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Abstract: Lewis blood group status is determined by two fucosyltransferase activities: those of
FUT2-encoded fucosyltransferase (Se enzyme) and FUT3-encoded fucosyltransferase (Le enzyme). In
Japanese populations, c.385A>T in FUT2 and a fusion gene between FUT2 and its pseudogene SEC1P
are the cause of most Se enzyme-deficient alleles (Sew and sefus), and c.59T>G and c.314C>T in FUT3
are tag SNPs for almost all nonfunctional FUT3 alleles (le59, le59,508, le59,1067, and le202,314). In this
study, we first conducted a single-probe fluorescence melting curve analysis (FMCA) to determine
c.385A>T and sefus using a pair of primers that collectively amplify FUT2, sefus, and SEC1P. Then, to
estimate Lewis blood group status, a triplex FMCA was performed with a c.385A>T and sefus assay
system by adding primers and probes to detect c.59T>G and c.314C>T in FUT3. We also validated
these methods by analyzing the genotypes of 96 selected Japanese people whose FUT2 and FUT3
genotypes were already determined. The single-probe FMCA was able to identify six genotype
combinations: 385A/A, 385T/T, sefus/sefus, 385A/T, 385A/sefus, and 385T/sefus. In addition, the
triplex FMCA successfully identified both FUT2 and FUT3 genotypes, although the resolutions of
the analysis of c.385A>T and sefus were somewhat reduced compared to that of the analysis of FUT2
alone. The estimation of the secretor status and Lewis blood group status using the form of FMCA
used in this study may be useful for large-scale association studies in Japanese populations.

Keywords: fluorescence melting curve analysis; fusion gene; FUT2; FUT3; Lewis blood group status;
secretor status

1. Introduction

The expression of Lewis blood group antigens, Lewis a (Lea) and Lewis b (Leb), is
determined by the activity of FUT2-encoded fucosyltransferase (Se enzyme) and FUT3-
encoded fucosyltransferase (Le enzyme) [1–3]. Secretors with at least one functional
FUT2 allele (Se) express soluble ABH(O) antigens in saliva and other secretions, while
non-secretors, homozygotes for the nonfunctional FUT2 (non-secretor) alleles (se), do
not [3]. Weak secretors are homozygous for the weak-secretor allele (Sew) or compound
heterozygous for Sew/se and are characterized by very low ABH antigen expression in
secretions compared to secretors. This is because the activity of the Se enzyme encoded by
Sew is very low but detectable due to a single nucleotide polymorphism (SNP), c.385A>T
(p.Ile129Phe, rs1047781) [4,5]. In addition, Lewis-positive individuals with at least one
functional FUT3 allele (Le) have Le(a-b+) red cells in their secretors, Le(a+b-) in their
non-secretors, and Le(a+b+) in their weak secretors. On the other hand, Lewis-negative
individuals, homozygotes for the nonfunctional FUT3 alleles (le), all have Le(a-b-) red
cells [3]. Evidence is accumulating that secretor status and/or Lewis blood group status
affects the susceptibility to a variety of clinical conditions, including some infectious
diseases, inflammatory bowel disease, and plasma vitamin B12 levels [6–15].
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To date, five se alleles resulting from non-allelic homologous recombination and sev-
eral population-specific SNPs in FUT2 and FUT3 have been identified [16–19]. Among
these, sefus, which results from an unequal crossover between FUT2 and its pseudogene
SEC1P (Figure 1A), is present almost exclusively in Japanese populations with a frequency
of 5–9% [5,19]. SEC1P has high sequence similarity to FUT2 and is located near FUT2
on chromosome 19q13.3 [20,21]. In addition, the causal SNP for Sew, c.385A>T, is re-
stricted to East and Southeast Asians, including Japanese people, with a frequency of about
50% [5,16,22,23]. Furthermore, three tag SNPs, c.59T>G (p.Leu20Arg, rs28362459), c.314C>T
(p.Thr105Met, rs778986), and c.484A>G (p.Trp68Arg, rs28362463) in FUT3, were suggested
to be useful for estimating le allele frequency in many populations [24]. In Japanese popula-
tions, since Se enzyme-deficient alleles other than Sew and sefus are quite rare and c.59T>G
and c.314C>T are tag SNPs for almost all le alleles (le59, le59,508, le59,1067, and le202,314), de-
termining these polymorphisms could provide an accurate estimate of secretor status and
Lewis blood group status.
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positions of the primers and probe anneal are indicated by black arrows, and the probe is indicated, 

in black combined with a fluorophore labeled at the 5′ end and a quencher labeled at the 3′ end. 

Nucleotides that differ from the sequence of the probe are indicated by red letters. Alignment of 
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SEC1P, are indicated (B). Forward primer and reverse primer sequences are shown in bold. The 

Figure 1. Genomic structure of FUT2, SEC1P, and sefus, and primer and probe positions used (A).
The protein coding region of FUT2 (FUT2-385A and FUT2-385T) is indicated by a blue box, that of
SECIP is indicated by a green box, and that of sefus is indicated by green and blue boxes. The relative
positions of the primers and probe anneal are indicated by black arrows, and the probe is indicated,
in black combined with a fluorophore labeled at the 5′ end and a quencher labeled at the 3′ end.
Nucleotides that differ from the sequence of the probe are indicated by red letters. Alignment of
DNA sequences of amplified regions in FMCA; DNA sequences of FUT2 (FUT2-385A: allele of A
at rs1047781; FUT2-385T: allele of T at rs1047781; FUSION: sefus allele) and corresponding regions
of SEC1P, are indicated (B). Forward primer and reverse primer sequences are shown in bold. The
probe sequence is indicated by orange boxes and nucleotides that differ from the sequence of probe
are uncolored.

Fluorescence melting curve analysis (FMCA) is a simple, robust, and rapid closed-tube
post-PCR method for detecting SNPs that analyzes the difference between the melting
curve profiles of the fluorescence-labeled probe and PCR amplicon [25,26]. In addition,
multiplex assays can be performed by using different fluorescent dyes [24,26]. Recently,
we developed a triplex FMCA procedure for the genotyping of three tag SNPs, c.59T>G,
c.314C>T, and c.484A>G, in FUT3 to estimate le allele frequency [24].

In this study, we performed a FMCA that simultaneously determined the frequency of
c.385A>T and sefus using a single probe. A triplex FMCA was then performed to estimate
Lewis blood group status in Japanese people, adding primers and probes to detect c.59T>G
and c.314C>T of FUT3 to c.385A>T and sefus assay system.
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2. Materials and Methods
2.1. DNA Samples

The genomic DNAs of 96 Japanese people from Fukuoka whose FUT2 haplotypes
had been determined previously using established methods such as the allele specific PCR
and/or DNA sequencing [5] were used in this study. The study protocol was reviewed and
approved by the ethical committee of Kurume University (approval no. 22158).

2.2. Asymmetric PCR for c.385A>T and sefus of FUT2

The nucleotide positions of the FUT2 and SEC1P genes were numbered as described
previously [21]. All primers and probes were synthesized by Eurofins Genomics K.K
(Tokyo, Japan). As shown in Figure 1A, we used a pair of primers that collectively am-
plify FUT2, sefus, and SEC1P. The forward primer, 5′-TGGCAGAACTACCACCTGAA-3′,
matches exactly 337–356 bp of FUT2 and 379–398 bp of SEC1P, and is the same primer
that previously detected c.385A>T by an unlabeled probe HRM analysis [27]. The reverse
primer, 5′-AGGTCCAGGAGCAGGGGTAG-3′, matches exactly the reverse sequences of
414–433 bp of FUT2 and of 456–475 bp of SEC1P, and is the same primer that previously
detected sefus by a TaqMan probe assay and HRM analysis [19,28]. The SEC1P-FUT2 probe,
HEX-5′-GGAGGAGTACCGCCACATCCCGGGG-3′-black hole quencher 1, matches exactly
411–435 bp of SEC1P, and 369–393 bp of FUT2, but differs by one base from the wild-type
(385A allele) and sefus, and differs by two bases from the 385T allele. The asymmetric PCR
reaction mixture with a final volume of 10 µL contained 5 µL of TaKaRa Taq HS Perfect
Mix containing modified Taq DNA polymerase, which has neither 5′-3′ exonuclease nor
3′-5′ exonuclease activities (Takara, Tokyo, Japan), 50 nM of the forward primer, 500 nM of
the reverse primer, 200 nM of the SEC1P-FUT2 probe, and 2–20 ng of genomic DNA. The
PCR was conducted on LightCycler 480 Instrument II (Roche Diagnostics, Tokyo, Japan)
with the following thermal conditions: 45 cycles of denaturation at 95 ◦C for 5 s, and
annealing/extension at 60 ◦C for 15 s.

2.3. Triplex PCR for c.385A>T and sefus of FUT2, c.59T>G and c.314C>T of FUT3

Recently, we conducted a triplex FMCA for the genotyping of three tag SNPs, c.59T>G,
c.314C>T, and c.484A>G, in FUT3 to estimate le allele frequency [24]. However, c.484A>G is
highly specific to African populations and has not yet been observed in Asian populations,
including Japanese populations. Therefore, in this study, previously reported primers and
probes were added to the c.385A>T and sefus of the FUT2 assay system to detect c.59T>G
and c.314C>T, excluding c.484A>G. However, since a HEX-labeled probe was used to
detectc.385A>T and sefus, a FAM-labeled probe was used instead of a HEX-labeled probe
to detect c.59T>G in this study. The primer and probe concentrations for c.59T>G and
c.314C>T were as follows: 50 nM of each forward primer, 250 nM of each reverse primer,
50 nM of a probe for c.59T>G, and 100 nM of a probe for c.314C>T. The primer and probe
concentrations for c.385A>T and sefus and the thermal conditions of the asymmetric PCR
were the same as described above.

2.4. FMCA for Detection of c.385A>T and sefus of FUT2, c.59T>G and c.314C>T of FUT3

The PCR products were then heated to 95 ◦C for 1 min and cooled to 40 ◦C for 1 min,
and fluorescence data were acquired using the VIC/HEX/Yellow 555 filter (excitation–
emission: 533–580 nm) and/or the FAM filter (465–510 nm) and/or the Cy5/Cy5.5 filter
(618–660 nm) during heating from 50 to 80 ◦C at a 0.1 ◦C/s ramp rate. Melting curve
genotyping and melting temperature (Tm) analyses were carried out using the LightCycler
480 gene scanning software.
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3. Results

3.1. FMCA for Detection of c.385A>T and sefus of FUT2

In this study, we first attempted to detect c.385A>T and sefus with a single probe using
a primer set that collectively amplified 97 bp amplicons of FUT2, sefus, and SEC1P. As
shown in Figures 1B and 2A, the highest Tm value around 73 ◦C was observed for the
SEC1P amplicon because the probe sequence exactly matches that of SEC1P. On the other
hand, an intermediate Tm value around 68 ◦C was observed for the 385A allele amplicon
because the probe sequence differed by one base, and the lowest Tm value around 62 ◦C
was observed for the 385T allele amplicon because the probe sequence differed by two
bases. In addition, in sefus, the nucleotides corresponding to the positions of 375 bp and
385 bp in FUT2 (or 419 bp and 429 bp in SEC1P) were both “A”, and therefore, the Tm
value for the sefus amplicon was the same (around 68 ◦C) as that for the 385A amplicon
(Figure 1A,B).
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Figure 2. Melting peak profiles of FMCA for detection of c.385A>T and sefus. Six Japanese (A) and
96 Japanese subjects (B) whose FUT2 genotypes were already determined were selected. The subjects
with genotypes 385A/A (red), 385T/T (green), sefus/sefus (gray), 385A/T (blue), 385A/sefus (pink),
and 385T/sefus (yellow) were clearly identified. The negative control is shown in light blue.

A chromosome with the 385A or 385T allele had two regions (413–437 bp of SEC1P
and 369–393 bp of FUT2) that hybridized with the probe (Figure 1A,B). On the other hand,
a chromosome with the sefus allele had only one region that hybridized with the probe
because sefus had been generated by an unequal crossover between the 253 and 416 bp
positions of SEC1P and between the 211 and 374 bp positions of FUT2, and the position of
385 bp of FUT2 is located immediately at the 3′ region of the recombination sequence [19].

We then analyzed 96 Japanese people whose FUT2 haplotypes had already been
determined by allele-specific PCR and/or DNA sequencing [5]. Homozygotes of sefus

(sefus/sefus) showing only one melting peak at around 68 ◦C, and homozygotes of 385T
allele (385T/T) showing two melting peaks at around 73 ◦C and 62 ◦C were completely
separated by the default settings of the LightCycler 480 gene scanning software (normal
sensitivity, score threshold 0.70, resolution threshold 0.10). On the other hand, homozygotes
of the 385A allele (385A/A) and heterozygotes of 385A/sefus with two melting peaks at
around 73 ◦C and 68 ◦C, or heterozygotes of c.385A>T (385A/T) and heterozygotes of
385T/sefus with three melting peaks at around 73 ◦C, 68 ◦C, and 62 ◦C, were classified into
the same group in the default settings. However, it was possible to separate 385A/A from
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385A/sefus and 385A/T from 385T/sefus by changing the settings to normal sensitivity with
a score threshold of 0.85 and a resolution threshold of 0.00 (Figure 2B). The reason for this
is that the peak height corresponding to SEC1P for sefus heterozygotes (385A/sefus and
385T/sefus, Figure 3B,D) are relatively lower than that corresponding to SEC1P for subjects
without sefus (Figure 3A,C).
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of each peak is indicated.

Although one weak secretor with the genotype Sew/se628, determined by a Sanger
sequencing analysis, was misclassified as Se/Sew in this FMCA because the nucleotide at
position 385 of se628 was an “A”, the other results were completely in accordance with pre-
vious ones [5]. The FUT2 genotyping results of conducting a FMCA of 96 Japanese people
were as follows: 23 were 385A/A, 38 were 385A/T, 22 were 385T/T, 9 were 385A/sefus,
2 were 385A/sefus, and one was sefus/sefus. In addition, the repeatability the results was
confirmed because the results of two independent assays were identical.

3.2. Triplex FMCA for Detection of c.385A>T and sefus of FUT2, c.59T>G and c.314C>T of FUT3

We then attempted a triplex FMCA that could estimate the Lewis blood group status
of the Japanese people by adding primers and probes that detect c.59T>G and c.314C>T
in FUT3 and c.385A>T and adding the sefus assay system. The melting curve genotyping
results for c.385A>T and sefus from the triplex FMCA were similar to those from the single-
probe FMCA with the default settings; however, unlike the single-probe FMCA, some
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melting peaks were divided into unknown groups (Figure 4A, shown in brown) when the
score threshold was increased. Therefore, automatic discrimination by a software is difficult,
but it seems possible to separate them by manual visual discrimination. This was possible
because, as described above, the peak height corresponding to SEC1P in sefus heterozygotes
was relatively lower than the peak height corresponding to SEC1P in subjects without
sefus. On the other hand, c.59T>G and c.314C>T were clearly separated automatically, as
described previously (Figure 4B,C). The FUT3 genotyping results of conducting a FMCA of
96 Japanese people were as follows: 35 were 59T/T, 43 were 59T/G, and 18 were 59G/G,
while 93 were 314C/C and three were 314C/T.
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Figure 4. Melting peak profiles of triplex FMCA of 96 Japanese subjects. (A) Results for detection
of c.385A>T and sefus of FUT2. The subjects with genotypes between 385A/A and 385A/sefus and
between 385A/T and 385T/sefus were not completely separated automatically. The unknown group
is indicated in brown. Light blue indicates the negative control. (B) Results of detection of c.59T>G of
FUT3. The subjects with genotypes of 59T/T are shown in red, those with genotypes of 59T/G in blue,
those with genotypes of 59G/G in green. The negative control is shown in light blue. (C) Results for
detection of c.314C>T of FUT3. The subjects with genotypes of 314C/C are shown in blue, those with
genotypes of 314C/T in red. The negative control is shown in light blue.

Table 1 shows the FUT2 and FUT3 genotypes, secretor status, and Lewis blood group
status of the 96 Japanese subjects estimated by the present triplex FMCA. Thus, by the
FMCA, 60 of the 96 Japanese subjects were estimated to be Lewis-positive secretors with
a Lewis phenotype of Le(a-b+); 16 were Lewis-positive weak secretors of Le(a+b+), one
was a Lewis-positive non-secretor of Le(a+b-), and 19 were Lewis-negative subjects of
Le(a-b-). In addition, 11 of the 19 people with a phenotype of Le(a-b-) were estimated to be
secretors and 8 were estimated to be weak secretors.. Incidentally, conventional serological
Lewis phenotyping is somewhat difficult because it depends largely on the strength and
specificity of the anti-Lea and anti-Leb antibodies used and the skill of the observer [29]. In
fact, in a previous study in which we analyzed the FUT2 of the same subjects used in this
study, we misdiagnosed the serological Lewis phenotype Le(a+b+) as Le(a+b-) [5]. This
may have been due to the specificity of the anti-Leb antibody used. Thus, we classified
Le(a+b-) subjects as being of the Se enzyme-deficient phenotype, which includes both weak
secretors and non-secretors. In any case, with the exception of one subject (as mentioned
above), the previous Lewis phenotyping results were also compatible with the estimate of
the Lewis phenotype made by the FMCA.
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Table 1. FUT2 and FUT3 genotypes and secretors and Lewis blood group phenotypes estimated by
the triplex FMCA.

c.385A>T Fusion
Gene

FUT2
Genotype

Secretor
Phenotype c.59T>G c.314C>T FUT3

Genotype
Lewis

Phenotype Number

A/A - Se/Se Secretor

T/T
C/C Le/Le Le(a-b+) 11

C/T Le/le202,314 Le(a-b+) 2

T/G
C/C Le/le59 Le(a-b+) 7

C/T le59/le202,314 Le(a-b-) 1

G/G C/C le59/le59 Le(a-b-) 3

A/T - Se/Sew Secretor

T/T C/C Le/Le Le(a-b+) 13

T/G C/C Le/le59 Le(a-b+) 19 *

G/G C/C le59/le59 Le(a-b-) 6

T/T - Sew/Sew Weak secretor

T/T C/C Le/Le Le(a+b+) 9

T/G C/C Le/le59 Le(a+b+) 5

G/G C/C le59/le59 Le(a-b-) 8

A/A one copy Se/sefus Secretor

T/T C/C Le/Le Le(a-b+) 2

T/G C/C Le/le59 Le(a-b+) 6

G/G C/C le59/le59 Le(a-b-) 1

T/T one copy Sew/sefus Weak secretor T/G C/C Le/le59 Le(a+b+) 2

A/A two copies sefus/sefus Non-secretor T/G C/C Le/le59 Le(a+b-) 1

* One weak secretor with genotypes Sew/se628, estimated by Sanger sequencing analysis, was misdiagnosed
as Se/Sew by this FMCA because the nucleotide at position 385 of se628 is an “A”; le59 includes le59, le59,508,
and le59,1067.

4. Discussion

Several real-time PCR based methods were developed to identify c.385A>T or sefus

individually, including high-resolution melting (HRM) analysis and a TaqMan (hydrol-
ysis probe) assay [19,27,28,30]. In this study, we developed an FMCA method to detect
c.385A>T and sefus by an asymmetric PCR using a single probe. The probe-based FMCA
showed significant Tm change (about 5–6 ◦C) between a wild type (385A) allele and/or
sefus, and between a mutant type (385T) allele and SEC1P. Thus, this single-probe assay
accurately determined 385A>T substitution. sefus was found almost solely in the Japanese
population with a frequency of 5–9% [19], and thus, 11 of the 96 Japanese subjects were
sefus heterozygotes (nine subjects were 385A/sefus, two subjects were 385T/sefus) in this
study. As described previously, an artificial recombinant of SEC1P and FUT2 was generated
during PCR amplification when a relatively small fragment specific to the sefus sequence
was amplified [28]. To avoid the production of an artificial recombinant of SEC1P and FUT2,
we selected primers that had amplified sefus and SEC1P in the previous studies [19,28], and
that amplified sefus, SEC1P, and FUT2 in the present study. The present method has an
advantage over the previous methods, which could only detect c.385A>T or sefus, in that it
can simultaneously detect sefus and the c.385A>T of FUT2 in a single assay.

Because the sefus allele contains the 3′ region of the wild-type FUT2 sequence, it was
previously misidentified as a functional 385A allele when c.385A>T was genotyped using
primers that specifically amplified the FUT2 sequence surrounding 385A>T [19,28]. In the
present study, in fact, the Tm value of the sefus signal was also the same as that of the 385A
allele signal, but since a chromosome with sefus lacks SEC1P, it appeared that the zygosity
of sefus could be determined by the peak height of the SEC1P signal. Namely, sefus/sefus

lacked the SEC1P signal and sefus heterozygotes had relatively lower peak SEC1P signal
height. The relatively lower peak SEC1P signal height of in the sefus heterozygotes could
not be detected by the software of the real-time PCR instrument used with the default
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settings for melting curve genotyping. According to the instrument manual (LightCycler
480 Instrument Operator’s Manual), ‘score’ is an index of the similarity between the melting
curves of a sample and the melting curve of the standard that is most similar to the sample,
and ‘resolution’ is the index of the dissimilarity between the melting curve of the sample
and the melting curve of the second most similar standard. Therefore, subtle differences in
the relatively lower peak SEC1P signal height in the sefus heterozygotes could have been
detected by increasing the score threshold and decreasing the resolution threshold from the
default settings.

In addition, we developed a triplex FMCA prodcedure that could simultaneously
detect the c.385A>T and sefus of FUT2 and the c.59T>G and c.314C>T of FUT3. Because the
resolution was somewhat lower for the triplex FMCA than for the single-probe FMCA, it
was difficult to automatically separate the six genotype combinations using the software.
Nevertheless, it was possible to first separate them into four groups, sefus/sefus, 385T/T,
385A/A plus 385A/sefus, and 385A/T plus 385T/sefus, by the default settings, and then
385A/A was further separated from 385A/sefus and 385A/T from 385T/sefus by manually
observing the relative peak SEC1P signal heights. Therefore, we could estimate not only
secretor status but also Lewis blood group status in a single assay.

The c.375A>G (synonymous SNP, rs1800026) of FUT2 has been observed in African
and Oceanian populations [31,32]. The FUT2 allele with this SNP would be determined
as SEC1P in the present method. However, in other populations, including the Japanese
population, this SNP seems to be rarely observed. Therefore, such a misdiagnosis is unlikely
to occur in the genotyping of Japanese subjects. A limitation of the present method is that
it cannot detect rare known se alleles such as se571 and se628 and rare unknown se and le
alleles. In fact, we misdiagnosed one se628 allele as a functional allele by the present method.
In addition, this method is useful almost exclusively for Japanese populations.

Sanger sequencing, the golden standard for the determination of SNPs, can detect
these rare se alleles. However, compared to Sanger sequencing, for the whole coding region
of FUT2, the present FMCA method is simple, cost-effective, and rapid, making it suitable
for high-throughput analysis [33]. In addition, it is impossible to detect se alleles generated
by non-allelic homologous recombination such as sefus by Sanger sequencing for the whole
coding region of FUT2. Therefore, the probe-based FMCA procedure used in this study
may have some advantages over Sanger sequencing.

The association between phenotypic polymorphisms of blood types, as represented by
the ABO blood group, and specific diseases has been analyzed in the past by case-control
studies, but few reports have shown an association of those with specific symptoms such
as the presence of duodenal ulcers [34]. On the other hand, recent large-scale analyses
using genomic DNA, including genome-wide association studies (GWAS), have revealed
associations between SNPs in blood group genes and various unexpected diseases. Typical
examples include the association of the ABO blood group gene polymorphisms with pan-
creatic cancer and thromboembolic and arterial disease [35,36]. Although the mechanisms
by which blood group polymorphisms are involved in the pathogenesis of each of these
diseases remain to be elucidated, the identification of associations with known genetic
polymorphisms that seem to be unrelated to disease is one of the advantages of large-scale
GWAS. As further analyses are conducted, it is possible that more diseases or clinical
conditions will be found to be associated with secretor status and Lewis blood group.

Furthermore, while serological Lewis phenotyping could not determine the secretory
status of Lewis-negative subjects, i.e., those without Le(a-b-), FUT2 genotyping could
determine the secretory status of Lewis-negative subjects. A recent study suggested that
red cells with Lewis a phenotype displayed strongly reduced SARS-CoV2-susceptibility [37].
However, as mentioned above, serological Lewis phenotyping is somewhat difficult. Thus,
the estimation of Lewis phenotypes by reliable FUT2 and FUT3 genotyping is a useful
alternative method for phenotyping, and the FMCA method used here appears to be a
valid and feasible method for large-scale association studies of both secretor status and
Lewis blood group status in Japanese populations.
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