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Abstract: In-house fabrication of three-dimensional (3D) models for medical use has become easier in
recent years. Cone beam computed tomography (CBCT) images are increasingly used as source data
for fabricating osseous 3D models. The creation of a 3D CAD model begins with the segmentation
of hard and soft tissues of the DICOM images and the creation of an STL model; however, it can be
difficult to determine the binarization threshold in CBCT images. In this study, how the different
CBCT scanning and imaging conditions of two different CBCT scanners affect the determination of
the binarization threshold was evaluated. The key to efficient STL creation through voxel intensity
distribution analysis was then explored. It was found that determination of the binarization threshold
is easy for image datasets with a large number of voxels, sharp peak shapes, and narrow intensity
distributions. Although the intensity distribution of voxels varied greatly among the image datasets,
it was difficult to find correlations between different X-ray tube currents or image reconstruction
filters that explained the differences. The objective observation of voxel intensity distribution may
contribute to the determination of the binarization threshold for 3D model creation.

Keywords: cone beam computed tomography; imaging; radiology; oral and maxillofacial surgery;
dentistry; DICOM; 3D printing; computer-aided design; STL data

1. Introduction

Recently, patient-specific three-dimensional (3D) models have been widely used in
clinical practice. In particular, osseous 3D models are used to simulate surgical procedures
on delicate anatomical structures during maxillofacial surgery, craniofacial surgery, and
otolaryngology, and they are also used for surgical training and medical education. These
3D models allow users to actually manipulate the 3D model and view it from any angle.
They can also be simulated with actual surgical instruments. Such an understanding of the
three-dimensional anatomy of the surgical site contributes to a better understanding on the
part of the surgeon, the surgical team, and medical students. This, in turn, is expected to
lead to more predictable surgeries and shorter operating times. Its use as a preoperative
educational tool for patients also contributes to better communication [1–4].

The generalization of 3D printing technologies has facilitated the fabrication of such
3D models from multi-detector row computed tomography (MDCT) images using desktop
3D printers; i.e., “one-stop 3D printing” [5].

Over the last two decades, cone beam computed tomography (CBCT), which has
a smaller field of view (FOV) than MDCT and a higher spatial resolution, has become
remarkably widespread, especially in the field of oral and maxillofacial surgery [6]. The
design of osseous 3D models primarily requires 3D computer-aided design (CAD) data
represented in stereolithography (STL) format. Although these data are used to create STL
models (3D CAD models), the design of a more precise 3D model is expected to use image
datasets from the CBCT scanner as the source of data.

The first step, binarization of the Digital Imaging and Communications in Medicine
(DICOM) image dataset, is the most important operation in the sequence of fabricating
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3D models. On the basis of numerous 3D model fabrication examples and our previous
studies, unlike MDCT image datasets, it is sometimes difficult to determine the value to
set the binarization threshold of an STL model using CBCT image datasets [7]. Several
factors make the binarization of CBCT image datasets difficult. The biggest problem is
that the threshold for binarization varies from one CBCT image dataset to another, and
there is no specific value, such as a “CT value”, for an MDCT image. The quality of image
datasets exported as DICOM files varies from one CBCT unit to another, which is a major
factor affecting the determination of the threshold value. These are also the problems
that plague 3D CAD operators in determining the appropriate binarization threshold for
creating STL models.

To enable anyone to create 3D models that satisfy clinical demands, it is necessary to
establish a method to create highly precise 3D models from CBCT images in a reasonable
procedure. It is also necessary to understand the characteristics of image datasets and what
factors make it easy or difficult to determine the binarization threshold for STL model
creation. Therefore, to understand the factors that affect the determination of the binariza-
tion threshold, this study aimed to evaluate the quality of STL models created from image
datasets acquired with a CBCT scanner and to explore the factors relating to successful STL
model creation from the perspective of 3D image engineering and 3D image processing.

2. Materials and Methods
2.1. Definition

In this study, DICOM image datasets exported to the STL file format (or data after
segmentation) are called “STL data”; 3D surface CAD models (virtual 3D models) created
from STL data are called “STL models”. The model fabricated with a 3D printer from
the STL data is referred to as a “3D model”. The units for the intensity (brightness)
values of the voxels are expressed in gray values (GV), according to a previous report by
Katsumata et al. [8].

2.2. CBCT Scanning and Imaging to STL Model Creation

A dry human skull was used as a specimen. The skull was placed in a 20 cm cubic
acrylic case filled with water and scanned. A cranial specimen with bilateral missing maxil-
lary molars, without crown restorations, was used for maxillary alveolar and periapical
maxillary sinus surgery (Figure 1). Scanning was performed with two different CBCT
units, SOLIO XZ II (Asahi Roentgen Ind., Co. Ltd., Kyoto, Japan) and 3D Accuitomo F17 (J.
Morita Mfg. Corp., Kyoto, Japan). After scanning, the image processing software attached
to each CBCT unit was used to export the images as a DICOM file. Details of each scanning
condition and the image reconstruction filters applied are shown in Table 1.
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Figure 1. The specimen and CBCT units. (A) A specimen in an acrylic case filled with water, and the
specimen in the (B) SOLIO XZ II (Asahi Roentgen Ind., Co. Ltd., Kyoto, Japan) scanner, and (C) 3D
Accuitomo F17 (J. Morita Mfg. Corp., Kyoto, Japan) scanner.
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Table 1. Overview of the scanning and image reconstruction filters for each CBCT unit and abbrevia-
tions for each DICOM image dataset.

CBCT Unit
X-ray Tube

Voltage

Scanning Mode
Field of View

Voxel Size

Image Processing
Software
(Version)

X-ray Tube
Current

Image
Reconstruction

Filter
Abbreviation

SOLIO XZ II 85 kV
I-MODE

ϕ90 × 91 mm
0.177 mm

NEOPREMIUM2
(NeoExpCalc

1.0.17.0)

4.0 mA

Scattered ray
correction A4C

Sharp A4H

Smooth A4M

6.0 mA

Scattered ray
correction A6C

Sharp A6H

Smooth A6M

8.0 mA

Scattered ray
correction A8C

Sharp A8H

Smooth A8M

3D Accuitomo
F17 85 kV

D140 × H100 Hi-Fi
ϕ140 × 100 mm

0.200 mm

i-Dixel
(3DXAPP 2.3.7.5)

4.0 mA

Bone M4B

Dental M4D

General M4G

6.0 mA

Bone M6B

Dental M6D

General M6G

8.0 mA

Bone M8B

Dental M8D

General M8G

The impact of differences in the scanning X-ray tube current and image reconstruc-
tion filters on the determination of the binarization threshold in STL model creation was
evaluated. The binarization threshold for each image was set so that both anterior and
posterior nasal spines could be visualized and identified. Volume Extractor 3.0 (VE3,
i-Plants Systems, Iwate, Japan), a 3D medical/general purpose image processing software
package [9], was used to binarize the image datasets and create STL models. In VE3, the
Marching Cube method was used as the isosurface extraction method. VE3 was used only
for the conversion of image datasets to STL models, not for image linear interpolation or the
noise reduction function. The removal of spatial polygonal noise (independent polygonal
data not touching the surface of the STL model) was performed using the “Remove small
polygons” command in the polygon data editing software package POLYGONALmeister
ver7 (UEL Corp., Tokyo, Japan) [10].

2.3. Converting the DICOM Image Dataset to 256 Grayscale and Making a Histogram

ImageJ (version 1.53k, NIH, Bethesda, MD, USA) was used to convert the DICOM
image dataset to 256 grayscale, and its histogram was used to evaluate the appearance of
the voxel intensity distribution.

2.4. STL Model Superimposition, Comparison, and 3D Model Fabrication

To find the differences in the shape of each STL model created from the CBCT image
dataset, the STL models were superimposed and the shape error (signed difference between
two STL models) was observed. An STL model was created from the MDCT image dataset,
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which was used as the gold standard for the STL model shape. The MDCT scanner was
an Aquilion 64 system (Canon Medical Systems Inc., Tochigi, Japan), with the following
scanning conditions: X-ray tube voltage of 120 kV, X-ray tube current of 150 mA, slice
thickness of 0.5 mm, FOV of 240 mm, a 512 × 512 matrix, and convolution kernel FC81
(bone sharp). The 3D evaluation software package spGauge 2014.1 (spG, ARMONICOS
Co., Ltd., Shizuoka, Japan) was used for the superimposition of the created STL models
and their color mapping. In the superimposition, one of the two STL models was moved
using spG’s best fit surface-based registration algorithm, and the operation was repeated
until the misalignment with the other STL model was as close as possible to 0.00 mm. STL
models created from CBCT image datasets were fabricated as 3D models using the same
procedure as in our previous report [11].

3D model fabrication was performed with a desktop Fused Deposition Modeling
(FDM) 3D printer (Value3D MagiX MF-800, Mutoh Industries, Tokyo, Japan). The 3D
printing conditions are as follows: a PolyTerra-1.75 mm PLA filament, a laminating pitch of
0.2 mm, an infill density of 30%, a printing speed of 40 mm/s, and with support structures
and rafts.

3. Results
3.1. Visibility of the Exported Images

Each image in the CBCT image dataset was imported and displayed in VE3, as shown
in Figure 2. These are the native images with the default display settings of VE3. The same
specimen was scanned; however, different X-ray tube currents and different applied image
reconstruction filters resulted in different appearances.

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

dataset, which was used as the gold standard for the STL model shape. The MDCT scan-

ner was an Aquilion 64 system (Canon Medical Systems Inc., Tochigi, Japan), with the 

following scanning conditions: X-ray tube voltage of 120 kV, X-ray tube current of 150 

mA, slice thickness of 0.5 mm, FOV of 240 mm, a 512 × 512 matrix, and convolution kernel 

FC81 (bone sharp). The 3D evaluation software package spGauge 2014.1 (spG, AR-

MONICOS Co., Ltd., Shizuoka, Japan) was used for the superimposition of the created 

STL models and their color mapping. In the superimposition, one of the two STL models 

was moved using spG’s best fit surface-based registration algorithm, and the operation 

was repeated until the misalignment with the other STL model was as close as possible to 

0.00 mm. STL models created from CBCT image datasets were fabricated as 3D models 

using the same procedure as in our previous report [11]. 

3D model fabrication was performed with a desktop Fused Deposition Modeling 

(FDM) 3D printer (Value3D MagiX MF-800, Mutoh Industries, Tokyo, Japan). The 3D 

printing conditions are as follows: a PolyTerra-1.75 mm PLA filament, a laminating pitch 

of 0.2 mm, an infill density of 30%, a printing speed of 40 mm/s, and with support struc-

tures and rafts. 

3. Results 

3.1. Visibility of the Exported Images 

Each image in the CBCT image dataset was imported and displayed in VE3, as shown 

in Figure 2. These are the native images with the default display settings of VE3. The same 

specimen was scanned; however, different X-ray tube currents and different applied im-

age reconstruction filters resulted in different appearances. 

 

Figure 2. CBCT horizontal cross-sectional images of anterior and posterior nasal spines without 

window level setting displayed in Volume Extractor 3.0 using the (A) SOLIO XZ II scanner and (B) 

3D Accuitomo F17 scanner. 

3.2. Differences in the Shape of Each STL Model 

The STL model created from each CBCT image dataset, with the binarization thresh-

old for STL model creation set to the GV where the anterior and posterior nasal spines can 

be identified, is shown in Figure 3. For each image dataset, there was a difference in the 

shape of the STL model and the number of polygons that were mixed in as noise. 

Figure 2. CBCT horizontal cross-sectional images of anterior and posterior nasal spines without
window level setting displayed in Volume Extractor 3.0 using the (A) SOLIO XZ II scanner and (B) 3D
Accuitomo F17 scanner.

3.2. Differences in the Shape of Each STL Model

The STL model created from each CBCT image dataset, with the binarization threshold
for STL model creation set to the GV where the anterior and posterior nasal spines can be
identified, is shown in Figure 3. For each image dataset, there was a difference in the shape
of the STL model and the number of polygons that were mixed in as noise.
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Figure 3. The STL models from the (A) SOLIO XZ II scanner and (B) 3D Accuitomo F17 scanner were
created with the binarization threshold set to an arbitrary value. The abbreviation of each STL model
is shown at the left shoulder of each figure, and the binarization threshold is shown at the bottom
center of each figure. The GV indicates the percentile after the intensity value of each image dataset
was converted to 256 grayscale.

3.3. Histogram of the Voxel Intensity Distribution

Figure 4A,B show the voxel intensity distribution of each CBCT image dataset, and
Figure 4C shows the voxel intensity distribution of the MDCT image dataset used as the
gold standard for STL model creation. In both CBCT image datasets, each voxel had a single
peak; however, the maximum value and range of the peak varied. Histogram observations
showed that, compared with the 3D Accuitomo F17, the SOLIO XZ II had fewer maximum
voxels and tended to converge at the center of the voxel intensity value distribution. In the
image dataset acquired on the Aquilion 64, the distribution of the voxel intensity values
was bimodal, with apex-like peaks and narrow ranges.
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Figure 4. Histograms of voxel intensity for CBCT images from the (A) SOLIO XZ II and (B) 3D
Accuitomo F17 scanners and (C) Aquilion 64 MDCT scanner images. The vertical axis represents the
number of voxels and the horizontal axis represents the voxel intensity value in 256 grayscale.

3.4. Differences in Images for Each GV

The image visibility also differed significantly depending on the binarization threshold.
At lower threshold values, the spatial noise increased. However, a higher threshold resulted
in less replicability of thin areas of bone tissue (Figure 5).
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Figure 5. Images at different binarization threshold values (image dataset: A4C). The gray values
shown at the bottom of each figure are the native voxel values of the CBCT image (in this case, from
3721 to −2359 [GV]) converted to 256 grayscale.

3.5. Shape Error of the STL Models

The superimposed shape error of the STL models created from the two CBCT and
MDCT image datasets, respectively, showed that both the SOLIO XZ II and 3D Accuitomo
F17 had more noise in the teeth and surrounding tissue, and the error was large. Addi-
tionally, the SOLIO XZ II had a rougher surface than the 3D Accuitomo F17, with a higher
percentage of green to yellow or slightly distended areas (Figure 6).
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Figure 6. Shape error of two superimposed STL models. (A) CBCT STL model (image dataset: A4C)
vs. MDCT STL model. (B) CBCT STL model (image dataset: M8G) vs. MDCT STL model. The areas
where shape errors compared with the MDCT STL model used as the gold standard were observed
are in color. Positive errors (expansion) are shown in warm colors and negative errors (contraction)
are shown in cool colors.

4. Discussion

Dental implant surgeries, such as maxillary sinus floor augmentation, and maxillo-
facial surgery, such as a Le Fort I osteotomy, require delicate handling of the maxillary
alveolar bone, maxillary sinus, and sphenoid process regions. As a result, highly precise
3D models are necessary for their simulation. In this study, we explored the optimal bina-
rization threshold for STL model creation to fabricate osseous 3D models that faithfully
replicate delicate and complicated anatomical structures.

Two flagship CBCT scanners from two different suppliers were used. One is the
SOLIO XZ II, a multifunctional scanner capable of CBCT scanning and panoramic imaging.
This scanner is mainly used in the field of dentistry and maxillofacial surgery. The other is
the 3D Accuitomo F17 scanner, which is a dedicated scanning unit for CBCT, with a range
from a minimum ϕ40 mm × height of 40 mm to a maximum of ϕ170 mm to a height of
230 mm, and 11 different FOVs can be selected according to the region of interest. The
Accuitomo F17 scanner is primarily used in the fields of oral and maxillofacial surgery,
craniofacial surgery, and otolaryngology.

Three steps are required to create a 3D model from an image dataset [6,11]. The
first step is to acquire the 3D volumetric data of the object as a DICOM file. The second
step is to segment the anatomical structures of the 3D model fabrication object from the
surrounding structures and export them to a 3D CAD model in STL file format. While
segmentation of hard and soft tissues is relatively easy, the subsequent STL model creation
is sometimes difficult for two reasons. Small or thin bones (such as in the maxillary sinus,
nasal cavity, or orbital floor) and narrow bone cavities (such as the joint cavity of the
temporomandibular joint) are not easily reflected in the STL model. Problems resulting
from the scanning characteristics of CBCT/MDCT (e.g., metallic artifacts from dental
materials, beam hardening, overshooting, and undershooting) reduce image visibility and
make it difficult to determine the threshold for binarization. The final step is to generate
data for 3D printing, called G-code, from the created STL model and run the 3D printer.
Failure in any of these steps results in poor quality of the 3D model. Therefore, the creation
of satisfactory STL data is the most important operation in the sequence of 3D model
fabrication [6,12].
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CBCT images do not contain the quantitative physical quantities that are in MDCT
images, such as “CT values” or “Hounsfield units” [13–15]. In other words, because the
GV of a CBCT image is not a linearized value, the binarization threshold is also difficult to
determine using standard methodologies. Therefore, the shape of the STL model may be
highly dependent on the discretion of the 3D CAD operator. The 3D model created from
the STL model (A6M), which the authors created by determining the binarization threshold,
is shown in Figure 7. Even with the full use of polygon data editing software packages, it
was difficult to control the noisy 3D CAD model. The detail of the fabricated 3D model is
somewhat less replicable, with numerous irregular structures appearing on the surface.
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Figure 7. (A,C) Close-up view of the specimen. (B,D) Close-up view of the 3D model fabricated from
an STL model (image dataset: A4C) with a desktop FDM 3D printer. In fabricating the 3D model, the
STL model was smoothed, noise-reduced, and polygon-count-reduced using POLYGONALmeister
Ver 7. Observations of the 3D model show that the replication of the teeth and surrounding tissues is
poor (arrows). The incisal and greater palatine foramen are also generally narrower (arrowheads).
Partial defects on the surface of the 3D model because of 3D printing errors are noted (*).

With our approach, differences in the visibility of each X-ray tube current and image
reconstruction filter—that is, differences in the scanning and imaging characteristics of
each CBCT unit—could be objectively visualized as differences in the intensity distribution
of voxels. This is the same as a visualization of the differences in image contrast in each
image dataset. These differences in image datasets can be attributed to differences in the
method of image reconstruction performed by image processing software after CBCT image
data acquisition; i.e., differences in the image gamma correction applied to each filter. It
was easier to determine the binarization threshold of an image dataset with high image
contrast that was made in the histogram as a positive curve with more voxels, high peaks,
a relatively narrow distribution, and a steep slope. Unsuitable binarization thresholds
can result in poor replication of details in the STL model. 3D models from poor-quality
STL models can, for example, lead to unintended defects or cavities, thus compromising
the reliability of the surgical simulation. This result partly explains why it is difficult to
determine the binarization threshold when the peak number of voxels is too low or the
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voxel intensity distribution range is too narrow or too wide. Although the binarization
threshold required for STL data depends on the application of the 3D model and cannot be
uniformly specified, a histogram of the voxel intensity distribution of the image dataset
would help determine the binarization threshold for creating STL models that satisfy
clinical demand.

There are numerous reports on automatic segmentation of CBCT and MDCT images.
However, even for MDCT images, for which voxel intensity values can be obtained quanti-
tatively, automatic segmentation is difficult to perform. For CBCT images, however, there
are many different scanners available, with varying scanning and imaging characteristics,
making segmentation a very difficult challenge [16–22]. Furthermore, to our knowledge,
there are few reports evaluating MDCT images for STL data creation for 3D model fabrica-
tion, and there are no reports using the same approach as ours using CBCT images [23–26].
CBCT scanners are expected to be used as 3D scanning devices for dental casts and dental
prosthetics (surgical guides, dentures) [27–29]. As the demand for 3D printed models
increases, better STL data are needed and their importance will increase. Because the two
CBCT units used in this study were not equipped with image reconstruction filters that
are specialized for the 3D model, such as the “STL data creation mode”, the binarization
threshold for creating STL data had to be determined manually by the 3D CAD operators.
Considering the rapid development of 3D technology, a CBCT unit equipped with an
“Imaging filter for 3D copy” that can create optimal STL data under optimal scanning and
imaging conditions will likely be available soon.

A limitation of this study is that there were only 18 image datasets with each scanning
X-ray tube voltage set to 85 kV and three representative image reconstruction filters. Both
CBCT units had other scanning modes. In addition to the scanning conditions, such as
the X-ray tube voltage and tube current, it is possible to select a larger or smaller FOV
according to the object size and image reconstruction filters according to the diagnostic
purpose. Another limitation is that there is no standard for determining the binarization
threshold for creating STL models from CBCT images. We have used a threshold where
the targeted anatomical structures are somewhat visible. However, we recognize that this
binarization threshold value was determined by the experience of the authors, who are
also 3D CAD/3D printing operators, and it is lacking objectivity. There is currently no
methodology to prove this binarization threshold is appropriate; however, that is a topic
for future research.

In this study, we evaluated voxel intensity distribution histograms made from DICOM
image datasets from two different CBCT scanners to determine why it is difficult to create
STL data for a 3D model from CBCT images and how to address this issue. The image
appearance varied greatly depending on the scanning and imaging conditions, and the
binarization threshold also varied relative to each image.

In conclusion, the results of this study suggest the importance of understanding
the scanning and imaging characteristics of each CBCT device in advance to determine
the optimal and objective binarization threshold. Our approach, which enables facile
observation of the visibility of the voxel intensity distribution and is technically simple,
may help find the “critical factors” to binarization threshold determination, which is
essential for the fabrication of 3D models for the medical field.
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