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Abstract: Due to the simplicity and convenience of PPG signal acquisition, the detection of the
respiration rate based on the PPG signal is more suitable for dynamic monitoring than the impedance
spirometry method, but it is challenging to achieve accurate predictions from low-signal-quality
PPG signals, especially in intensive-care patients with weak PPG signals. The goal of this study was
to construct a simple model for respiration rate estimation based on PPG signals using a machine-
learning approach fusing signal quality metrics to improve the accuracy of estimation despite the
low-signal-quality PPG signals. In this study, we propose a method based on the whale optimization
algorithm (WOA) with a hybrid relation vector machine (HRVM) to construct a highly robust
model considering signal quality factors to estimate RR from PPG signals in real time. To detect
the performance of the proposed model, we simultaneously recorded PPG signals and impedance
respiratory rates obtained from the BIDMC dataset. The results of the respiration rate prediction
model proposed in this study showed that the MAE and RMSE were 0.71 and 0.99 breaths/min,
respectively, in the training set, and 1.24 and 1.79 breaths/min, respectively, in the test set. Compared
without taking signal quality factors into account, MAE and RMSE are reduced by 1.28 and 1.67 breaths/min,
respectively, in the training set, and reduced by 0.62 and 0.65 breaths/min in the test set. Even in the
nonnormal breathing range below 12 bpm and above 24 bpm, the MAE reached 2.68 and 4.28 breaths/min,
respectively, and the RMSE reached 3.52 and 5.01 breaths/min, respectively. The results show that
the model that considers the PPG signal quality and respiratory quality proposed in this study has
obvious advantages and application potential in predicting the respiration rate to cope with the
problem of low signal quality.

Keywords: respiratory rate; photoplethysmography signal; hybrid relation vector machine (HRVM);
whale optimization algorithm (WOA); ensemble empirical mode decomposition with principal
component analysis (EEMD-PCA)

1. Introduction

Impedance spirometry is a clinically important method for measuring the respiratory
rates of patients; however, it is not very convenient and comfortable for patients and is
especially not suitable for dynamic monitoring [1]. To overcome these restrictions, studies
have given more attention to physiological signals, such as electrocardiogram (ECG) and
photoplethysmography (PPG) signals. However, PPG signals are more attractive than ECG
signals because of their simplicity, portability, and low number of sensors [2,3].

Due to the low cost and portability of PPG signal acquisition, the continuous, non-
invasive, and reliable monitoring of patients’ respiratory rate based on PPG signals has
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attracted many researchers in recent years [4], which will help monitor primary health sta-
tus and contribute to the diagnosis of cardiorespiratory diseases, including pneumonia [5]
and obstructive sleep apnoea (OSA) [6], and physiological situations, such as hypercar-
bia [7] and pulmonary embolism [8]. However, for critically ill patients in hospital care
situations, where human respiration is relatively weaker and venous blood is at a very low
pressure, flowing with the frequency of movement [9], the pulsatile alternating current
(AC) component is also easily affected by physiological activity and movement, causing
the PPG signals to contain more noise than physiological information [10], which would
make estimating the respiratory rate based on PPG signals specifically challenging.

In the 1990s, the method of estimating the respiration rate (RR) based on PPG signals
was investigated by Nakajima et al. [11], who developed a digital filter technology to
estimate the RR from PPG signals. This method proved the feasibility of RR estimation
based on PPG, but lacked universality. To solve this problem, Karlen et al. [12] used an
intelligent fusion algorithm to fuse three respiration-modulated changes, including pulse
amplitude modulation (AM), frequency modulation (FM), and baseline wander (BW), from
PPG, which estimated a relatively accurate RR. Similarly, Meredith et al. [13] explained that
respiratory components are reflected by the AM, FM, and BW of PPG signals. To reduce
the effect of poor respiratory modulation on the accuracy of the final estimated respiration
rate, Birrenkott et al. [14] proposed three respiratory quality indices (RQIs), which set an
adjustable threshold to fuse the respiratory rate estimated by three respiratory modulations, on
the dataset of elective surgery or routine anaesthesia (CapnoBase Dataset), which showed good
results with a mean absolute error (MAE) of only 0.71 ± 0.89 bpm. However, for critically
ill patients during hospital care (BIDMC dataset), the MAE reached 3.12 ± 4.39 bpm.
Selvakumar et al. [3] also showed that the BIDMC dataset was more challenging.

Faint physiological conditions and the more complex pulse wave morphology in
critically ill patients lead to the inaccurate extraction of respiratory modulation [15]. To
enhance the robustness of the respiration rate estimation algorithm. Ambekar el al. [16] used
a data-driven algorithm, ensemble empirical mode decomposition (EEMD), to obtain the
RR from PPG signals. Compared to the empirical mode decomposition algorithm (EMD),
EEMD overcomes the problem of modal aliasing [17]. Adami et al. [18] and Mohammod
et al. [19] compared the performance of EMD and its derivative algorithms, such as EEMD,
CEEMD, CEEMDAN, and ICEEMDAN, to decompose the respiratory component from
PPG signals and demonstrated that both EEMD and CEEMDAN have better performance
but that the EEMD method has a lower computational cost than CEEMDAN. To further
isolate the respiratory components from the selected inherent modal functions (IMF), a
Kalman filter (KF) was used to exclude other components [20]. Considering the nonlinearity
of the PPG signal, Adami et al. [18] introduced the PPG signal quality indicator as a way
to adjust the Kalman gain to implement extended Kalman filtering (EKF). However, these
methods are dependent on the stability of the previous window, and if the respiratory rate
error in the first window is large, it will significantly increase the overall estimation error
level. The principal component analysis (PCA) method avoids this problem and does not
require parameter adjustment [21]. Mohammod et al. proposed an EEMD-PCA method,
demonstrated its advantages for respiration rate estimation based on PPG signals [22],
and explained the failure as high-amplitude noise in the RR band range [23]. Machine-
learning methods can be used to correct respiration rate estimation errors due to these
high-amplitude noises [24], For example, the RRWaveNet [25] and CAGAB [26] methods
demonstrate the feasibility of using machine-learning methods to improve the accuracy of
PPG-based respiratory rate detection.

In summary, both PPG signal quality and respiratory signal quality influence the
accuracy of the PPG-based estimation of respiration rate to further reduce their effect on
respiration rate estimation. In this paper, we use machine-learning methods to construct
a respiration rate estimation model by fusing PPG signal quality indices and respiratory
quality indices (RQIs) to limit the influences of other physiological activities and noise on
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respiration rate estimation based on PPG, developing a respiration rate estimation model
with high accuracy and robustness.

The remainder of this study is summarized as follows: Section 2 introduces the
dataset and respiration rate prediction model construction process with model performance
evaluation metrics. In Section 3, the performance of the model proposed in this study on the
BIDMC dataset is reported, followed by a discussion of the advantages and disadvantages
of the model in Section 4. Section 5 concludes the study and provides recommendations for
future work.

2. Materials and Methods

Figure 1 shows a clear block diagram of the respiration rate model construction process.
The whole process is divided into three stages: (a) pre-extracted respiratory wave and
respiratory rate, (b) signal quality index calculation, and (c) respiratory rate prediction
model construction.
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Figure 1. Flow chart of respiration rate prediction model construction.

In the first stage, the EEMD-PCA method was selected to pre-extract the respiration
wave and respiration rate. In the second stage, the PPG signal quality indices and RQIs were
calculated for further processing. The HRVM method was employed to fuse the respiration
rate estimated by the EEMD-PCA method (RRP) and the signal quality indicators that have
an impact on the estimation of RRP for RR prediction model construction, and the kernel
parameters were optimized by the WOA algorithm to prevent falling into a local optimum.
To evaluate the performance of the constructed model, it is tested with the BIDMC dataset.

2.1. Database

The BIDMC dataset was collected from 53 subjects (20 males and 33 females; age
range: 19–90 years old) and acquired from critically ill patients during hospital care at
the Beth Israel Deaconess Medical Centre (Boston, MA, USA). For each subject, over an
8 min duration, each subject contains physiological signals that are sampled at 125 Hz,
such as PPG signals, impedance respiratory signals, and electrocardiogram (ECG) signals;
simultaneously, reference physiological parameters such as respiratory rate (RR) and heart
rate (HR) are sampled at 1 Hz. Two annotators manually annotated the start and end time
points of each single respiration in all recordings via the impedance respiration signal,
and the corresponding PPG signal segment with a 1-s difference in the duration of single
respiration annotated by the two annotators was removed. Due to a severe loss of the
reference respiration rate in the 13th subject, the remaining 52 subjects were retained with
the PPG signal split into 8-s nonoverlapping windows with a 32-s length. This process
resulted in 2719 (93.4%) windows being retained. The distribution of the impedance
respiration rate (RRI) values for all windows is shown in Figure 2, which reveals that the
distribution of the reference respiration rate ranges from 3 to 30 bpm, mainly between
16 and 20 bpm, follows a regular distribution, and reflects well the real-world respiration
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rate distribution. In this study, the dataset was randomly divided into a training set with a
validation part (70%) and a test set (30%).
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2.2. Pre-Extracted Respiratory Wave and Respiratory Rate by the EEMD-PCA Method

EEMD-PCA is a novel, data-driven method for estimating the respiration rate based
on PPG signals that was proposed by Mohammod et al. [22]. In this study, the pre-extracted
respiratory waves and RRP will be extracted by this method for use in the next stage. The
pre-extraction process is subdivided into four steps: (a) EEMD is applied to PPG signals to
separate the respiratory components and other components, (b) intrinsic mode functions
(IMFs) dominated by respiratory components are selected for further processing, (c) the
selected IMFs are used to reconstruct the respiratory waves and are further denoised with
principal component analysis (PCA), and (d) fast Fourier transform (FFT) is applied to the
pre-extracted respiratory waves from the previous step to calculate the RRP. Figure 3 shows
the time domain (Figure 3a) and frequency domain (Figure 3b) of the impedance respiratory
signals and the pre-extracted respiratory waves for the first 32-s window of subject BIDMC
10. They have strong consistency in the waveform period in the time domain, and the main
frequency components are similar in the frequency domain.

FFT was applied to the pre-extracted respiratory signals, which are dominated by
respiration, and the frequency corresponding to the maximum peak of the spectrogram is
expressed as the frequency corresponding to the respiration rate and then converted to the
RRP using Formula (1).

RRP = fRRP ∗ 60(breaths/min) (1)

2.3. Signal Quality Index Calculation

Both PPG signal quality indices [18,20,25] and respiration quality indices (RQIs) [14,26]
affect the accuracy of RR estimation based on PPG signals. An optimal PPG signal quality
index (SSQI) and three typical RQIs (QR1, QR2, and QR3) are calculated in this section
to fuse the RRP to reduce the error of RR estimation and enhance the robustness of the
algorithm proposed in this paper.
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Figure 3. (a) Time domain comparison of impedance respiratory signals with pre-extracted respi-
ratory signals based on the EEMD-PCA method. (b) Frequency domain comparison of impedance
respiratory signals with pre-extracted respiratory signals based on the EEMD-PCA method. The blue
line represents the pre-extracted respiratory signals in the time-frequency domain, and the red line
represents the impedance respiratory signals in the time-frequency domain.

2.3.1. PPG Signal Quality Index (SQI) Calculation

Skewness is a measure of the symmetry of the probability distribution. Mohamed
et al. [27] discovered that the skewness value of a 2-s PPG signal significantly varies with
the change in the quality of the PPG signals, with an accuracy of 82.86% in determining
between high-quality PPG signals and damaged unusable PPG signals, which is calculated
by Formula (2).

SSQI =
1
N ∑N

i=1(xi − µ̂x/σ)3 (2)

where xi is the ith sample point value of PPG, µ̂x and σ are the empirical estimates of the
mean and standard deviation of xi, respectively, and N is the number of samples in the
PPG signals.

For each 32-s PPG signal with a two-second nonoverlapping sliding window, a total of
16 skewness values are calculated, and the average of 16 SSQI represents the overall quality
level of the 32-s PPG signal for that segment. The specific process is expressed as follows:

SSQI =
1
n ∑n

w=1 SSQI [w] (3)

where SSQI [w] denotes the SSQI of the PPG signals for the wth 2-s window and n is the
number of windows. SSQI denotes the quality level of the PPG signal for each 32-s window.

2.3.2. Respiratory Quality Index (RQI) Calculation

The autocorrelation RQI, FFT RQI, and autoregression RQI (QR1, QR2, and QR3) were
proposed by Birrenkott et al. [14], who directly calculated their RQIs on the PPG signal
after filter processing with a fixed cut-off frequency and down-sampled to 4 Hz, which
still contains much low-frequency motion noise and cardiac components. In contrast, this
paper will calculate the three RQIs on the pre-extracted respiration waves down-sampled to
4 Hz, which are dominated by respiratory components that are more reflective of respiratory
signal quality.

2.4. WOA-HRVM Model

In the previous stage, the RRP, SSQI , and three RQIs were obtained and used as
features in this stage, and the RRI corresponding to each window was applied as labels.
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The WOA-HRVM [28] method was applied to the training set to construct an RR prediction
model, and the testing set was employed to evaluate the performance of the model.

As a highly sparse model that provides probabilistic predictions by Bayesian inference,
the central idea of related vector machines (RVMs) is to obtain the correlation vectors and
weights by maximizing the marginal likelihood [29]. RVMs are often utilized as a machine-
learning method for regression prediction, and its kernel function and kernel parameters
are adjusted according to the requirements, which are also important parameters affecting
the final regression performance. To improve the performance of the regression, a hybrid
relation vector machine (HRVM) was employed in this paper. Since convex combinations
of finitely many elementary kernel functions can always generate optimal kernels, hybrid
kernel learning methods are more efficient than single kernel learning methods [30]. The
multiple heterogeneous kernel learning method is defined as

K(xi, x) = ∑M
m=1 dmKm(xi, x) (4)

where dm is the weight of the mth kernel function with dm ≥ 0, and K(xi, x) denotes the
mth kernel function, Gaussian kernel function, sigmoid kernel function, polynomial kernel
function, and Laplacian kernel function as common kernel functions used in this study.

In addition, the initial values of the kernel parameters are highly random; the con-
vergence of the regression model constructed based on HRVM will be greatly affected
as a result, and it is easy to fall into the local optimum. Aimed at the limitations of the
HRVM algorithm, the whale optimization algorithm (WOA) [31] has the advantages of
few adjustment parameters, simple operation, and strong ability for a global search. The
optimal parameters and weights of the kernel function are obtained by continuous iteration
of the WOA algorithm to prevent local optimality, so the respiration rate model proposed
in this study based on the WOA-HRVM algorithm can be represented by Formula (4),
it is a hybrid function consisting of Gaussian kernel function, sigmoid kernel function,
polynomial kernel function and Laplace kernel function.

2.5. Performance Measurement

The ability of our RR prediction model was assessed using three methods: (i) Bland–
Altman plot: the plot visualizes the consistency of the predicted respiration rate by the
model proposed in this study (RRM) with the RRI; (ii) mean absolute error (MAE): the
accuracy of the model was demonstrated by averaging the absolute value of the difference
between RRM and RRI over all windows; and (iii) root-mean-square error (RMSE): RMSE is
used to reflect the precision of the model proposed in this study; it is very sensitive to the
very large or very small errors of the RRM compared to RRI.

3. Results

The model in this study was constructed and tested based on MATLAB 2020a (Math-
Works, Natick, MA, USA). The Bland–Altman plot visualizes the relationship among RRP
(RR estimated by the EEMD-PCA method), RRM (RR estimated by the prediction model
proposed in this study), and RRI in Figure 4. In the training set, the difference in RRP and
RRI was 0.07 bpm, with limits of agreement from −5.138 to 5.278 bpm, and the difference in
RRM and RRI was almost 0 bpm, with smaller limits of agreement from −1.930 to 1.930 bpm.
In the test set, the difference in RRP and RRI was 0.121 bpm, with limits of agreement from
−4.660 to 4.906 bpm. The difference in RRM and RRI is only −0.015 bpm, with narrowed
limits of agreement from −3.564 to 3.533 bpm.
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Figure 4. Bland–Altman plot of the RRM (RR estimated by the prediction model proposed in this
study), RRP (RR estimated by the EEMD-PCA method), and RRI for the training set and test set. The
figure includes a total of 3 lines for each method, with the middle line indicating the mean of the
differences, and the upper and lower lines showing the upper and lower limits, respectively, of the
95% consistency limits. The horizontal axis represents the average of RRP and RRI or the average of
RRM and RRI, and the vertical axis represents the difference, RRP-RRI or RRM-RRI: (a) Bland–Altman
plot of the RRM and RRI in the training set, (b) Bland–Altman plot of the RRp and RRI in the training
set, (c) Bland–Altman plot of the RRM and RRI in the test set, and (d) Bland–Altman plot of the RRp

and RRI in the test set.

The figure includes a total of three lines for each method, with the middle line indi-
cating the mean of the differences, and the upper and lower lines showing the upper and
lower limits, respectively, of the 95% consistency limits (mean ± 1.96SD). The closer the
line showing the mean of the differences is to 0 bpm, the higher the agreement between
the two measurement methods and the smaller the 95% confidence interval. The closer the
method is to the impedance respiration test, the higher the clinical acceptability. Therefore,
Figure 4 and Table 1 show that, compared to the EEMD-PCA method, the respiration rate
estimated by the proposed method is more consistent with the respiration rate measured
by the impedance spirometry.
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Table 1. A literature review of respiratory rate detection based on PPG.

References Database Subjects Methodology Innovation Drawbacks

Nakajima [11] Self-collection 11 Digital filtering technique Real-time PPG-based
respiration rate detection

Lack of universal
applicability

Karlen [12] CapnoBase 94 Smart fusion method Set discard thresholds with
PPG signal quality metrics Discard 45% of data

Birrenkott [14] CapnoBase 42 RQI calculation and
fusion

Adjustable threshold value to
change accuracy

Inaccurate estimation of
low-quality PPG signals

Selvakumar [3] CapnoBase 42 RIAV based on FFT Respiration rate detection on
low-cost hardware

Low accuracy in detecting
too-fast breathing

Sharma [20] BIDMC 53 EEMD + KF Kalman filtering is applied to
the reconstructed signal

KF is not suitable for
non-linear PPG signals

Adami [18] BIDMC 53 CEEMDAN +
DWT + EKF

Leverage time and frequency
domain information

Framework calculation is too
complicated

Mohammad [19] MIMIC 121 EMD family and PCA Free from parameter selection Sensitivity to high-amplitude
noise in the respiratory range

Shuzan [24] VORTAL 39 Machine-learning model Hyperparameter
optimization

Tested only on resting young
people

Pongpanut [25] BIDMC 53 RRWaveNet Improve model robustness
using transfer learning

Discarded low-quality signals
by SQI metric

Table 2 shows the MAE and RMSE of the PPG-derived RR (RRP and RRM) with RRI in
the training set and test set. Even in the test set, the MAE and RMSE of the respiration rate
prediction model proposed in this study are only 1.24 and 1.79 bpm, respectively, which
are 0.62 lower and 0.65 bpm lower, respectively, than those of the EEMD-PCA method.

Table 2. Mean of the differences, and the upper and lower limits of the 95% consistency limits for the
RRM and RRP with the RRI in the training set and test set.

Dataset Method Mean Mean +1.96SD Mean −1.96SD

training set This study 0 1.930 −1.930
EEMD-PCA 0.070 5.278 −5.138

test set
This study −0.015 3.533 −3.564

EEMD-PCA 0.121 4.906 −4.660

Figure 5 illustrates the performance of the proposed method for the continuous mon-
itoring of RR based on PPG signal segments at different reference respiration rates in
different people. The top half shows the training set results, and the bottom half shows the
test set results, both for an 8 min duration.

The PPG signal segments from different people are mixed and have many sudden
changes in RR, so we can check the capability of the respiration rate prediction model
proposed in this study in tracking sudden changes and adaptability among different people.
As shown in Figure 5, the proposed method shows good performance for the continuous
detection of the respiration rate with mixed PPG signals at different respiration rates in
different people. The proposed method is capable of estimating the sharp change in RR
better than the EEMD-PCA algorithm.

Considering the performance in different respiratory rate ranges, Table 3 shows the
performance in different respiratory rate ranges in the training set and testing set of
the proposed model. According to Table 3, both the training set and the test set show
good performance in the normal respiratory rate ranges of 12–16 bpm, 17–20 bpm, and
21–24 bpm. Even in the test set, the MAE is less than 2 bpm for the respiration rate
prediction model proposed in this study, especially in the ranges of 17–20 bpm and
21–24 bpm, and the MAE decreases nearly twofold. In the range of human respiratory
rates that are too fast or too slow (<12 bpm and >24 bpm), the MAE on the test set reaches
2.68 bpm and 4.28 bpm, respectively. However, compared to the EEMD-PCA method, the
MAE still decreased by 3.57 bpm and 2.34 bpm.
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Table 3. Mean absolute error (MAE) and root mean square error (RMSE) for the RRM (RR estimated
by the prediction model proposed in this study) and RRP (RR estimated by the EEMD-PCA method)
with the RRI in the training set and testing set.

Dataset Method MAE RMSE

training set This study 0.71 0.99
EEMD-PCA 1.99 2.66

test set
This study 1.24 1.79

EEMD-PCA 1.86 2.44

4. Discussion

In this study, we consider both the PPG signal quality and respiration signal quality to
estimate the respiration rate based on PPG signals and validate its accuracy and robustness
on the BIDMC dataset. This proposed model is developed based on the HRVM and WOA
algorithm. The use of hybrid kernel functions allows an exploration of the relationship
between the error in the respiration rate estimated by the EEMD-PCA method and the
signal quality indicators in a wider range of dimensions, and the WOA algorithm avoids
falling into the local optimum by continuously iterating to identify the most suitable kernel
function width and weight parameters. The respiration rate prediction model proposed in
this study has the advantages of both a local kernel function and nonlocal kernel function.
Therefore, the method has a higher accuracy in RR detection compared with other methods.

Previous studies used fixed threshold filters to pre-process PPG signals, which will
inevitably filter out some respiration information. Therefore, we did not use any filters to
pre-process the PPG signal. Instead, the data-driven EEMD-PCA method was directly uti-
lized to exclude motion and cardiac noise and to pre-extract respiratory waves. In addition,
the EEMD method is robust to noise, and PCA further reduces noise and cardiovascular
signal interference based on variance, making the initially extracted respiratory signal
highly reliable. Therefore, RQIs are calculated based on the pre-extracted respiratory waves
better than the pre-processed PPG signal.
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The complexity of the physiological condition of critically ill patients and the uncer-
tainty of external noise produce complex changes in the error rate of the RR estimated by
the EEMD-PCA method. Due to the differences in the human body, for different subjects,
there is a significantly different Pearson correlation coefficient between the error rate of
the RR estimated by the EEMD-PCA method and the four signal quality indices. Table 4
presents the R1, R2, R3, and R4 for 52 subjects, from which we observe that the R1, R2, R3
and R4 are significantly different for different subjects. For example, the correlation of four
signal quality indicators of Subject 01 with the error in the respiration rate estimated based
on the EEMD-PCA method is clearly more relevant than that of Subject 02. In addition, the
sensitivity of different signal quality indicators differed for the same subject; for example,
for Subject 04, compared to other signal quality indices, QR2 was not as relevant, while
for Subject 01, it was QR1 that was less relevant. However, the mean values of these four
correlation coefficients show that none of these four signal quality indicators is better than
the other three signal quality indicators. To reduce the influence of signal quality indicators
with a low correlation with the respiration rate estimation, the current state-of-the-art
approach is to improve the accuracy of the estimates at the expense of discarding unusable
data by ‘intelligent fusion’ methods. RQI Fusion reduces the percentage of discards by
setting an adjustable signal quality indicator threshold. In this paper, we use the sparsity
of the HRVM algorithm to select a certain percentage of data from the training set for the
model construction and optimization by the WOA algorithm. This method is data-driven
to determine the percentage of discards without setting a threshold parameter, and it is
only necessary to give an objective function that yields an estimated respiration rate that is
closest to the impedance respiration rate, which provides better robustness than other RR
estimation methods.

Table 4. Prediction performance in different ranges of respiratory rates.

RRI (bpm)
Training Set Test Set

N MAEthis study
[MAEEEMD-PCA]

RMSEthis study
[RMSEEEMD-PCA] N MAEthis study

[MAEEEMD-PCA]
RMSEthis study

[RMSEEEMD-PCA]

below 12 61 1.08 [6.40] 1.56 [6.57] 16 2.68 [6.25] 3.52 [6.34]
12–16 563 0.79 [2.34] 1.08 [2.65] 202 1.45 [2.21] 1.90 [2.50]
17–20 1118 0.63 [1.05] 0.82 [1.36] 407 0.91 [1.03] 1.21 [1.32]
21–24 211 0.75 [3.72] 1.16 [3.89] 88 1.80 [3.41] 2.45 [3.56]

above 24 40 0.98 [7.17] 2.14 [7.47] 13 4.28 [6.62] 5.01 [6.77]

Notes: MAEthis study and RMSEthis study denote the MAE and RMSE of RRM and RRI, MAEEEMD-PCA and
RMSEEEMD-PCA denote the MAE and RMSE of RRP and RRI, and N denotes the number of windows.

In this paper, an end-to-end respiration rate prediction model is constructed. The
advantages of the model proposed in this paper, in comparison with the end-to-end
respiration rate prediction methods based on PPG signals proposed by other researchers,
are shown in Table 5. According to our results and those of other authors on the BIDMC
dataset in recent years, the MAE and RMSE of the model proposed in this paper on the
test set are only 1.24 bpm and 1.79 bpm, respectively, which are much lower than those of
other methods. As shown in Table 6, although the framework proposed in [18] and the
EEMD + KF method [20] both show better results, the framework is too complicated to
calculate; each time, it needs to use the EMD and DWT methods to calculate seven different
predicted respiratory waves to fuse, and it takes 30 s to update the RR, 22 s more than the
model proposed in this paper. The reason for choosing 8 s to update the breathing rate
in this paper is based on matlab2020a with the EEMD-PCA method to decompose a 32-s
PPG signal to extract the predicted respiratory rate and respiratory waves, plus the time
to calculate four signal quality indicators is close to 8 s. Although the method in [20] is
simpler to calculate, it relies on the signal quality of the first PPG window, and the error in
estimating the respiration rate in the first window can lead to large errors in all subsequent
windows. Neither the conventional respiratory-modulation-based methods in [14,32] in
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the paper showed good results, which is caused by the challenging respiratory modulation
extraction when the signal quality is poor. For some advanced machine-learning methods or
deep learning methods [26,27,32,33], they are affected by the accuracy of feature extraction
or feature selection, resulting in their outcomes not being better than this paper’s. This
paper uses the EEMD-PCA method to pre-extract the respiration rate and respiration wave,
which not only avoids the challenging and inaccurate extraction based on the traditional
respiration modulation, but also improves the accuracy and robustness of the respiration
rate prediction by incorporating signal quality factors into the respiration prediction model
using machine-learning methods. The RMSE of the CAGBA method was much lower than
that of the other methods as only 20 subjects were selected.

Table 5. Pearson correlation coefficient (PCC) between signal quality indices and error rate of
respiration rate estimated based on the EEMD-PCA method for different subjects.

Subject R1 R2 R3 R4

Subject 01 0.14 0.70 −0.24 −0.70
Subject 02 0.30 −0.10 0.07 0.08
Subject 03 −0.22 0.07 −0.27 −0.54
Subject 04 −0.07 0.43 −0.16 −0.43

. . . . . . . . . . . . . . .
Subject 53 −0.32 −0.29 −0.29 −0.16
Average 0.28 0.24 0.27 0.28

Notes: R1 denotes the Pearson correlation coefficient between QR1 and the error rate of respiration rate estimated
based on the EEMD-PCA method; R2 denotes the Pearson correlation coefficient between QR2 and the error rate
of respiration rate estimated based on the EEMD-PCA method; R3 denotes the Pearson correlation coefficient
between QR3 and the error rate of respiration rate estimated based on the EEMD-PCA method; R4 denotes
the Pearson correlation coefficient between SSQI and the error rate of respiration rate estimated based on the
EEMD-PCA method.

To balance the continuity of the respiration rate detection and the accuracy of the
respiration rate estimation, the appropriate PPG signal length is also important. It is
evident from recent literature that the performance of respiration rate detection algorithms
decreases as the PPG signal data length decreases. It is well-known that short data lengths
are important for real-time respiratory rate detection in critical care or wearable devices,
but a PPG signal that is too short is not conducive to accurate respiratory rate detection.
In [34], the authors concluded that a length of 32 s is the most stable and shortest length
for extracting respiratory signals based on PPG signals. Table 6 compared with other
respiration rate estimation methods in recent years, the model proposed in this study
showed better robustness and accuracy in estimating RR than other existing methods. A
limitation of this study is the method for calculating PPG signal quality indicators and
respiratory signal quality indicators. We calculated four signal quality indicators and tested
them on different people. For some subjects, the sensitivity was poor, and a more sensitive
signal quality index should be investigated. The choice of kernel function and the number
of iterations of the WOA algorithm are also key factors affecting the accuracy of the final
respiration rate prediction model. Other kinds of kernel functions and larger numbers
of iterations should continue to be explored. In addition, the model was only tested on
the BIDMC dataset; other datasets or an autonomous collection of real-world data should
be collected by the latter to further validate the stability of the proposed method. The
advantage of the proposed method is the end-to-end estimation of the respiration rate
based only on PPG signals without a complex parameter adjustment, and the performance
is significantly improved compared to other respiration rate estimation methods.
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Table 6. Performance comparison of different PPG-signal-based respiration rate detection methods
on BIDMC dataset.

References Method Length
(sec) Subjects Overlap (sec) MAE RMSE Dis (%)

This study WOA-HRVM 32 53 24 1.24 1.79 6.6%
Adami [18] EMD and DWT + EKF 60 53 30 0.73 - -

Pongpanut [25] RRWaveNet 32 53 - 1.62 - 1.9%
Sharma [20] EEMD + KF 32 53 29 1.90 - -
Aqajari [33] CycleGAN 30 53 - 1.90 - -

Lee [26] CAGBA 32 20 0 1.94 0.61 62.26%
Bian [32] Deep learning 60 53 59 2.50 - -

Karlen [12] SmartQualityFusion method 60 53 - 2.60 - -
Birrenkott [14] RQI calculation and fusion 32 53 17 3.12 4.39 23.2%

Notes: Dis (%) indicates the percentage of discarded data in the entire dataset.

5. Conclusions

In this paper, we used the WOA-HRVM method to fuse the PPG signal quality and
respiratory signal quality with the respiratory rate estimated based on the EEMD-PCA
method to construct a highly accurate and robust respiratory rate prediction model based
on the PPG signal. The method is data-driven and does not require complex parameter
tuning, which affects the stability of the respiratory rate prediction model, and overcomes
the problem of difficult and inaccurate extraction when the signal quality is poor with
traditional respiratory modulation methods. It also does not require the extraction of
PPG morphological features and screening with feature selection methods as with other
machine-learning methods or deep learning methods, and the final performance is affected
by the accuracy of feature recognition and the performance of feature selection methods.
After comparing the performance of the PPG-signal-based estimation of the respiration rate
on the BIDMC dataset with that of previous investigators, the proposed methods showed
more accurate results in estimating the RR than other existing methods for subjects from the
BIDMC dataset with a short data length and a 32-s PPG signal. In future studies, we will
validate the method using other datasets or an autonomous collection of real-world data
in large cohorts of short data lengths while exploring more effective PPG and respiratory
signal quality metrics to further improve the accuracy of the respiratory rate prediction
model so that it can eventually be applied to the real-time detection of the respiratory rate
on wearable devices or be utilized instead of impedance detection for the real-time detection
of the respiratory rate in patients under intensive care. It promotes the development of
portability for the real-time respiratory detection of patients under intensive care, and has
a very important theoretical value for realizing the real-time detection of the respiratory
rate in wearable devices and telemedicine, and improving the accuracy of respiratory
rate measurement.
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