. Kaji et al. [22] trained LSTM to predict sepsis, myocardial
infarction, and vancomycin antibiotic administration. Recently, some studies have begun
to examine specific clinical conditions, such as hypocapnia [25], hypokalemia [27], hyper-
kalemia [28], and acid–base disturbances [29], but did not utilize time-series data. Many
of the studies showed promising results with high performance measures, which can be
further investigated in the clinic.

Although prediction by machine learning has the chance to improve the patient’s
health status, the problem with the reliability of the predictions is that they are not reliable
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for physicians because they are not interpretable. The problem can be addressed by
applying an explanatory tool to the model so that it can provide the meaning of each
predicted parameter (such as pulse, respiratory rate, and creatinine) for the prediction of
critical illness (such as sepsis, acute kidney injury, acute lung injury). Current research
trends address the use of interpretable machine learning models that can incorporate
comprehensive and past information for early prediction of important clinical conditions,
which could lead to early intervention, which in turn could lead to better patient outcomes.

Currently, machine learning development in the ICU is largely focused on predicting
key outcomes, such as mortality, length of stay, and sepsis [15–17,22–24]. In other areas,
such as acid–base disturbances and potassium imbalances, there are significant gaps that
remain to be explored [25–29]. The acid–base and electrolyte balance is essential for
the optimal functioning of physiological processes and cells, and an imbalance is often
the result of an underlying disease and can have negative effects on clinical outcomes.
Determining and, if possible, predicting the acid–base status of patients and using this
information to control or regulate the balance can be beneficial in managing underlying
diseases. The aim of this study is to investigate machine learning models to predict the
occurrence of acid–base and potassium imbalances in intensive care patients. We used
comprehensive patient data from Songklanagarind Hospital in Thailand. We employed
87 clinical predictors, including vital signs, general patient appearance, and laboratory
measurements (chemistry labs, hematology labs, microscopy labs, and arterial blood gases).

2. Materials and Methods
2.1. Dataset

This study involved the de-identified data extracted from the EHR of Songklanagarind
Hospital in Thailand. We used the vital signs, general appearance, and laboratory results
of patients admitted to the hospital from August 2019 to April 2022 who spent at least
24 h in the medical intensive care unit (MICU). Our laboratory results involved blood
chemistry tests, hematology tests, microbiology tests, and arterial blood gases. We included
only the first MICU visit and excluded subsequent visits. We excluded patients in whom
the duration of recorded vital signs and laboratory tests was less than 24 h and patients
in whom all four laboratory tests were not examined during their ICU stay. Our dataset
included 1089 patients with 1137 hospital admissions. Table 1 shows the characteristics
of the patients in our dataset. Our study was approved by the Office of Human Research
Ethics Committee, Faculty of Medicine, Prince of Songkla University (REC. 63-541-25-2).

Table 1. Dataset characteristics.

Characteristics

Number of patients 1089

Number of admissions 1137

Age 1 63.8 (18.1)

Gender
Male 2 602 (55.3%)
Female 2 487 (44.7%)

Length of hospital stay 1 27.2 (27.5)

Length of ICU stay 1 7.0 (8.0)
1 Values in Mean (S.D.); 2 Values in N (%).

2.2. Clinical Variables

In this study, we used vital signs, general appearance of the patient, and laboratory
measurements as predictors. Vital signs and general appearance represent the important
body functions of the patient. They are frequently monitored and carefully recorded in the
EHR. Laboratory results are often used to predict the patient’s current clinical condition.
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We considered blood chemistry tests, hematology tests, microbiology tests, and blood gas
tests. We selected only those variables for which there was an average of at least one
measurement per day, calculated from the days patients spent in the MICU, for all patients.
This resulted in a total of 87 variables. Figure 1 contains a list of all clinical variables
considered in our study.

Figure 1. Clinical variables in our dataset.

2.3. Clinical Conditions

Our study aims to predict clinical conditions that are common in intensive care pa-
tients so that early intervention can help improve patient outcomes. We identified 9 clinical
conditions that occur in patients in our dataset: mortality, hypocapnia, hypercapnia, hy-
pokalemia, hyperkalemia, metabolic acidosis, metabolic alkalosis, respiratory acidosis, and
respiratory alkalosis. The criteria for hypocapnia and hypercapnia were defined according
to Laserna et al. [30]. For hypokalemia and hyperkalemia, the European Resuscitation
Council Guidelines for Resuscitation 2010 were used [31]. Regarding acid–base balance
disorders, our study used the physiological approach according to Berend et al. [32] and
Constable et al. [33]. Table 2 shows the criteria of each clinical condition.

Table 2. Criteria and statistics of clinical conditions.

Clinical Condition Criteria Admissions with Condition

Mortality Death during ICU stay 213 (18.7%)

Hypocapnia pCO2 < 35 mmHg 360 (31.7%)

Hypercapnia pCO2 > 45 mmHg 296 (26.0%)

Hypokalemia K+ < 3.5 mmol/L 598 (52.6%)

Hyperkalemia K+ > 5.5 mmol/L 83 (7.3%)

Metabolic Acidosis pH < 7.35, and cHCO3
– < 22 mmol/L 202 (17.8%)

Metabolic Alkalosis pH > 7.45, and cHCO3
– > 26 mmol/L 430 (37.8%)

Respiratory Acidosis pH < 7.35, and pCO2 > 45 mmHg 258 (22.7%)

Respiratory Alkalosis pH > 7.45, and pCO2 < 35 mmHg 397 (34.9%)

2.3.1. Mortality

Mortality is defined as the patient’s death while in the ICU. Mortality is a common
prediction target and can serve as a benchmark for the algorithm. It is strongly associated
with clinical variables in the EHR.
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2.3.2. Hypocapnia and Hypercapnia

Hypocapnia is present when a pCO2 level is less than 35 mmHg, while hypercapnia
is present when a pCO2 level is more than 45 mmHg [30]. They may lead to an acid–base
imbalance. Low carbon dioxide levels lead to a decrease in the hydrogen ion concentration
in the blood, making the pH more basic. On the other hand, high carbon dioxide levels
lead to an increase in the hydrogen ion concentration in the blood, making the pH more
acidic. Patients may complain of lethargy, mild headache, shortness of breath, nausea,
hyperventilation or hypoventilation, or fatigue [34].

2.3.3. Hypokalemia and Hyperkalemia

More than 20 % of hospitalized patients were found to have hypokalemia, i.e., a K+ of
less than 3.5 mmol/L [31]. With lower serum potassium levels, there is a risk of muscle
necrosis, which can develop into paralysis, with deterioration of respiratory function and
an increase in cardiac arrhythmias [35].

Hyperkalemia can be life-threatening, especially in patients with chronic kidney
disease (CKD), diabetes mellitus, or heart failure. Hyperkalemia is often caused by stress,
illness, or dehydration. A K+ of greater than 5.5 mmol/L is recommended as a threshold
for treatment of hyperkalemia [31].

2.3.4. Metabolic Acidosis and Metabolic Alkalosis

Metabolic acidosis is present when there is a cHCO3
– of <22 mmol/L and a pH of

<7.35 [32,33]. Patients with metabolic acidosis can have serious consequences for cellular
function and an increased risk of disease and death.

Compensatory hypoventilation in critically ill patients may lead to hypoxia or pul-
monary infection. Failure of the right compensatory ventilation results in an increase
in pCO2 that precipitates metabolic alkalosis, the criteria for which are a cHCO3

– of
>26 mmol/L and a pH of >7.45 [36].

2.3.5. Respiratory Acidosis and Respiratory Alkalosis

Respiratory acidosis often occurs when the lungs are unable to remove all carbon
dioxide produced by the body. It affects approximately 25% of patients with chronic
respiratory failure. Patients with respiratory acidosis have a pH of <7.35 and a pCO2 of
>45 mmHg [32,33]. Respiratory acidosis is associated with a higher risk of mortality and a
greater need for intubation [37].

Respiratory alkalosis is often caused by hyperventilation which most commonly occurs
in response to hypoxia, metabolic acidosis, increased metabolic demands, and pain. The
criteria for respiratory alkalosis are a pCO2 of <35 mmHg and a pH of >7.45 [32,33].

2.3.6. Annotation of Clinical Conditions

We used laboratory measurements, i.e., blood chemistry and arterial blood gas values,
to identify clinical conditions. We considered only the first occurrence of the same clinical
condition for each admission. All clinical conditions were annotated using variable values
in the EHR data without physician involvement. We considered the time of occurrence of
a clinical condition to be the time when the associated laboratory values met the criteria.
Table 2 shows the number of admissions with presence of each clinical condition identified
in our dataset.

2.4. Data Preparation

This study used the vital signs and laboratory results around patients admitted into
the ICU. These data were mixed between numerical and text values. We converted the
numerical values of the same variable into the same scale. We encoded all discrete and
text values into categories. For each patient and variable, a time series with a fixed 15 min
interval was created and filled with measurements taken during the associated time interval.
The 15 min interval was chosen as our sampling period based on the observation that vital
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signs and general appearance factors can be collected as frequently as every 15 min. If
we had chosen a larger interval, our machine learning models may have lost the ability to
learn about the temporal dynamics of clinical data. If we had chosen a smaller interval,
the number of observations would have been too high. Missing values were filled using
the fill-forward method, from the last observation to the next values, taking into account
all vital signs and laboratory measurements obtained before admission to the MICU but
during the same hospital stay. This was performed to avoid sparse time series that could
lead to poor results. Figure 2 shows examples of time series for one patient, which illustrate
the fluctuating character of data in intensive care patients.

Figure 2. Illustration of our sequential clinical data randomly selected from a patient in the dataset
during their 72 h stay in the ICU. The graph shows how often the clinical variables were measured,
with more measurements during the day than at night.

2.5. Machine Learning Models

Our problem was cast as binary classification. We used a 12 h observation window.
This was not a problem in patients who had recently been transferred to the ICU because
the values of the clinical variables had been carried forward since the beginning of their
stay when they were in other units. We investigated the performance of machine learning
algorithms for predicting each clinical condition TP = {1, 2, 4} hours before its occurrence.

For each clinical condition, patients in whom the clinical condition occurred during
their stay in the ICU were assigned to the positive group, whereas patients in whom the
clinical condition did not occur were assigned to the negative group. For the positive group,
we extracted the clinical signals in a 12 h observation window TP hours before the onset of
the clinical condition. For the negative groups, we extracted a 12 h observation window
from the clinical signals at random for each patient (see Figure 3).

Figure 3. Diagram of our predictive tasks. The data in the observation window between T1 and
T2 were used to predict the clinical condition occurring at time Tonset. For the positive sequences,
the time of onset corresponded to the time of occurrence of the clinical condition. For the negative
sequences, the time of onset was randomly chosen within the admission.

Regarding the evaluation procedures, our dataset included 1089 patients with 1137 ad-
missions. A model received time-varying vital signs and laboratory results as inputs and
generated the probability risk for each clinical condition between 0 and 1. We addressed
data imbalance by performing sample weighting during the training of an algorithm.

We investigated four discriminative algorithms: K Nearest Neighbours (KNN), Sup-
port Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB). Our goal
was to explore simple but powerful classifiers that can be implemented at the edges. We
conducted all experiments using the Python programming language and utilized SQL for
retrieving all data from the database. We used the Scikit-learn (v.1.1.1), SHAP (v.0.41.0),
Pandas (v.1.4.2), Numpy (v.1.21.6), and Matplotlib (v.3.5.2) frameworks.

2.5.1. K Nearest Neighbours

KNN is a versatile algorithm that works by finding the K closest data points to a given
query point and uses the majority class of these data points as a prediction for the query
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point. With regards to hyperparameter optimization, we examined different numbers of
neighbors ({3, 5, 7, 9}) and different weight functions (uniform and distance weights).

2.5.2. Random Forests

RF is a collection of decision trees, where each tree is trained on a randomly selected
subset of the training data. The predictions of each tree are then combined to make a final
prediction by considering the majority of votes. Random Forest can reduce overfitting,
which is a common problem with decision trees, by training each tree on a different subset
of the training data. RF can handle high-dimensional large data because it is inherently
parallel. The weight associated with each leaf node reflects the importance of the variables.
With regards to hyperparameter optimization, we examineddifferent numbers of trees in
the forest (200, 400, 600) and maximum depth of the trees ({4, 8, 12, 16}).

2.5.3. Support Vector Machine

SVM is an algorithm that aims to find the hyperplane that maximally separates the
different classes. SVM uses the kernel trick to transform the data into a higher dimensional
space. The algorithm can effectively handle complex relationships in high-dimensional
spaces between the features and the target with with high accuracy and reproducibility.
For hyperparameter optimization, we examined different kernel types of trees in the forest
(polynomial and radial basis function) and different regularization parameters (C parame-
ter) ({1, 10, 100, 1000}).

2.5.4. Gradient Boosting

GB is an ensemble method in which a sequence of weak learners is trained, with
each successive learner trained to correct the errors of the previous learner. The final
prediction is produced by combining the predictions of all individual learners. GB is
able to handle missing values, outliers, and a large number of features and is resistant
to overfitting. Unlike SVM, GB can automatically learn nonlinear complex relationships
in the data without explicit mapping. GB has achieved state-of-the-art results on many
machine learning tasks. For hyperparameter optimization, we examined different numbers
of boosting stages ({100, 200, 400}) and maximum depth of the tree ({4, 8, 12}).

2.6. Evaluation Metrics

A true positive (TP) is when a model correctly identifies a positive class; a true negative
(TN) is when a model correctly identifies a negative class; a false positive (FP) is when the
model incorrectly identifies a negative class, and a false negative (FN) is when the model
incorrectly identifies a positive class. Sensitivity or recall represents the proportion of actual
positives that are correctly predicted:

Sensitivity or Recall =
TP

TP + FN
. (1)

Specificity represents the proportion of actual negatives that are correctly predicted:

Specificity =
TN

TN + FP
. (2)

Precision represents the proportion of positive predictions that are actually correct:

Precision =
TP

TP + FP
. (3)

F1 score is a harmonic mean of precision and recall and represents a single metric that
indicates how well a model finds relevant results:

F1 Score =
2TP

2TP + FP + FN
. (4)

A receiver operating characteristic (ROC) curve is a graphical representation that
shows the trade-off between sensitivity and specificity by varying the classification thresh-
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old. A precision recall (PR) curve is similar to an ROC curve, but it shows the trade-off
between precision and recall by varying the classification threshold. The PR curve is useful
for evaluating the performance of a classifier when the class distribution is imbalanced
(meaning that one class is significantly more prevalent than the other). Both the ROC curve
and the PR curve are commonly used to evaluate the performance of binary classifiers.
The area under the ROC curve (AUROC) and the area under the PR curve (AUPRC) are
common metrics that can be used to evaluate the overall performance of a model.

Our study considers not only predictions but also understandable explanations. We
used Shapley values [38] to determine how much each of the clinical features contributed
to the prediction.

3. Results

The present study utilized clinical data from 1089 patients, encompassing 1137 ad-
missions to the intensive care unit (ICU). A total of 87 clinical variables were considered,
including vital signs, general appearance, chemical laboratories, hematology laborato-
ries, microscopic labs, and arterial blood gases. The objective of the study was to predict
nine clinical conditions: mortality, hypocapnia, hypercapnia, hypokalemia, hyperkalemia,
metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. Al-
though we used time series with a fixed 15 min interval as input, predictions can be made as
the data come in, but the data must be formatted in time series with a fixed 15 min interval.

The results of the classification algorithms in predicting clinical conditions on the test
set are presented in Table 3. The evaluation was conducted using a 12 h observation window
and a 1 h prediction window, and the aim was to predict whether a clinical condition would
occur within the subsequent hour. Precision, sensitivity (recall), specificity, and F1 score
were calculated using the threshold that yielded the highest F1 score in the validation set.

We present both AUROC and AUPRC because the number of positive cases for each
clinical condition varied. The former metric, AUROC, aims to minimize false negatives,
while the latter metric, AUPRC, aims to minimize false positives. Based on the results
presented in Table 3, the GB algorithm performed better than the other algorithms in 7
out of 9 clinical conditions: mortality (AUROC = 0.9822), hypocapnia (AUROC = 0.7524),
hypokalemia (AUROC = 0.9191), hyperkalemia (AUROC = 0.9565), respiratory acidosis
(AUROC = 0.8125), respiratory alkalosis (AUROC = 0.7685), and metabolic alkalosis (AU-
ROC = 0.8284). The RF algorithm slightly outperformed GB in the remaining two clinical
conditions: hypercapnia (AUROC = 0.8228) and metabolic acidosis (AUROC = 0.8682). The
KNN algorithm was not effective in predicting any of the clinical conditions. The SVM algo-
rithm performed competitively, but its performance did not surpass those of GB and RF. The
clinical conditions that demonstrated the highest scores were mortality (AUROC = 0.9822
and AUPRC = 0.8557) and hypokalemia (AUROC = 0.9191 and AUPRC = 0.9455). In terms
of predicting acid–base imbalances, the performance of the algorithms was similar, with
AUROCs ranging between 0.7685 and 0.8699 and AUPRCs ranging between 0.5945 and
0.7150. Figure 4 shows the ROC curves compared for different classification algorithms for
each clinical condition. Figure S1 shows the graphical comparison of F1 Score, AUROC,
and AUPRC across different algorithms for each clinical condition.

Both precision and recall are important measurements because they provide different
insights into the performance of a model. In some applications, a high recall rate may be
more crucial in order to minimize the number of false-negative results, such as in screening
tests. Conversely, a high precision rate may be more critical in applications where the cost
of false-positive results is high, such as in diagnostic tests. The F1 score is a single metric
that provides a balance between precision and recall and is less affected by imbalanced
data. We used the decision threshold that gives the highest F1 score in the training set
as the threshold for the test set to obtain precision, sensitivity, specificity, and F1 score.
The clinical condition with the highest F1 score is hypokalemia (F1 = 0.8691), followed by
mortality (F1 = 0.8101) and hypocapnia (F1 = 0.7115), respectively. Our F1 scores are in line
with their AUROCs and AUPRC scores.
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Figure 4. The ROC curves compare different algorithms for each target clinical condition. GB
outperformed the other algorithms in most cases. There was a small number of positive cases for
hyperkalemia.
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Table 3. Performance for the next-hour prediction on each clinical condition on the test set.

Clinical Condition N1/N0 Algorithm Precision Sensitivity Specificity F1 Score AUROC AUPRC

Mortality 213/ K Nearest Neighbours 0.3333 0.5625 0.7410 0.4186 0.7156 0.4347
924 Support Vector Machine 0.4746 0.8750 0.7770 0.6154 0.9069 0.6796

Random Forests 0.6154 1.000 0.8561 0.7619 0.9643 0.8378
Gradient Boosting 0.6809 1.000 0.8921 0.8101 0.9822 0.8557

Hypocapnia 360/ K Nearest Neighbours 0.5484 0.6538 0.5625 0.5965 0.674 0.6353
777 Support Vector Machine 0.6471 0.6346 0.7188 0.6408 0.6854 0.6282

Random Forests 0.6429 0.6923 0.6875 0.6667 0.7263 0.615
Gradient Boosting 0.7115 0.7115 0.7656 0.7115 0.7524 0.6442

Hypercapnia 296/ K Nearest Neighbours 0.381 0.4444 0.6422 0.4103 0.5817 0.4107
841 Support Vector Machine 0.5063 0.7407 0.6422 0.6015 0.7397 0.5382

Random Forests 0.6056 0.7963 0.7431 0.6880 0.8255 0.7036
Gradient Boosting 0.5909 0.7222 0.7523 0.6500 0.8228 0.6731

Hypokalemia 598/ K Nearest Neighbours 0.6067 0.5684 0.4697 0.5870 0.5596 0.6779
539 Support Vector Machine 0.75 0.7263 0.6515 0.738 0.6753 0.7359

Random Forests 0.8061 0.8316 0.7121 0.8187 0.8593 0.8971
Gradient Boosting 0.8646 0.8737 0.8030 0.8691 0.9191 0.9455

Hyperkalemia 83/ K Nearest Neighbours 0.0909 0.6000 0.6273 0.1579 0.5981 0.0714
1054 Support Vector Machine 0.0921 0.7000 0.5714 0.1628 0.6441 0.0981

Random Forests 0.1600 0.8000 0.7391 0.2667 0.854 0.3053
Gradient Boosting 0.2083 1.0000 0.7640 0.3448 0.9565 0.6497

Respiratory Acidosis 202/ K Nearest Neighbours 0.2545 0.4375 0.6963 0.3218 0.5422 0.2938
935 Support Vector Machine 0.3182 0.6562 0.6667 0.4286 0.6484 0.2797

Random Forests 0.4237 0.7812 0.7481 0.5495 0.7995 0.5324
Gradient Boosting 0.4068 0.7500 0.7407 0.5275 0.8125 0.5945

Respiratory Alkalosis 430/ K Nearest Neighbours 0.4405 0.5873 0.5204 0.5034 0.5234 0.4175
707 Support Vector Machine 0.4815 0.6190 0.5714 0.5417 0.6260 0.5335

Random Forests 0.6269 0.6667 0.7449 0.6462 0.7517 0.6265
Gradient Boosting 0.6081 0.7143 0.7041 0.6569 0.7685 0.6924

Metabolic Acidosis 258/ K Nearest Neighbours 0.3492 0.5641 0.6639 0.4314 0.6783 0.4081
879 Support Vector Machine 0.4648 0.8462 0.6885 0.6000 0.8600 0.5921

Random Forests 0.5385 0.8974 0.7541 0.6731 0.8699 0.6870
Gradient Boosting 0.5333 0.8205 0.7705 0.6465 0.8682 0.7150

Metabolic Alkalosis 397/ K Nearest Neighbours 0.4583 0.5690 0.6176 0.5077 0.6228 0.5258
740 Support Vector Machine 0.5846 0.6552 0.7353 0.6179 0.7329 0.6153

Random Forests 0.5946 0.7586 0.7059 0.6667 0.7694 0.6143
Gradient Boosting 0.6389 0.7931 0.7451 0.7077 0.8284 0.6719

Bold texts highlight the highest scores in each metric for each clinical condition. N1 represents the number of
samples with positive outcomes. N0 represents the number of samples with positive outcomes. (Total = 1137).

Table 4 shows the predictive performance of GB at different prediction windows
(TP = {1,2,4,8}) on the test set. The performance of the prediction algorithm decreased as
the gap between the prediction and the onset increased. This was expected and due to the
fact that the further into the future the prediction was made, the more uncertainty there
was about the outcome. Figure S2 shows the graphical comparison of F1 Score, AUROC,
and AUPRC across different early prediction periods for each clinical condition.

Figure 5 presents ROC curves at different early prediction periods (TP = {1,2,4,8} h
before onset). These ROC curves illustrate how the performance of the GB classifier
changes as the prediction window increases. It appears that some clinical conditions were
more robust towards early prediction than others as the performance of the classifier was
relatively stable as the prediction window increased. Based on the results presented in
Table 4, small decreases in AUROC and AUPRC (less than 0.05) were observed in the
clinical conditions of mortality, hypocapnia, metabolic acidosis, and metabolic alkalosis
when the prediction window was extended from 1 to 8 h. However, large decreases were
observed in the clinical conditions of hypercapnia, hypokalemia, hyperkalemia, respiratory
acidosis, and respiratory alkalosis.
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Figure 5. The ROC curves compare different early prediction periods (1, 2, 4, and 8 h before onset)
using GB for each target clinical condition.
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Table 4. Predictive performance of the GB classifier at different prediction windows (TP = {1,2,4,8}).

Clinical Condition N1/N0 Before Onset Precision Sensitivity Specificity F1 Score AUROC AUPRC

Mortality 213/ 1 h 0.6809 1.000 0.8921 0.8101 0.9822 0.8557
924 2 h 0.6078 0.9688 0.8561 0.7470 0.9584 0.8148

4 h 0.5769 0.9375 0.8417 0.7143 0.9670 0.8820
8 h 0.5400 0.8438 0.8345 0.6585 0.9490 0.8462

Hypocapnia 360/ 1 h 0.7115 0.7115 0.7656 0.7115 0.7524 0.6442
777 2 h 0.6491 0.7255 0.6923 0.6852 0.7629 0.7207

4 h 0.6034 0.7292 0.6515 0.6604 0.7105 0.5997
8 h 0.4808 0.6757 0.6143 0.5618 0.7232 0.6099

Hypercapnia 296/ 1 h 0.5909 0.7222 0.7523 0.6500 0.8228 0.6731
841 2 h 0.5217 0.6792 0.6972 0.5902 0.7881 0.6081

4 h 0.5600 0.7925 0.6972 0.6562 0.7880 0.6496
8 h 0.4857 0.6667 0.6727 0.5620 0.7660 0.6142

Hypokalemia 598/ 1 h 0.8646 0.8737 0.8030 0.8691 0.9191 0.9455
539 2 h 0.8191 0.828 0.7500 0.8235 0.8885 0.9127

4 h 0.7895 0.8427 0.7059 0.8152 0.8516 0.8866
8 h 0.7907 0.8000 0.7429 0.7953 0.8309 0.8475

Hyperkalemia 83/ 1 h 0.2083 1.0000 0.7640 0.3448 0.9565 0.6497
1054 2 h 0.1579 0.9000 0.7019 0.2687 0.8981 0.2761

4 h 0.1636 0.9000 0.7143 0.2769 0.8043 0.1573
8 h 0.1667 0.9000 0.7205 0.2812 0.7882 0.1628

Respiratory Acidosis 202/ 1 h 0.4068 0.7500 0.7407 0.5275 0.8125 0.5945
935 2 h 0.3382 0.7419 0.6667 0.4646 0.7890 0.5339

4 h 0.3607 0.7097 0.7111 0.4783 0.7728 0.4539
8 h 0.3333 0.6129 0.7185 0.4318 0.7226 0.3975

Respiratory Alkalosis 430/ 1 h 0.6081 0.7143 0.7041 0.6569 0.7685 0.6924
707 2 h 0.6618 0.7143 0.7653 0.6870 0.7577 0.6250

4 h 0.5733 0.7167 0.6768 0.6370 0.7608 0.6250
8 h 0.5082 0.5962 0.7030 0.5487 0.6767 0.5167

Metabolic Acidosis 258/ 1 h 0.5333 0.8205 0.7705 0.6465 0.8682 0.7150
879 2 h 0.5000 0.8378 0.7480 0.6263 0.8548 0.6490

4 h 0.4918 0.8108 0.7459 0.6122 0.8702 0.6686
8 h 0.4375 0.8485 0.7073 0.5773 0.8559 0.6923

Metabolic Alkalosis 397/ 1 h 0.6389 0.7931 0.7451 0.7077 0.8284 0.6719
740 2 h 0.5970 0.7143 0.7404 0.6504 0.8110 0.6571

4 h 0.5455 0.7636 0.6602 0.6364 0.8104 0.6775
8 h 0.5513 0.7818 0.6602 0.6466 0.8095 0.6799

N1 represents the number of samples with positive outcomes. N0 represents the number of samples with positive
outcomes. (Total = 1137).

Figure 6 shows the importance of each clinical variable on the GB classifier on each
clinical condition. The feature importance was calculated using the impurity-based Gini
importance. This method quantifies the importance of each feature by measuring the
decrease in node impurity that results from splitting on that feature. The total decrease in
node impurity was normalized by the proportion of samples reaching that node and was
averaged across all trees in the ensemble model. The resulting value reflect the influence of
that feature on the model’s predictions.

According to Figure 6, patient consciousness was a significant factor in predicting
mortality. The features related to carbon dioxide in the blood would be ranked highly for
predicting hypocapnia and hypercapnia, as these clinical conditions are characterized by
abnormal levels of carbon dioxide in the blood. Similarly, the features related to potassium
would be ranked highly for predicting hypokalemia and hyperkalemia, as these clinical
conditions are characterized by abnormal levels of potassium in the body. For acid–base
imbalances, features related to acid, base, bicarbonate, and carbon dioxide would be ranked
highly, as these factors play a key role in regulating acid–base balance in the body.
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Figure 6. Feature importances calculated from the GB classifer for each clinical condition.

4. Discussion

Machine learning can be a tool to provide timely decision support, simplify the vast
amount of information commonly available in the ICU, and highlight the most important
elements for each patient. This study focused on the prediction of acid–base and potassium
imbalances in intensive care patients. We also looked into predicting mortality, which was
used as a baseline to demonstrate the effectiveness of our data embedding strategy and
the prediction algorithm in a typical scenario. Our mortality prediction results were in
line with other studies [20,23,24] despite ours employing our institutional dataset. Table 3
and Figure 4 indicate that tree-based algorithms, i.e., RF and GB, outperformed the other
algorithms forthe early prediction of one hour. In general, all of the algorithms used in
the study performed better than a random guess. Based on the results, mortality and
hypokalemia were the two clinical conditions with the highest F1 Scores, AUROCs, and
AUPRCs. Hypocapnia, hypercapnia, respiratory alkalosis, and metabolic alkalosis all had
AUROCs of more than 0.65, indicating that they have potential for further study as clinical
conditions that can be accurately predicted using machine learning.

When optimizing the hyperparameters, we observed that for KNN, a larger number of
neighbors tended to lead to better performance, as this increases the probability that similar
data points are present in the neighborhood. For SVM, the regularization parameter C
controls the trade-off between maximizing the margin and minimizing the misclassification
error. Larger values of C tended to lead to better results, as an attempt was made to increase
the margin while attempting to correctly classify all training points. For RF, a larger number
of trees tended to lead to better performance because the probability of overfitting was
reduced, while the criteria used for data partitioning tended not to have a large effect
on performance. For GB, the number of decision trees and the maximum depth of each
decision tree were important parameters. We found that a larger number of trees and a
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lower maximum depth tended to lead to better performance. We observed slightly different
sets of hyperparameters for each clinical condition for each model.

With regards to algorithms, GB and RF differ in how the trees are built and how their
predictions are combined. GB builds a sequence of weak learners. GB adjusts the weights
of data points misclassified by the previous tree to give more weight to difficult cases.
RF independently trains many fully grown decision trees and then votes on classifying
new data. RF is generally good when there are many features or when the data are high-
dimensional. RF can effectively decorrelate the trees and reduce overfitting. RF also handles
missing data and categorical variables well. GB is more prone to overfitting than RF, but
it can find nonlinear interactions between variables. GB is also sensitive to the scale of
the feature; few features may dominate the model. Both RF and GB can work well in
different situations. and the choice depends on the dataset and specific problem. For
hypercapnia, respiratory acidosis, and metabolic acidosis, it happens that RF scored higher
than GB. We suspect that GB may have difficulty handling the complexity and may overfit
in these problems.

From the results in Table 4 and Figure 5, the scores for respiratory acidosis and
respiratory alkalosis decreased significantly as the prediction window increased. The
scores for mortality, hypokalemia, and metabolic alkalosis remained relatively robust, even
as the prediction window increased, allowing predictions for these clinical conditions to be
made several hours in advance. The scores for hypokalemia decreased as the prediction
window increased, eventually making early prediction more difficult. This may be due
to the small number of positive samples for hyperkalemia. It is generally more difficult
to make accurate predictions with a small number of positive samples, as there is less
data available to train the prediction algorithm. This suggests that, due to their intrinsic
characteristics, certain clinical conditions may be more difficult to predict than others, even
with the use of machine learning techniques. With regards to the four cardinal acid–base
disorders, the results suggest that the machine learning models seemed to learn about the
physiological regulation of the HCO3

– /CO2 buffering system and were able to predict
the acid–base disorders. These models may be effective in providing decision support for
nurses and clinicians in the ICU setting.

4.1. Comparison to Other Studies

Many studies have demonstrated the ability of machine learning to predict clinical
outcomes and clinical conditions in intensive care patients. The performance of a model
may vary depending on the specific dataset and prediction task. Most studies have been
conducted in a domain-specific context, such as predicting clinical events that may occur
during surgery. For hypocapnia, Chen et al. [25] developed machine learning models to
predict six different outcomes, including hypocapnia, using GB with physiological sig-
nals. The authors obtained an AUROC of 0.8551 and an AUPRC of 0.4451. Their results
with GB outperformed those of the LSTM. Our study achieved AUPRCs of 0.6099–0.6442,
which were higher than those of the authors. For hypercapnia, Fan et al. [26] developed
an RF model to predict hypercapnia during one-lung ventilation using RF. They obtained
an AUROC of 0.7450, which is comparable to our study, which obtained AUROCs of
0.7660–0.8228. Regarding hypokalemia and hyperkalemia, Zhou et al. [27] developed a GB
model for predicting severe hypokalemia with an AUROC of 0.73. Our study obtained
higher AUROCs of 0.8309–0.9191 for hypokalemia. Similarly, Kwak et al. [28] investigated
the prediction of hyperkalemia with an AUROC of 0.85 for both RF and GB. Ours achieved
AUROCs of 0.7882–0.9565. For the four acid–base disorders, Cherif et al. [29] developed a
mathematical model for predicting acid–base disorders that takes into account the physio-
logical regulation of the buffer system. The model can predict the primary disturbances
and provides pathophysiological insights. This study supports our hypothesis that the
acid–base disorders can be predicted using machine learning algorithms.
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4.2. Calibration Curves

Figure 7 shows calibration curves that plot the mean predicted probability against
the frequency of the event on the test set. A perfect model would have a calibration curve
that is a straight line with a slope of one and an intercept of zero. If the curve is above the
straight line, it means the model is overconfident, while a curve below the line means the
model is underconfident. Calibration curves can be used to evaluate how well a model is
able to predict events within different probability ranges. Compared with other algorithms,
the GB models were better calibrated. The GB model of hypokalemia appears to be well-
calibrated. The GB models seem to provide a risk score in the range between 0–1 better
than other algorithms.

Figure 7. Calibration curves demonstrate the degree of calibration of each classifier for every clinical
condition in the test set. Most of the calibration curves indicate that the classifiers are well-calibrated.
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4.3. Feature Importance

Overall, the feature importance results in Figure 6 provide insight into the factors that
the model is considering important when making predictions, which can help to increase
understanding of the model’s decision-making process and inform further development or
refinement of the model. Our results of feature importance indicate that the model had a
strong understanding of the context surrounding the clinical conditions it was predicting.
For mortality, the top features identified by the model (such as consciousness, SBP, SpO2,
and RR) are included in commonly used ICU bedside scoring indexes, such as APACHE [10]
and MEWS [9]. The models for predicting mortality were effective due, in part, to the
inclusion of patient consciousness as input features. For hypocapnia and hypercapnia,
pCO2 and TCO2, which are direct predictors of hypocapnia and hypercapnia, came up
on top of the lists of feature importance. For hypokalemia and hyperkalemia, both types
of potassium measurements from both chemistry labs and arterial blood gases were the
most important variables. For acid–base imbalances, the variables indicating acid–base
balance, electrolytes, and gasses in blood (such as SBE, ABE, pCO2, TCO2, cHCO3, K+, and
Na+) are strong predictors. It is likely that the model, although not specifically designed
to process temporal data, learned the temporal dynamics of the changes as well as the
relationship between the different predictors to make predictions about the occurrence of
these clinical conditions.

In Figure 8, the temporal importance of each clinical variable was averaged across all
clinical conditions in the test set. Hence, the model’s predictions were based on multiple
time points, with the most recent and earlier measurements being weighted more heavily.
This means that the model takes into account the temporal dynamics of the data when
making predictions.

Figure 8. Temporal importance was calculated by averaging across all clinical variables and all clinical
conditions in the test set. This measure reflects the degree of influence of each time point on the
prediction. We observed that greater weight was given to the most recent and earlier measurements.
This may indicate that the algorithms are able to capture changes in clinical variables over time.

4.4. Feature Explanations

The explainability of models is critical in healthcare because healthcare providers
are responsible for the actions taken. It is important that the decisions made by machine
learning models are understandable to the user. Figure 9 presents a visualization of a
sample patient in the test set over a period of 30 h, as well as the model outputs and the
visualization of the contributions of each feature at each time step to the output of the
model. The top 40 important clinical variables were selected for this visualization. The
contributions were calculated using SHAP values from the SHAP framework [38], which
were summed over different time steps of the same values and again summed over different
clinical conditions. Some clinical variables, i.e., vital signs and arterial blood gases, were
measured more frequent than the others. The models can identify variables that are outside
of their normal ranges, e.g., the periods with low blood pressure and high respiratory rate,
that may need attention of medical doctors.
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Figure 9. Feature visualization of one sample patient in the test set with model outputs provides
valuable insights into how the models are making predictions based on the clinical data. By trans-
forming the raw data into time series with a fixed 15 min interval and fill forward imputation, the
models can analyze patterns over time and predict the patient’s score for the clinical condition. The
models can also flag variables outside their normal range, indicating areas requiring attention from
clinicians. It is worth noting that only the top 40 most important clinical variables are shown, and
some measurements are skipped due to space limitations. Overall, the feature visualization with
model outputs is a powerful tool for understanding how the models are making predictions and
identifying areas where clinicians can take action to improve patient outcomes.
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4.5. Limitations

There are several limitations to this study. First, the dataset used was relatively
small compared to larger datasets, such as MIMIC [39] and eICU [40], but the results
do demonstrate that it is possible to develop algorithms using data from a single local
institution. Second, our study defined acid–base disturbances using the simple thresholding
technique, not from the point of view of the carbonic-acid–bicarbonate buffer system.
Future studies may take into account the dynamics of the physiological regulation and
buffer system. Third, the study did not consider other factors, such as medications or
diagnoses made by physicians, which may have an impact on the results. The reason is that
these data are too fine-grained, and it might be difficult for machine learning algorithms
to learn from them effectively with a small dataset. If we take these factors into account,
we could study the impact of chronic conditions on critically ill patients, which in turn
can improve the performance of the algorithms. Expanding the dataset to include data
from other ICUs within the same institution could help address this limitation. Fourth,
balancing a dataset using methods, such as SMOTE (Synthetic Minority Over-sampling
Technique) [41], can improve the performance of a machine learning model in minority
class prediction by creating synthetic samples by interpolating between existing minority
class samples and then increasing the number of minority class samples in the training
dataset. Fifth, the study did not use more complex modeling techniques, such as recurrent
neural networks or transformers, which have built-in temporal dynamics functionality, due
to the desire to use smaller computational units and maintain interpretability of features.
Additionally, marginal performance improvements of these complex modeling techniques
were observed in other studies compared to ensemble tree algorithms. Finally, the study
was conducted using data from a single institution, and the results may not be generalizable
to other hospitals or healthcare settings.

4.6. Future Work

Future work involves examining the generalizability of the algorithms across different
datasets, such as MIMIC and eICU, or with different cohorts. This can provide insight
into how well the model would perform on a broader population. To achieve this, it is
important to ensure that the variables used in the algorithm are also present in the target
dataset. As suggested by the study by Desautels et al. [42], the performance and robustness
of the algorithm can be improved through the use of transfer learning on a target dataset,
such that knowledge learned from one dataset can be applied to improve the performance
on a different but related dataset. Next, the performance of the model could potentially be
improved when a model is trained with data from bedside monitoring systems, such as
continuous vital signs. This is because bedside monitoring data provide a more detailed
and granular view of a patient’s physiology and disease progression over time. With this
type of data, the model is able to detect subtle changes in a patient’s condition that may not
be apparent with less frequent measurements, such as those taken during routine care. The
use of data from bedside monitoring systems would also allow the model to account for
the dynamic nature of critical illness, which is characterized by rapid physiologic changes.
Finally, it would be interesting to investigate whether the factors from bedside monitoring
tools, such as APACHE II or SAPS, which are currently utilized in the clinic, can be used to
predict acid–base and potassium imbalances. If these factors are found to be useful, they
could be incorporated into clinical decision-making tools and treatment protocols without
requiring additional data to be collected.

5. Conclusions

Acid–base disorders occur when there is an imbalance in the normal pH of the body.
This can be caused by problems with kidney or respiratory function or by an excess of
acids or bases that the body cannot properly eliminate. Acid–base disorders can also affect
potassium levels in the body by altering the transport of potassium. It is important to
monitor and regulate both acid–base balance and potassium levels to maintain proper
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physiological and cellular function of the body. This study used machine learning to
predict acid–base and potassium imbalances in intensive care patients, which could be
useful in controlling or regulating the balance and thus beneficial to the management
of the underlying disease. We were interested in nine clinical conditions related to the
acid–base and potassium imbalances: mortality, hypocapnia, hypercapnia, hypokalemia,
hyperkalemia, metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory
alkalosis. The study used an institutional dataset of 1089 patients with 87 clinical variables,
including vital signs, patient appearance, and laboratory measurements. The results
showed that GB generally had the best performance, with AUROCs ranging from 0.6767
to 0.9822 and AUPRCs ranging from 0.5945 to 0.9455 for the different clinical conditions
and different prediction windows. The highest performances were seen in the prediction of
mortality and hypokalemia, and the predictions for mortality, hypokalemia, and metabolic
alkalosis remained relatively robust even when the prediction window was increased,
indicating the potential for early prediction. We used the SHAP framework to make the
decision-making process of our machine learning models interpretable and transparent.
The results were promising and could be useful for clinicians to gain insights into the
underlying clinical condition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13061171/s1, Table S1: Summary of the functions
in the scikit-learn library and the hyperparameters that are optimized during the training of an
algorithm; Figure S1: Visualization of F1 score, AUROC, and AUPRC for each algorithm and for
each clinical condition; Figure S2: Visualization of F1 score, AUROC, and AUPRC for each early
prediction window and for each clinical condition; Figure S3: PR curves compare different algorithms
for each clinical condition; Figure S4: PR curves compare different early prediction windows for each
clinical condition; Figure S5: Confusion matrices of GB classifiers on the test set for a one hour early
prediction window for each clinical condition.

Author Contributions: Conceptualization, T.I. and S.C.; methodology, R.P.; software, R.P. and K.S.;
validation, R.P., S.C. and K.H.; formal analysis, R.P.; investigation, R.P.; resources, S.C.; data curation,
R.P. and T.I.; writing—original draft preparation, R.P. and S.C.; writing—review and editing, R.P. and
S.C.; visualization, R.P. and S.C.; supervision, S.C.; project administration, S.C.; funding acquisition,
S.C. All authors have read and agreed to the published version of the manuscript.

Funding: R.P. and K.S. gratefully acknowledge their graduate scholarships from the Faculty of
Medicine, Prince of Songkla University under grant number 02/2563 and 01/2564, respectively. R.P.
also received a thesis research grant from the graduate school, Prince of Songkla University. This
work was supported by the Health Systems Research Institute (HSRI) under grant number HSRI
63-147. The APC was jointly funded jointly by Research and Development Office (RDO) and Faculty
of Medicine, Prince of Songkla University.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Office of Human Research Ethic Committee, Faculty of Medicine,
Prince of Songkla University under Approval No. REC. 63-541-25-2 (Date: 13 January 2021).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of the
study. The study analyzed de-identified clinical data of the patients.

Data Availability Statement: The de-identified clinical data presented in this study are available on
request from the corresponding author, subject to approval by the Office of Human Research Ethic
Committee. The data are not publicly available due to institutional policies.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABE Actual Base Excess
ALB Albumin
ALP Alkaline Phosphatase

https://www.mdpi.com/article/10.3390/diagnostics13061171/s1
https://www.mdpi.com/article/10.3390/diagnostics13061171/s1


Diagnostics 2023, 13, 1171 21 of 23

ALT Alanine Transaminase
APACHE Acute Physiology And Chronic Health Evaluation
aPTT Activated Partial Thromboplastin Time
AST Aspartate Transaminase
AUPRC Area Under The Precision Recall Curve
AUROC Area Under The Receiver Operating Characteristic Curve
BUN Blood Urea Nitrogen
CA Calcium
cCa2

+ Calcium Concentration
cCl– Chloride Concentration
cHCO3

– Bicarbonate Concentration
cK+ Potassium Concentration
CKD Chronic Kidney Disease
Cl– Chloride
cLac Lactate Concentration
cNa+ Sodium Concentration
CO2 Carbon Dioxide
CREAT Creatinine
ctCO2 Total Concentration Of Carbon Dioxide
DBP Diastolic Blood Pressure
EHR Electronic Health Record
EWS Early Warning Score
GB Gradient Boosting
GLOB Globulin
ICU Intensive Dare Unit
K+ Potassium
KNN K Nearest Neighbours
LSTM Long Short-Term Memory
MCH Mean Corpuscular Hemoglobin
MCHC Mean Corpuscular Hemoglobin Concentration
MCV Mean Corpuscular Volume
MEWS Modified Early Warning Score
MICU Medical Intensive Care Unit
Mono Monocyte
Na+ Sodium
NEWS National Early Warning Score
pCO2 Partial Pressure Of Carbon Dioxide
PHOS Phosphate
PLT Platelet
pO2 Partial Pressure Of Oxygen
PR Pulse Rate
PT Prothrombin Time
RBC Red Blood Cell
RF Random Forest
ROC Receiver Operating Characteristic
RR Respiratory Rate
SAPS Simplified Acute Physiology Score
SBE Standard Base Excess
SBP Systolic Blood Pressure
SHAP Shapley Additive Explanations
SIRS Systemic Inflammatory Response Syndrome
sO2 Oxygen Saturation
SpO2 Oxygen Saturation
SQL Structured Query Language
SVM Support Vector Machine
TCO2 Total Carbon Dioxide
TP Total Protein
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6. Kazda, A.; Jabor, A.; Zámečník, M.; Mašek, K. Monitoring Acid-Base and Electrolyte Disturbances in Intensive Care. In Advances

in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 1989; Volume 27, pp. 201–268. [CrossRef]
7. Adrogué, H.J.; Madias, N.E. Changes in plasma potassium concentration during acute acid–base disturbances. Am. J. Med. 1981,

71, 456–467. [CrossRef]
8. Charlton, P.H.; Pimentel, M.; Lokhandwala, S. Data Fusion Techniques for Early Warning of Clinical Deterioration. In Secondary

Analysis of Electronic Health Records; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 325–338. [CrossRef]
9. Subbe, C. Validation of a modified Early Warning Score in medical admissions. QJM 2001, 94, 521–526. [CrossRef]
10. Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A Severity of Disease Classification System. Crit. Care

Med. 1985, 13, 818–829. [CrossRef] [PubMed]
11. Moreno, R.P.; Metnitz, P.G.H.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall,

J.-R. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model
for hospital mortality at ICU admission. Intensive Care Med. 2005, 31, 1345–1355. [CrossRef] [PubMed]

12. Jones, M. NEWSDIG: The National Early Warning Score Development and Implementation Group. Clin. Med. 2012, 12, 501–503.
[CrossRef]

13. Cosgriff, C.V.; Celi, L.A.; Stone, D.J. Critical Care, Critical Data. Biomed. Eng. Comput. Biol. 2019, 10, 117959721985656. [CrossRef]
[PubMed]

14. Johnson, A.E.W.; Ghassemi, M.M.; Nemati, S.; Niehaus, K.E.; Clifton, D.; Clifford, G.D. Machine Learning and Decision Support
in Critical Care. Proc. IEEE 2016, 104, 444–466. [CrossRef] [PubMed]

15. Kam, H.J.; Kim, H.Y. Learning representations for the early detection of sepsis with deep neural networks. Comput. Biol. Med.
2017, 89, 248–255. [CrossRef] [PubMed]

16. Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine Learning Model for
Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [CrossRef] [PubMed]

17. Zhang, D.; Yin, C.; Hunold, K.M.; Jiang, X.; Caterino, J.M.; Zhang, P. An interpretable deep-learning model for early prediction of
sepsis in the emergency department. Patterns 2021, 2, 100196. [CrossRef] [PubMed]

18. Kwon, J.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am.
Heart Assoc. 2018, 7, e008678. [CrossRef] [PubMed]

19. Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al.
A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [CrossRef]
[PubMed]

20. Wanyan, T.; Honarvar, H.; Jaladanki, S.K.; Zang, C.; Naik, N.; Somani, S.; Freitas, J.K.D.; Paranjpe, I.; Vaid, A.; Zhang, J.; et al.
Contrastive learning improves critical event prediction in COVID-19 patients. Patterns 2021, 2, 100389. [CrossRef]

21. Lee, J.M.; Hauskrecht, M. Modeling multivariate clinical event time-series with recurrent temporal mechanisms. Artif. Intell. Med.
2021, 112, 102021. [CrossRef]

22. Kaji, D.A.; Zech, J.R.; Kim, J.S.; Cho, S.K.; Dangayach, N.S.; Costa, A.B.; Oermann, E.K. An attention based deep learning model
of clinical events in the intensive care unit. PLoS ONE 2019, 14, e0211057. [CrossRef]

23. Na Pattalung, T.; Chaichulee, S. Comparison of machine learning algorithms for mortality prediction in intensive care patients on
multi-center critical care databases. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1163, 012027. [CrossRef]

24. Na Pattalung, T.; Ingviya, T.; Chaichulee, S. Feature Explanations in Recurrent Neural Networks for Predicting Risk of Mortality
in Intensive Care Patients. J. Pers. Med. 2021, 11, 934. [CrossRef] [PubMed]

25. Chen, H.; Lundberg, S.M.; Erion, G.; Kim, J.H.; Lee, S.I. Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals. NPJ Digit. Med. 2021, 4, 167. [CrossRef] [PubMed]

26. Fan, Y.; Ye, T.; Huang, T.; Xiao, H. Machine learning-based construction of a clinical prediction model for hypercapnia during
one-lung ventilation for lung surgery. Res. Sq. 2022. [CrossRef]

27. Zhou, Z.; Huang, C.; Fu, P.; Huang, H.; Zhang, Q.; Wu, X.; Yu, Q.; Sun, Y. Prediction of in-hospital hypokalemia using machine
learning and first hospitalization day records in patients with traumatic brain injury. CNS Neurosci. Ther. 2022, 29, 181–191.
[CrossRef] [PubMed]

28. Kwak, G.H.; Chen, C.; Ling, L.; Ghosh, E.; Celi, L.A.; Hui, P. Predicting Hyperkalemia in the ICU and Evaluation of Generalizability
and Interpretability. arXiv 2021, arXiv:2101.06443.

http://doi.org/10.1016/S0140-6736(10)60446-1
http://www.ncbi.nlm.nih.gov/pubmed/20934212
http://dx.doi.org/10.1016/b978-0-12-416687-5.00037-3
http://dx.doi.org/10.1016/j.medine.2019.03.002
http://dx.doi.org/10.1186/s40635-022-00437-8
http://www.ncbi.nlm.nih.gov/pubmed/35377054
http://dx.doi.org/10.1016/j.semnephrol.2013.04.006
http://www.ncbi.nlm.nih.gov/pubmed/23953803
http://dx.doi.org/10.1016/s0065-2423(08)60184-5
http://dx.doi.org/10.1016/0002-9343(81)90182-0
http://dx.doi.org/10.1007/978-3-319-43742-2_22
http://dx.doi.org/10.1093/qjmed/94.10.521
http://dx.doi.org/10.1097/00003246-198510000-00009
http://www.ncbi.nlm.nih.gov/pubmed/3928249
http://dx.doi.org/10.1007/s00134-005-2763-5
http://www.ncbi.nlm.nih.gov/pubmed/16132892
http://dx.doi.org/10.7861/clinmedicine.12-6-501
http://dx.doi.org/10.1177/1179597219856564
http://www.ncbi.nlm.nih.gov/pubmed/31217702
http://dx.doi.org/10.1109/JPROC.2015.2501978
http://www.ncbi.nlm.nih.gov/pubmed/27765959
http://dx.doi.org/10.1016/j.compbiomed.2017.08.015
http://www.ncbi.nlm.nih.gov/pubmed/28843829
http://dx.doi.org/10.1097/CCM.0000000000002936
http://www.ncbi.nlm.nih.gov/pubmed/29286945
http://dx.doi.org/10.1016/j.patter.2020.100196
http://www.ncbi.nlm.nih.gov/pubmed/33659912
http://dx.doi.org/10.1161/JAHA.118.008678
http://www.ncbi.nlm.nih.gov/pubmed/29945914
http://dx.doi.org/10.1038/s41586-019-1390-1
http://www.ncbi.nlm.nih.gov/pubmed/31367026
http://dx.doi.org/10.1016/j.patter.2021.100389
http://dx.doi.org/10.1016/j.artmed.2021.102021
http://dx.doi.org/10.1371/journal.pone.0211057
http://dx.doi.org/10.1088/1757-899X/1163/1/012027
http://dx.doi.org/10.3390/jpm11090934
http://www.ncbi.nlm.nih.gov/pubmed/34575711
http://dx.doi.org/10.1038/s41746-021-00536-y
http://www.ncbi.nlm.nih.gov/pubmed/34880410
http://dx.doi.org/10.21203/rs.3.rs-2004210/v1
http://dx.doi.org/10.1111/cns.13993
http://www.ncbi.nlm.nih.gov/pubmed/36258296


Diagnostics 2023, 13, 1171 23 of 23

29. Cherif, A.; Maheshwari, V.; Fuertinger, D.; Schappacher-Tilp, G.; Preciado, P.; Bushinsky, D.; Thijssen, S.; Kotanko, P.; et al.
A mathematical model of the four cardinal acid–base disorders. Math. Biosci. Eng. 2020, 17, 4457–4476. [CrossRef] [PubMed]

30. Laserna, E.; Sibila, O.; Aguilar, P.R.; Mortensen, E.M.; Anzueto, A.; Blanquer, J.M.; Sanz, F.; Rello, J.; Marcos, P.J.; Velez,
M.I.; et al. Hypocapnia and Hypercapnia Are Predictors for ICU Admission and Mortality in Hospitalized Patients With
Community-Acquired Pneumonia. Chest 2012, 142, 1193–1199. [CrossRef]

31. Soar, J.; Perkins, G.D.; Abbas, G.; Alfonzo, A.; Barelli, A.; Bierens, J.J.; Brugger, H.; Deakin, C.D.; Dunning, J.; Georgiou, M.;
et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 8. Cardiac arrest in special circumstances:
Electrolyte abnormalities, poisoning, drowning, accidental hypothermia, hyperthermia, asthma, anaphylaxis, cardiac surgery,
trauma, pregnancy, electrocution. Resuscitation 2010, 81, 1400–1433. [CrossRef]

32. Berend, K.; de Vries, A.P.; Gans, R.O. Physiological Approach to Assessment of Acid–Base Disturbances. N. Engl. J. Med. 2014,
371, 1434–1445. [CrossRef]

33. Constable, P.D. Clinical Assessment of Acid-Base Status: Comparison of the Henderson-Hasselbalch and Strong Ion Approaches.
Vet. Clin. Pathol. 2000, 29, 115–128. [CrossRef]

34. Rawat, D.; Modi, P.; Sharma, S. Hypercapnea; StatPearls Publishing: St. Petersburg, FL, USA, 2022.
35. Gennari, F.J. Hypokalemia. N. Engl. J. Med. 1998, 339, 451–458. [CrossRef] [PubMed]
36. GALLA, J.H. Metabolic Alkalosis. J. Am. Soc. Nephrol. 2000, 11, 369–375. [CrossRef] [PubMed]
37. Plant, P.K. One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: Implications for the

provision of non-invasive ventilation and oxygen administration. Thorax 2000, 55, 550–554. [CrossRef]
38. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local

explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]
39. Johnson, A.; Bulgarelli, L.; Pollard, T.; Horng, S.; Celi, L.A.; Mark, R. MIMIC-IV. Phys. Net. 2022. [CrossRef]
40. Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The eICU Collaborative Research Database, a freely

available multi-center database for critical care research. Sci. Data 2018, 5, 180178. [CrossRef] [PubMed]
41. Cihan, P.; Ozger, Z.B. A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods.

Comput. Biol. Chem. 2022, 98, 107688. [CrossRef]
42. Desautels, T.; Calvert, J.; Hoffman, J.; Mao, Q.; Jay, M.; Fletcher, G.; Barton, C.; Chettipally, U.; Kerem, Y.; Das, R. Using Transfer

Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting. Biomed. Inform. Insights 2017, 9, 117822261771299.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3934/mbe.2020246
http://www.ncbi.nlm.nih.gov/pubmed/33120513
http://dx.doi.org/10.1378/chest.12-0576
http://dx.doi.org/10.1016/j.resuscitation.2010.08.015
http://dx.doi.org/10.1056/NEJMra1003327
http://dx.doi.org/10.1111/j.1939-165X.2000.tb00241.x
http://dx.doi.org/10.1056/NEJM199808133390707
http://www.ncbi.nlm.nih.gov/pubmed/9700180
http://dx.doi.org/10.1681/ASN.V112369
http://www.ncbi.nlm.nih.gov/pubmed/10665945
http://dx.doi.org/10.1136/thorax.55.7.550
http://dx.doi.org/10.1038/s42256-019-0138-9
http://dx.doi.org/10.13026/RRGF-XW32
http://dx.doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/pubmed/30204154
http://dx.doi.org/10.1016/j.compbiolchem.2022.107688
http://dx.doi.org/10.1177/1178222617712994
http://www.ncbi.nlm.nih.gov/pubmed/28638239

	Introduction
	Materials and Methods
	Dataset
	Clinical Variables
	Clinical Conditions
	Mortality
	Hypocapnia and Hypercapnia
	Hypokalemia and Hyperkalemia
	Metabolic Acidosis and Metabolic Alkalosis
	Respiratory Acidosis and Respiratory Alkalosis
	Annotation of Clinical Conditions

	Data Preparation
	Machine Learning Models
	K Nearest Neighbours
	Random Forests
	Support Vector Machine
	Gradient Boosting

	Evaluation Metrics

	Results
	Discussion
	Comparison to Other Studies
	Calibration Curves
	Feature Importance
	Feature Explanations
	Limitations
	Future Work

	Conclusions
	References

