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Abstract: Magnetic resonance imaging (MRI) is widely regarded as the most comprehensive imaging
modality to assess skeletal muscle quality and quantity. Magnetization transfer (MT) imaging can be
used to estimate the fraction of water and macromolecular proton pools, with the latter including the
myofibrillar proteins and collagen, which are related to the muscle quality and its ability to generate
force. MT modeling combined with ultrashort echo time (UTE-MT modeling) may improve the
evaluation of the myotendinous junction and regions with fibrotic tissues in the skeletal muscles,
which possess short T2 values and higher bound-water concentration. The fat present in muscle has
always been a source of concern in macromolecular fraction (MMF) calculation. This study aimed to
investigate the impact of fat fraction (FF) on the estimated MMF in bovine skeletal muscle phantoms
embedded in pure fat. MMF was calculated for several regions of interest (ROIs) with differing FFs
using UTE-MT modeling with and without T1 measurement and B1 correction. Calculated MMF
using measured T1 showed a robust trend, particularly with a negligible error (<3%) for FF < 20%.
Around 5% MMF reduction occurred for FF > 30%. However, MMF estimation using a constant
T1 was robust only for regions with FF < 10%. The MTR and T1 values were also robust for only
FF < 10%. This study highlights the potential of the UTE-MT modeling with accurate T1 measurement
for robust muscle assessment while remaining insensitive to fat infiltration up to moderate levels.

Keywords: muscle; MRI; UTE; myotendinous junction; fat infiltration

1. Introduction

Magnetic resonance imaging (MRI) is widely regarded as the most comprehensive
imaging modality to assess skeletal muscle quality and quantity. Muscle inflammation,
fat infiltration, fibrosis, and atrophy are the most common qualitative observations in MR
images of muscle injuries and pathologies. Conventional MRI techniques that are routinely
performed for qualitative muscle assessments include T1- and T2-weighted [1], short-
tau-inversion-recovery [2,3], and diffusion-weighted imaging [4]. However, the standard
morphological MRI-based muscle assessments are subjective and may lack reproducibility.
Quantitative MRI techniques, including T1 and T2 relaxation times [5–11], magnetization
transfer (MT)-related measures [10–18], and diffusion tensor (DT) indices [4,19–21], as well
as fat and water separation [22–30], may provide more sensitive, objective, and reproducible
measures of the muscle microstructure and composition.

Among the above-mentioned quantitative MRI techniques, MT can provide informa-
tion on proton pools, such as water and macromolecules, using MT ratio or size estimation
of the pools (e.g., macromolecular fraction, MMF) [12,13]. In muscle, the dominant macro-
molecules include the myofibrillar proteins and collagen, and a measurement of this pool
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could be potentially sensitive to the muscle quality and its ability to generate force [31,32].
Using MT techniques, a high-power saturation radio frequency (RF) pulse is used with a
predefined frequency different from the water protons’ resonance frequency to saturate
mainly protons in macromolecules in the skeletal muscle fibers. After the saturation pulse
application, the saturated magnetization transfers from the macromolecules to the water
protons (bound and free water) that can be detected by MRI as a signal reduction. MT
imaging combined with ultrashort echo time (UTE) MRI has been recently introduced
as a technique to incorporate the saturations experienced by both free and bound water
in different biological tissues [33,34]. UTE-MT modeling may particularly improve the
evaluation of the myotendinous junction and regions with fibrotic tissues in the skeletal
muscles, which possess short T2 values and higher bound-water concentration. Detecting
the applied saturation in such regions of muscle is challenging with conventional MRI
sequences that utilize echo times (TEs) greater than a few milliseconds [35]. Accurate MT
modeling requires B1 correction and T1 compensation [36]. Remarkably, UTE-MT modeling
has been shown to be insensitive to tissue orientation and to provide a robust assessment of
musculoskeletal (MSK) tissues regardless of their orientation within the MRI scanner [37].

Fat protons, in theory, should not participate in the MT phenomena because the lipid
proton spin group is essentially isolated from the water protons and from the protons on
large macromolecules [38]. However, the fat present in muscle has always been a source of
concern in MMF calculation and a few studies have reported significant underestimation of
MMF for muscles with considerable fat infiltration [16]. This could pose a problem for some
applications, such as the rotator cuff musculature in which pathologic muscles can contain
up to 30% fat [39]. Robust estimation of MMF in muscle regardless of the macroscopic fat
infiltration will be a useful tool for muscle assessment decoupled from the fat infiltration.

The purpose of this study was to investigate the impact of fat fraction (FF) on the
estimated MMF in bovine skeletal muscle phantoms embedded in pure fat (lard). MMF was
calculated for several regions of interest (ROIs) with differing FFs using UTE-MT modeling
with and without T1 measurement and B1 correction.

2. Material and Methods
2.1. Phantom Preparation

Fresh cuts of lean bovine chuck muscles and pure pork fat (lard) were purchased from
a local grocery store. The muscle cuts were visually examined to select a lean portion,
avoiding the inclusion of obvious interfascicular fat in the prepared muscle specimen.
Two muscle sections were placed in a cylindrical plastic container (10 cm in diameter and
20 cm length, approximately). Lard was melted at 60 ◦C and then cooled to near room
temperature. Next, melted lard was poured into the container with the two muscle sections
at the bottom. Lard and muscle sections filled up to the middle of the container. The
muscle-fat phantom was kept at room temperature until the lard reached its stable solid
state. The container was topped with tap water to ensure performing MR imaging at the
water peak frequency.

2.2. UTE-MRI Imaging

The 3D-UTE-Cones MRI scans were performed on a 3T MRI scanner (MR750, GE
Healthcare Technologies, WI, USA) using an eight-channel knee coil (one RF transmission
channel and eight signal reception channels). The muscle-fat container was parallel to the
B0 direction of the scanner, and all images were acquired in the coronal plane.

To measure T1 as a prerequisite for the two-pool UTE-MT modeling, the actual flip
angle imaging-variable flip angle (AFI-VFA) sequence (AFI: TE = 0.032 ms, TRs = 20,100 ms,
FA = 45◦; VFA: TE = 0.032 ms, TR = 20 ms, FAs = 5◦, 10◦, 20◦, and 30◦) was performed [40].
Notably, the AFI-VFA sequence results in B1 corrected T1 measurement. A 3D-UTE-Cones-
MT sequence (Fermi saturation pulse power = 500◦, 1000◦, and 1500◦; frequency offset = 2,
5, 10, 20, and 50 kHz; FA = 7◦; 11 spokes per MT preparation) was performed for MT ratio
(MTR) measurement and two-pool MT modeling [34,41]. Field of view, in-plane matrix
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dimension, slice thickness, and total scan time were 12 cm, 192 × 192, 4 mm, and 35 min,
respectively.

2.3. MRI Data Analysis

UTE-MRI analyses were performed initially within seven regions of interest (ROIs)
covering only muscle to calculate T1, MTR, and MMF (from MT modeling). Each ROI was
then gradually expanded by adding only the neighboring pure fat voxels (lard), which
meant increasing FF within ROIs, while the originally included muscle voxels were kept
intact. Finally, calculated T1, MTR, and MMFs were plotted against FF values to investigate
their estimated variation levels when encountering fat infiltration in muscle. A 5% variation
threshold from the original MRI measures (FF = 0) was considered as the range of robustness
for each one of the MRI measures. Analyses were performed on a single slice in the middle
of the phantom-fat phantom.

A single-component exponential model was used for T1 measurement. The acquired
UTE-MT data with the three saturation pulse power levels and the five frequency off-
sets were used first for MTR calculation and then two-pool MT modeling to calculate
MMF [33,34,41]. MMF calculation was repeated using (1) a constant T1 (T1 = 750 ms, i.e.,
average T1 values measured in pure muscle regions) and no B1 correction (i.e., B1 = 1),
(2) a constant T1 and B1 correction (from the AFI sequence), (3) a measured T1 (from the
AFI-VFA sequence) and no B1 correction, and (4) a measured T1 and B1 correction. It
should be noted that the measured T1 values used as inputs in MT modeling were B1
corrected (from the AFI-VFA sequence). All UTE MRI measurements and models were
performed using MATLAB (version 2021, The Mathworks Inc., Natick, MA, USA) codes
developed in-house.

3. Results

Figure 1A demonstrates a T1-weighted UTE MRI image of the bovine muscle specimen
embedded in lard (i.e., presumably FF = 100%). Figure 1B,C depict the T1 fitting curves
(single component exponential model) on a variable FA dataset for a pure muscle and
a pure fat ROI, respectively, both adequately far from the fat/muscle border to avoid
partial-volume artifacts.
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Figure 1. (A) T1-weighted UTE MRI image of a bovine muscle specimen embedded in lard (i.e., FF 
= 100%). UTE-T1 recovery fitting curves in (B) a pure muscle region of interest (ROI) (T1 = 972 ms) 
and a (C) pure fat ROI (T1 = 233 ms). 

Figure 1. (A) T1-weighted UTE MRI image of a bovine muscle specimen embedded in lard (i.e.,
FF = 100%). UTE-T1 recovery fitting curves in (B) a pure muscle region of interest (ROI) (T1 = 972 ms)
and a (C) pure fat ROI (T1 = 233 ms).

Figure 2A shows an exemplary ROI highlighted in a blue box with an initial FF = 1 %
that expanded to an ROI with FF = 70% by adding only the neighboring lard voxels (red
box) while the muscle compartment of the expanding ROIs was intact. Figure 2B–D depict
the UTE-T1 fittings within the three exemplary ROIs shown in Figure 2A (FF = 1, 35 and
70%). T1 values decreased by increasing FF (T1 = 676, 407, and 296 ms for FF = 1, 35 and
70%, respectively).

Figure 3 illustrates the two-pool UTE-MT modeling using a super-Lorentzian function
over variable off-resonance frequencies for three different power levels (500◦, 1000◦, and
1500◦ power levels are shown in blue, green, and red lines) within four exemplary ROIs with
(A1–A4) FF= 0 (pure muscle far from fat border, Figure 1A), (B1–B4) FF = 1% (Figure 2A),
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(C1–C4) 35% (Figure 2A), and (D1–D4) FF = 70% (Figure 2A). MT modeling was repeated
four times using (1) a constant T1 (T1 = 750 ms) and no B1 correction, (2) a constant T1
and B1 correction, (3) a measured T1 and no B1 correction, and (4) a measured T1 and B1
correction. The actual signal changes within all investigated ROIs were fitted reasonably
well using all the calculation methods.
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Figure 2. (A) T1-weighted UTE MRI image of the bovine muscle specimen embedded in lard. The
blue box (dotted line) indicates an exemplary ROI with FF ≈ 1 % that expanded by only adding
the neighboring lard voxels up to FF = 35% (green box, dotted line) and then FF = 70% (red box,
dotted line). UTE-T1 recovery fitting curves for the ROI with (B) FF = 1% (T1 = 676 ms), (C) FF = 35%
(T1 = 407 ms), and (D) FF = 70% (T1 = 296 ms).
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up to FF = 70% by adding only neighboring pure lard voxels. T1 and MTR decreased by 
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decreased to around 40% to 60 % of their original values. 

Figure 3. Two-pool UTE-MT modeling using a super-Lorentzian function over variable off-resonance
frequencies for three different power levels (500◦, 1000◦, and 1500◦ power levels are shown in blue,
green, and red lines) within four exemplary ROIs with (A1–A4) FF= 0 (pure muscle far from fat
border, Figure 1A), (B1–B4) FF = 1% (Figure 2A), (C1–C4) 35% (Figure 2A), and (D1–D4) FF = 70%
(Figure 2A). MT modeling was repeated using (1) a constant T1 (T1 = 750 ms, i.e., average T1 values
measured in pure muscle regions) and no B1 correction (i.e., B1 = 1), (2) a constant T1 and B1 correction
(from the AFI sequence), (3) a measured T1 (from the AFI-VFA sequence) and no B1 correction, and
(4) a measured T1 and B1 correction.
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Figure 4 depicts T1 and MTR as well as their normalized values versus FF within
the seven series of ROIs initiated with pure muscle ROIs with FF = 0% and expanded to
ROIs up to FF = 70% by adding only neighboring pure lard voxels. T1 and MTR decreased
by more than 5% for FF values above 10%. For ROIs with 50% fat content, T1 and MTR
decreased to around 40% to 60 % of their original values.
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Figure 5 shows MMF and normalized MMF values versus FF within the seven ex-
panding ROIs (FF = 0 to 70%) using the four calculation methods used in Figure 3. MMF
decreased by more than 5% for FF above 10% when constant T1 (T1 = 750 ms) was used
(Figure 5A–D). However, when the measured T1 was used (E-H), the 5% MMF reduction
occurred for FF > 30%. MMF calculated with the measured T1 showed a much more
robust trend, particularly with a less than 3% error for FF < 20%. For ROIs with 50% fat
content, the MMF error stayed below 30% when the accurately measured T1 was used in
the calculation.
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Figure 5. MMF and normalized MMF values versus FF within the seven expanding ROIs (FF = 0
to 70%) using (A,B) a constant T1 (T1 = 750 ms) and no B1 correction, (C,D) a constant T1 and B1
correction, (E,F) a measured T1 (from the AFI-VFA sequence) and no B1 correction, and (G,H) a
measured T1 and B1 correction. MMF decreased by more than 5% for FF above 10% when constant
T1 (T1 = 750 ms) was used (A–D). However, when an accurately measured T1 was used (E–H), the
5% MMF reduction occurred for FF > 30%. The calculated MMF using a measured T1 showed a less
than 3% error for FF < 20%.

4. Discussion

The impact of fat content on the MMF estimations from UTE-MT modeling was
investigated using a muscle/lard phantom. The estimated MMF from UTE-MT modeling
using the accurately measured T1 demonstrated a robust trend and showed under 5%
changes for muscle/fat ROIs with FF up to 30%. The MMF underestimation was less than
3% for regions with FF < 20%.

This study highlighted the potential of the two-pool UTE-MT modeling with the
T1 compensation method for robust protein content estimation as a measure of muscle
quality while remaining insensitive to fat infiltration up to moderate levels. This could
be a particularly useful technique for some applications, such as analyzing rotator cuff
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musculature where pathologic muscles can contain up to 30% fat [39]. Notably, MMF
estimation using constant T1 was robust only for regions with FF < 10%. The MTR and T1
values were also robust only for FF < 10%.

The presence of fat in muscle results in an apparent decrease in measured MT effect,
which is demonstrated as decreases in MTR (Figure 4C,D) and MMF using constant T1
(Figure 5A,B). On the other hand, as shown in Supplementary Figure S1, for a pure muscle
ROI, decreasing the T1 value results in an overestimation of the MMF of muscle (increasing
from around 9% to 24% by T1 decrease from 1000 ms to 300 ms). Such an overestimation
in MMF was likely compensating for the apparent MT effect reductions caused by fat
infiltration in our phantom study, which, in turn, led to the robust MMF values for a large
range of FF (up to 30%) when the measured net T1 (including muscle and fat) was used in
the models.

Robust estimation of MMF in muscle regardless of the macroscopic fat infiltration can
decouple the muscle assessment from the fat infiltration, which may impair the muscle
performance independently in the case of injuries and pathologies. Remarkably, UTE-MT
modeling has been shown previously to be insensitive to tissue orientation and to provide a
robust assessment of MSK tissues regardless of their orientation within the MRI scanner [37].
Being less sensitive to the tissue orientation and the macroscopic fat-filtration makes the
UTE-MT technique a useful tool for muscle assessment, particularly in the myotendinous
junction and regions with fibrotic tissues. It should be noted that UTE-MT modeling has
been previously used mainly to assess MSK tissues with significant fractions of short T2
components, such as cartilage [42,43], meniscus [42], ligament [44], tendon [45–47], and
bone [48–52].

MMF in muscle is potentially sensitive to the muscle quality and its ability to generate
force. The fat present in muscle has always been a source of concern in MMF calculation.
Li et al. have demonstrated significant underestimation in MMF values by increasing FF
through a set of numerical simulations of MT pulses [16]. Therefore, using MT sequences
combined with fat saturation methods has been suggested in previous studies to avoid
MMF underestimations [11,15,16]. However, fat saturation preparation can create chal-
lenges. For instance, the fat saturation pulse may attenuate signals from tissues with short
T2 relaxation times because of their broad frequency spectrum that may overlap with the
main fat signal peak [53]. In addition, the pulse may generate magnetization transfer
effects [54], which can result in increases in MMF measurement [11].

Several other quantitative MRI techniques have been reported in the literature for
muscle assessments. T1 and T2 measurements have been used for muscle injury and pathol-
ogy assessment and aging-related differences in several investigations [5–8,10]. Briefly,
T1 values were found to be higher in muscle inflammation regions while they are lower
in fat-infiltrated regions [5]. T2 values, however, were found to be higher in both muscle
inflammation and fat-infiltrated regions [9]. DT imaging in MR has been widely used to
evaluate the diffusion preference directions by the water molecules in tissues with well-
organized long fibers, such as muscles, tendons, and ligaments. DT indices can provide
information about the tissue microstructure and fibers’ orientation at a microscopic level.
The diffusion properties of muscle, especially the third eigenvalue of the diffusion tensor
and degree of diffusion anisotropy, reflect muscle damage due to injury [19,20] and dis-
ease [4,21]. Moreover, since macroscopic fat infiltration is a widespread observation in
muscle pathologies and injuries, several studies have been devoted to performing an accu-
rate estimation of the fat content in tissues, with most employing the different frequencies
of fat and water protons [22–30].

The limitations of this study can be summarized in three aspects. First, the number
of samples was small as is the nature of pilot studies. Second, bovine rather than human
muscle tissue was used because bovine muscle could be readily obtained in a fresh and
non-diseased state. Third, since the original muscle cuts were not performed by the authors,
identifying the exact muscles of the bovine chuck (with more than 20 muscles) was not
possible in this study. Considerable differences in fat and collagen composition among
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the muscles [55] and within each specific muscle [56] may affect the estimated MMF val-
ues. Although biochemical or microstructural analyses were not performed to confirm a
minimum fat content in the muscle cuts, the selected ROIs were in regions that appeared
devoid of macroscopic fat. Fourth, this study was performed ex vivo on a uniform mus-
cle/fat phantom. The presence of nonuniform fat with irregular shapes and other soft and
hard tissues, lower spatial resolution, a higher body temperature [57], and subject motion
may all contribute to the reduced performance of all UTE-MRI-based imaging techniques
in vivo compared with ex vivo studies. Fifth, this study was focused on macroscopic fat
infiltration in muscle as limited by the current phantom study design. Future investigations
should be performed to investigate the potential impacts of microscopic fat infiltration in
muscle, which might require accurate and well-developed fat saturation or water excitation
techniques [58].

5. Conclusions

Robust estimation of MMF in muscle regardless of the macroscopic fat infiltration
can decouple the muscle assessment from the fat infiltration. The estimated MMF from
UTE-MT modeling using the accurately measured T1 demonstrated a robust trend and
showed under 5% changes for muscle/fat ROIs with FF up to 30%. MMF using a constant
T1 value, similar to MTR showed robust values only for ROIs with FF < 10%. This study
highlighted the potential of the UTE-MT modeling with the T1 compensation method for
robust skeletal muscle assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13050876/s1, Figure S1: The relation between MMF
in muscle and the input T1 value.
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