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Abstract: Positron emission tomography and computed tomography with 18F-fluorodeoxyglucose
(18F-FDG PET-CT) were used to predict outcomes after liver transplantation in patients with hep-
atocellular carcinoma (HCC). However, few approaches for prediction based on 18F-FDG PET-CT
images that leverage automatic liver segmentation and deep learning were proposed. This study
evaluated the performance of deep learning from 18F-FDG PET-CT images to predict overall survival
in HCC patients before liver transplantation (LT). We retrospectively included 304 patients with HCC
who underwent 18F-FDG PET/CT before LT between January 2010 and December 2016. The hepatic
areas of 273 of the patients were segmented by software, while the other 31 were delineated manually.
We analyzed the predictive value of the deep learning model from both FDG PET/CT images and
CT images alone. The results of the developed prognostic model were obtained by combining FDG
PET-CT images and combining FDG CT images (0.807 AUC vs. 0.743 AUC). The model based on
FDG PET-CT images achieved somewhat better sensitivity than the model based on CT images alone
(0.571 SEN vs. 0.432 SEN). Automatic liver segmentation from 18F-FDG PET-CT images is feasible
and can be utilized to train deep-learning models. The proposed predictive tool can effectively
determine prognosis (i.e., overall survival) and, thereby, select an optimal candidate of LT for patients
with HCC.

Keywords: 18F-fluorodeoxyglucose (18F-FDG); positron emission tomography and computed
tomography (PET-CT); hepatocellular carcinoma (HCC); liver transplantation (LT); deep learning

1. Introduction

Hepatocellular carcinoma (HCC) is a prevalent malignancy worldwide [1,2]. Liver
cancer is Taiwan’s second-leading cause of cancer death [3]. Although surgical treatment
results in the best long-term survival, most patients with HCC are not eligible due to either
an underlying liver dysfunction or the extent of the tumor. Liver transplantation (LT) is a

Diagnostics 2023, 13, 981. https://doi.org/10.3390/diagnostics13050981 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13050981
https://doi.org/10.3390/diagnostics13050981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6368-3676
https://doi.org/10.3390/diagnostics13050981
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13050981?type=check_update&version=2


Diagnostics 2023, 13, 981 2 of 13

curative treatment for patients with hepatocellular carcinoma (HCC) [4–7]. LT is the only
treatment that offers the possibility of eliminating the tumor and the underlying cirrhosis
through the complete extirpation of both. LT outcomes for early HCC are somewhat encour-
aging; however, because of the limited supply of organs for transplantation, appropriate
candidates must be selected to ensure successful results. In Asia, living donor LT (LDLT)
has emerged as the leading solution to organ shortage when treating HCC.

All patients being considered for transplantation should undergo an evaluation for
extra-hepatic malignancies. The imaging modalities include computed tomography (CT)
of the chest or magnetic resonance imaging (MRI) of the abdomen and pelvis [8]. A
bone scan was previously required, but this was changed in December 2012. Positron
emission tomography using 18F-fluorodeoxyglucose (18F-FDG-PET) is a noninvasive
functional technique that, in recent times, became standard in oncology [9–11]. Biologically,
tumor 18F-FDG avidity by positron emission tomography (PET) can be a quantitative
surrogate for tumor glucose metabolism, which is associated with tumor aggressiveness
(e.g., tumor size or the presence of microvascular invasion) [12,13]. Additionally, 18F-
FDG-PET was reported to be effective in identifying extra-hepatic metastases and ruling
out recurrent HCC [14–17]. Some studies also determined that 18F-FDG-PET is a potent
predictor of treatment outcomes in patients with HCC after undergoing hepatectomy, LT,
radiofrequency ablation, and transarterial chemoembolization [10,11,18–22]. Hou et.al.
recently proposed an integrative histology-genomic analysis to predict overall survival in
hepatocellular carcinoma patients using deep learning [23,24]. Other established predictors
for HCC recurrence include various biological markers related to tumor aggressiveness,
such as tumor size, number, grade, stage, and microvascular invasion (mVI), as reported
in several studies [25–27]. Therefore, evaluating the risk of HCC recurrence using these
pretransplant biological markers is essential.

Thus, we hypothesized that findings from 18F-FDG-PET can be used to predict the
long-term outcomes of LT for cancer therapy among patients with HCC. It is well known
that the disease stage is closely related to prognosis in cancer patients. Resectable pa-
tients with early HCC are increasingly being considered for transplantation because of
the potential for better disease-free survival, though this approach is limited by organ
availability. Expanded transplantation criteria and downstaging to achieve transplant eligi-
bility are now widely accepted. Pretransplant evaluation is essential because it helps the
transplant team better understand the transplant candidacy. The decision to list a patient
for transplantation is a risk-benefit analysis in which the inherent risks of surgery, recurrent
disease, and long-term immunosuppression must be weighed against the potential benefits
of transplantation. Early HCC recurrence portends the worst prognosis [28–31]. Patients
with HCC recurrence within two years after liver transplantation had the highest mortality
risk [32]. According to a systematic review that included 1021 cases of post-transplant HCC
recurrence, the median post-recurrence survival was 13 months (0.1–112.5 months) [33].
Therefore, accurate estimates of recurrent disease and survival are of significant importance
for patients and oncologists making personalized and patient-centered decisions in the era
of precision medicine.

Medical imaging has developed rapidly, and radiomics has attracted increased at-
tention with increases in the scale of data. Radiomic approaches utilize high-throughput
calculations to extract patterns and quantitative features from standard medical images,
such as tomographic images (i.e., computed tomography [CT], magnetic resonance imaging,
and PET) that can be used for diagnosis, prognosis, and predicting treatment response.
It involves using advanced algorithms and machine learning techniques to analyze the
images and extract quantitative data. This data can then be used to classify tumors, predict
survival rates, and identify patients who are more likely to respond to specific treatments.
Radiomics has the potential to revolutionize the way that medical images are used in
healthcare and could lead to more personalized and accurate diagnoses and treatments. In
addition, radiomics is commonly used in oncology. Quantitative analyses of image inten-
sity, texture, or shape minimize the subjectivity involved in image interpretation [34–36].
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Additionally, artificial intelligence (AI) has yielded remarkable results in medical image
diagnosis. Several state-of-the-art AI models, such as Visual Geometry Group and ResNet,
are widely used in nuclear medical imaging [37].

Our present study included patients diagnosed with HCC who received LT. Given the
diversity of HCC sizes, shapes, and locations, using the 18F-FDG-PET or CT solely is quite
limiting. The database that we used included 18F-FDG-PET-CT images of these patients.
We introduced automatic liver segmentation from the CT component of 18F-FDG-PET-CT
images and then used the subsequent input to train a three-dimensional (3D) deep residual
convolutional neural network that predicted the patient’s overall survival and intra-hepatic
recurrence. We evaluated the model’s performance using 18F-FDG-PET-CT images.

In this study, we introduce the methods of extracting the images for data input
(i.e., automatically extracting the hepatic areas), followed by the development of the
deep learning model using both the PET/CT and CT images. Then, we evaluate the
predictive performance of the proposed model. Finally, the possible applications and
clinical significance are addressed.

2. Materials and Methods
2.1. Data Source

A total of 273 patients with hepatocellular carcinoma who had undergone an FDG-PET-
CT scan followed by living donor LT at any time between January 2010 and December 2016
at China Medical University Hospital were enrolled in our retrospective study. This study
was approved by the Institutional Review Board of our hospital (DMR99-IRB-010-[CR-13]).

2.2. Study Participants

The study retrospectively analyzed 273 images of patients diagnosed with hepatocel-
lular carcinoma (HCC) who underwent 18F-FDG-PET-CT scans before undergoing liver
transplantation at China Medical University Hospital between 2010 and 2016 (Table 1).
The patients were instructed to fast for at least four hours before the scans, which were
performed using a PET-CT scanner (Discovery STE, GE Medical Systems). Whole-body
images were acquired approximately 45 min after the intravenous injection of 370 MBq of
FDG, and delayed images were obtained about 70 min after the injection. Only the delayed
images were used for further analysis [38–40], including automatic liver segmentation and
input into deep-learning models. The images were reconstructed onto a 512 × 512 matrix
with a section thickness of 3.75 mm and converted into 511-keV equivalent attenuation
factors for attenuation correction. The maximum SUV max of hepatic tumors was measured
for both early and delayed images (Figure A1).

Table 1. Patient Characteristics.

Total

n = 273

Age (years, mean ± SD) 55.773 ± 8.138
Gender

Male 212 (77.7)
Female 61 (22.3)

BCLC Classification
0 1 (0.4)
A 119 (43.6)
B 89 (32.6)
C 40 (14.7)
D 24 (8.8)

Milan criteria
within 127 (46.5)
beyond 146 (53.5)
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Table 1. Cont.

Total

n = 273

UCSF criteria
within 147 (53.8)
beyond 126 (46.2)

CLIP Score
0 61 (22.3)
1 105 (38.5)
2 48 (17.6)
3 37 (13.6)
4 17 (6.2)

>4 5 (1.8)

Child–Pugh Classification
Stage A 167 (61.2)
Stage B 81 (29.7)
Stage C 25 (9.2)

Okuda staging system
I 162 (59.3)
II 91 (33.3)
III 20 (7.3)

MELD Score
<10 134 (49.1)

10–19 96 (35.2)
20–29 35 (12.8)
30–39 6 (2.2)
>39 2 (0.7)

Pretransplant AFP, ng/mL
<20 139 (50.9)

20–200 74 (27.1)
>200 60 (22.0)

BCLC: Barcelona Clinic Liver Cancer; UCSF: University of California San Francisco; CLIP: Cancer of the Liver Ital-
ian Program; MELD: Median model for end-stage liver disease; AFP: alpha-fetoprotein; SD: standard deviation.

2.3. Image Preprocessing

The 18F-FDG-PET-CT images were preprocessed before the ResNet-18 models were
constructed. The process was roughly divided into the following steps.

In this study, we utilized the CT imaging technique to define the chest region of
each patient. The CT images were viewed using the mediastinal window setting, with a
window level of 40 and a window width of 400. This allowed for clear visualization of the
mediastinal structures and facilitated the accurate identification of the chest region.

Automatic liver segmentation from 18F-FDG-PET-CT images is a highly crucial step
in image preprocessing. To segment the hepatic areas, we leveraged semiautomated
organ-contouring software to delineate the contour of the liver on the Digital Imaging and
Communications in Medicine (DICOM) images. The tool is usually used in routine clinical
radiotherapy planning to help radiologists confirm the location of cancer at which the
radiation is aimed. We omitted the data outside the hepatic areas during model training
and only adopted the CT and PET information within the liver areas (Figure A2).

In terms of data, the original size of the CT data was 512 × 512 pixels. The number
of images and PET data points was 128 × 128 the number of images. The CT slices
were symmetrically resized to a size of 128× 128 pixels before model training, the same
width as the PET images. We employed an image cropping technique in this study to
obtain a standardized region of interest (VOI) from the marked CT images. The center
point of the marked photos was determined as the starting point, and the part was then
extended symmetrically in both left and right directions until the total area of the ROI was
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64 × 64 pixels. This approach ensured that the ROI captured the relevant structures while
maintaining a consistent size across all images. We then extended above and below the
starting point until the thickness reached 96 image slices (the “solid rectangular extent of
pixels”). Therefore, the maximum width of the grabbing range of the liver did not exceed
64 pixels and the height did not exceed 96 slices of images.

2.4. Deep Learning Model

We used the ResNet-18 3D model with a relatively small number of layers. Prior
to model training, the CT and PET 3D images were cropped to 3D images of a size of
64 × 64 × 96 pixels (Figure A3). Because the image size was small, a low-parameter model
could be used for training. In our proposed CT and PET image input process, two ResNet-18
models were combined by adding a connecting layer, which incorporated an independent
dense layer at each end of the two models. The CT and PET models had their own
independent convolution parameters. Additionally, only CT and PET images were used
as data input in training. We compared the differences in training results between the
two models.

2.5. Statistics and Assessment Methods

Statistical analyses were performed using SPSS version 26 (SPSS, NY, USA). The data
were expressed in frequency (n), percentage (%), and mean ± standard deviation for nor-
mally distributed continuous variables. Categorical variables were compared using the χ2

test or Fisher’s exact test. We used Student’s t-test to compare continuous variables between
groups, as appropriate. Logistic regression was used to identify significant variables for
each group. Significance was indicated if p < 0.05 in a two-sided test.

Various metrics were used to evaluate the classification model’s performance on the test
data. These validation metrics included accuracy (Equation (1)), sensitivity (Equation (2)),
specificity (Equation (3)), and the area under the receiver operating characteristic curve.
In a binary classification problem, predictions can be classified as true positive (TP), true
negative (TN), false positive (FP), or false negative (FN). For the prediction of alive status
at one year after LT, a TP meant that a patient who was predicted to die within one year
died within one year after LT. FP meant that a patient who was predicted to die within one
year survived for more than one year. TN meant that a patient who was predicted to die
within one year died within one year. Finally, FN meant that a patient who was predicted
to die within one year died within one year.

Accuracy =
TP + TN

(TP + FP + TN + FN)
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

FP + TN
(3)

3. Results

Our study used two types of data as input (i.e., FDG-PET/CT and CT images alone) to
train deep learning algorithms that classified liver recipients who died within or survived
for more than one year after LT.

To investigate prediction performance, a survival analysis was performed (Figure 1).
We evaluated the model performance for two groups of images. First, the model that
processed both FDG-PET and CT images had a relatively better sensitivity (0.571 vs. 0.432
SEN) than the one that only processed CT images.

We defined SEN as the number of patients who were correctly predicted to die within
one year divided by the total number of patients that died within one year; thus, sensitivity
was an indicator of reliability. The prediction performances of the proposed models are
detailed in the tables in the Appendix A.
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All the images in the training data set underwent automatic hepatic segmentation
using the aforementioned semiautomated-organ-contouring software. Of these, 37 patients
(14%) died within one year after LT, and the other 236 patients (86%) survived for more than
one year. However, the validation cohort comprised images that could not be segmented
by software successfully; thus, manual delineation was conducted instead.

4. Discussion

Several studies demonstrated that 18F FDG PET-CT can predict outcomes in HCC
patients after surgical resection. In addition, much research has demonstrated the use-
fulness of machine learning in the evaluation of post-therapeutic prognosis in patients
with HCC [20,41–54]. However, no article took advantage of deep learning from 18F
FDG PET-CT images to evaluate outcomes of HCC patients undergoing living donor
liver transplantation.

The uptake of F-18 fluorodeoxyglucose (FDG) in hepatocellular carcinoma (HCC)
is related to tumor biology and can serve as a predictor of tumor recurrence after liver
transplantation (LT). Studies showed that positive FDG uptake significantly predicted
worse recurrence-free survival (RFS) in patients with HCC who had undergone LT. For
example, Hsu et al. [55] reported that the 3-year RFS of FDG-negative patients was sig-
nificantly better than that of FDG-positive patients (93% vs. 35%). Similarly, Yang et al.
found that the 2-year RFS of FDG-negative patients was considerably better than that of
FDG-positive patients (85.1% vs. 46.1%). Additionally, FDG-positive status was found to
be an independent predictor of early HCC recurrence (within six months) in a study by
Lee et al. [56], which analyzed 191 patients who underwent FDG-PET scans and subsequent
living donor liver transplantation (LDLT) for HCC. Furthermore, Hsu et al. demonstrated
that the degree of FDG uptake was associated with HCC recurrence and contributed to
the risk of HCC recurrence after LDLT. Therefore, it can be concluded that FDG-PET can
predict HCC recurrence after living donor liver transplantation.
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Researchers offered benchmarks for classifying area under the curve (AUC) results,
suggesting that the values ≥0.9, ≥0.80, ≥0.70, ≥0.60, and <0.60 indicate excellent, good,
fair, poor, and unacceptable predictive performance, respectively. However, these are likely
to be appropriate for engineering and some applications in biomedicine but less so for
mental health diagnoses [57–59]. Our deep learning models gave fair to good results with
respect to the AUC values. Please refer to Figure A4 in the Appendix A for details of
the ROC.

Deep learning technology has changed rapidly. For example, computing resources are
becoming more advanced, and data sets more extensive. Neural networks have typically
been applied to two-dimensional data; however, our study proposed a 3D neural network
model, where the liver’s FDG-PET/CT data were directly input into the model for training.
Overfitting is a problem in deep learning that becomes more serious with the more superim-
posed neural network layers there are. Therefore, various architectures must be developed
to determine the best solution. At times, the use of a small number of layers can yield
superior predictive accuracy. Therefore, we selected the shallower ResNet-18, professional
computing server DGX-2, for our study. The difficulty in applying deep learning lies in
quantifying a real-world problem and making it amenable to being solved by machine
learning. Undoubtedly, deep learning will be more widely used in the future.

The shortage of donor organs is a challenging global problem. Thus, organ shortage
is becoming an increasing problem worldwide, limiting the applicability of liver trans-
plantation. Organ shortage may deprive many patients of a new and better quality of life
and may cause a substantial increase in the cost of alternative medical care. In addition,
potential recipients are becoming more ill, thereby increasing the risk of losing the graft
during transplantation or in the initial postoperative period after liver transplantation.
Thus, selecting the most appropriate candidates, that is, who is likely to survive longer after
transplantation, is of great importance currently. Unnecessary surgical treatment, including
liver resection and liver transplantation, can result in potential morbidity and mortality.
However, in current clinical practice, few prediction tools can be confidently used in HCC
patients. In the present study, we developed a deep-learning algorithm with a view to
predicting survival outcomes in HCC patients following liver transplantation. It is exciting
that the performance of the proposed deep-learning model was satisfactory. By using this
versatile automatic technique, surgeons and patients can gain a general understanding of
the outcomes before considering liver transplantation as the primary therapeutic option.
Primary care physicians can fulfill the “do no harm” principle in medicine and benefit the
patients most.

In the future, we hope to develop a deep-learning prognostic model combining base-
line clinical characteristics and FDG PET/CT. The baseline clinical parameters may include
the initial staging of HCC by various staging systems and biological markers such as alpha-
fetal protein level. Serum alpha-fetoprotein (AFP) level is associated with clinical outcomes
in patients with HCC undergoing LDLT [60]. AFP is an attractive prognostic maker that
has been studied extensively in HCC. AFP may be a surrogate for vascular invasion and
a predictor of HCC recurrence. Numerous studies demonstrated the predictive utility of
pretransplant AFP level, although no validated threshold that can be applied across patient
groups is available. Takada et al. [61] proposed new selection criteria for living donor liver
transplantation based on the Milan criteria: AFP < 115 ng/mL and [18F] FDG-PET avidity.
In addition to tumor size, AFP is a surrogate marker for tumor microvascular invasion;
such invasion is also a known predictor of poor outcomes [62]. We hope to use data on the
AFP level to train the deep learning models because adding such data may increase the
prediction performance.

The limitations of this study were as follows. First, the method employed herein was
to train the network on those cases in which the automatic segmentation method could be
employed and test this network on the cases in which the automatic segmentation did not
work, and segmentation had to be performed manually. This introduced potential bias into
the results. In our future research, we hope to randomly split a population of subjects into
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training and test populations when using artificial neural networks. Second, this study
had a limited number of participants, and an extensive multicenter study with external
validation is required for further verification of the results.

The significant findings of our study were as follows. First, deep learning can be used
to predict the outcomes of patients with HCC following liver transplantation from FDG-
PET-CT images. Second, the hepatic area can be automatically segmented with software for
most cases. The segmented hepatic images can effectively serve as input for deep learning
analysis. Most hepatic images could be extracted automatically through software in the
absence of any manual delineation. Third, combining both FDG-PET and CT modalities as
data input gave moderately better one-year survival outcome prediction results than the
model derived solely from the CT images. Although our study only comprised 306 patients,
the AI algorithm generally produced accurate and reliable results.

Better survival outcomes in patients with HCC are attributed to excellent surgical
results and optimal patient selection. By using deep learning-based models, the present
study attempted to predict the outcome improvement before the patient received LT and
facilitated the selection of optimal candidates. The database included FDG-PET-CT images
of the liver, and by analyzing them with the proposed deep learning algorithm, we hope
our robust tool will help to predict outcomes in patients with HCC before LT. Moreover, an
online platform based on this versatile predictive tool can be established to provide better
medical planning and optimize decision-making for medical physicians and patients.

5. Conclusions

Our retrospective study indicated that an automated 3D ResNet-18 convolutional
neural network with FDG-PET-CT has promise for predicting clinical outcomes in patients
with HCC undergoing LDLT. A significant strength of the proposed deep learning algorithm
is that it can automatically segment the hepatic area from the CT component of FDG-PET-CT
without any time-consuming manual delineation. Furthermore, the predictive performance
was quite satisfactory when FDG-PET and CT images served as input data for the ResNet-
18 model. However, in this study, a relatively small sample size was used, which may
have limited the generalizability of our findings. Therefore, it is essential to note that our
results should be interpreted with caution and validated in larger, multicenter studies. This
will help establish our findings’ external validity and ensure that they can be applied to a
broader population. Moreover, this will increase the study’s statistical power, allowing for
more robust conclusions.
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Table A1. Comparison of prediction performances between the proposed models.

Methods Training Set Multiple Endpoints

Fold AUC TP TN FP FN Specificity Sensitivity Accuracy

PET + CT

Fold 1 0.817 45 5 2 3 0.93750 0.71429 0.90909
Fold 2 0.707 42 4 4 5 0.89362 0.50000 0.83636
Fold 3 0.851 45 4 4 2 0.95745 0.50000 0.89091
Fold 4 0.915 42 5 2 5 0.89362 0.71429 0.87037
Fold 5 0.657 40 3 4 7 0.85106 0.42857 0.79630
mean 0.789 214 21 16 22 0.90665 0.57143 0.86061

CT

Fold 1 0.783 44 4 3 4 0.91667 0.57143 0.87273
Fold 2 0.702 43 3 5 4 0.91489 0.37500 0.83636
Fold 3 0.840 46 4 4 1 0.97872 0.50000 0.90909
Fold 4 0.830 45 4 3 2 0.95745 0.57143 0.90741
Fold 5 0.561 44 1 6 3 0.93617 0.14286 0.83333
mean 0.743 222 16 21 14 0.94078 0.43214 0.87179
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