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Abstract: Cervical spondylotic myelopathy (CSM) is a chronic disorder of the spinal cord. ROI-based
features on diffusion tensor imaging (DTI) provide additional information about spinal cord status,
which would benefit the diagnosis and prognosis of CSM. However, the manual extraction of the
DTI-related features on multiple ROIs is time-consuming and laborious. In total, 1159 slices at cervical
levels from 89 CSM patients were analyzed, and corresponding fractional anisotropy (FA) maps were
calculated. Eight ROIs were drawn, covering both sides of lateral, dorsal, ventral, and gray matter.
The UNet model was trained with the proposed heatmap distance loss for auto-segmentation. Mean
Dice coefficients on the test dataset for dorsal, lateral, and ventral column and gray matter were 0.69,
0.67, 0.57, 0.54 on the left side and 0.68, 0.67, 0.59, 0.55 on the right side. The ROI-based mean FA
value based on segmentation model strongly correlated with the value based on manual drawing.
The percentages of the mean absolute error between the two values of multiple ROIs were 0.07,
0.07, 0.11, and 0.08 on the left side and 0.07, 0.1, 0.1, 0.11, and 0.07 on the right side. The proposed
segmentation model has the potential to offer a more detailed spinal cord segmentation and would
be beneficial for quantifying a more detailed status of the cervical spinal cord.

Keywords: diffusion tensor imaging (DTI); image segmentation; deep learning; fractional anisotropy
(FA); cervical spondylotic myelopathy (CSM)

1. Introduction

Cervical spondylotic myelopathy (CSM) is characterized by chronic spinal degen-
eration causing structural modifications to the intervertebral discs, ligaments, etc. [1,2].
Magnetic resonance imaging (MRI) is the gold standard for diagnosing cervical spinal
cord dysfunction [3]. Conventional MRIs, including T1-weighted and T2-weighted MRIs,
are commonly used to obtain morphological information about the spinal cord, such as
intramedullary or extramedullary abnormalities, spinal cord compression, disk hernia-
tion, etc., for identification of spinal cord injury [4–7]. Based on signal abnormalities on
T2-weighted MRI, the Brain and Spinal Injury Center (BASIC) score is used to classify
acute traumatic spinal cord injuries [8]. However, conventional MRI findings and clinical
presentation in CSM appear disconnected, and conventional MRI cannot highlight the
microstructural spinal cord abnormalities associated with CSM [2,9,10]. Diffusion tensor
imaging (DTI) is a type of multi-parametric MRI and is considered a promising imaging
technique for studying the ultrastructure of the spinal cord. The DTI parameter, fractional
anisotropy (FA), has been used in several studies to investigate the diagnosis and prognosis
of cervical spondylotic myelopathy [1,11,12]. To detect detailed neurological deficits in the
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spinal cord, regions of interest (ROI) can be segmented on the cord to measure the corre-
sponding features in different tracts from the FA map [11,13,14]. A greater number of ROIs
within a spinal cord leads to precise information about myelopathy. Numerous studies
have demonstrated the feasibility and effectiveness of ROI-based features for providing
details on the internal state of the spinal cord [11,13]. Due to its manual voxel selection
and user-dependent nature, ROI delineation involves the user drawing ROIs based on
perceptions of the location of underlying anatomical structures, such as the gray matter or
the corticospinal tract [15]. Hand animation ROIs are prone to inter-rater and intra-rater
variability and bias and are not easily transferable to large-scale studies [15]. Consequently,
the manual drawing of describing ROI has serious limitations.

Some methods have been proposed for segmenting the entire spinal cord. EI Mendili
et al. used T2-weighted MR images as input and employed a dual-threshold-based ap-
proach for spinal cord segmentation [16]. De Leener et al. proposed a PropSeg method
based on multi-resolution propagation of tubular deformation models [17]. Chen et al.
proposed a method to segment the spinal cord using deformable atlases and topological
constraints that are robust to noise and artifacts [18]. In all of the above techniques, manual
intervention is required, or a large database needs to be established to create the spinal cord
segmentation map, and T1-weighted or T2-weighted images are the primary input. Several
research studies proposed further segmenting the internal structures, gray matter (GM)
and white matter (WM). Antal et al. use variational formulation to automatically detect
cerebrospinal fluid, WM, and GM and combine them with shape prior to segment GM and
WM [19]. Ferran proposed a two-stage pipeline using the Optimized Patch Match Label
fusion (OPAL) method for segmentation of the whole spinal cord and the Similarity and
Truth Estimation for Propagated Segmentations (STEPS) for the further extraction of GM
and WM [20]. However, these methods can be applied to specific spinal cord levels, limiting
their application to other segments. In DTI image analysis, there are some applications of
segmentation methods. Marek used the semiautomatic algorithm provided by ITK-SNAP
to segment the cervical spine GM and WM [21]. This method takes a T2-weighted image
as input and registers the segmentation results with the DTI image. Because of the devia-
tions between T2-weighted images and DTI images, a manual check is still necessary to
guarantee the registration result. Richu applied six commonly used automatic thresholding
algorithms for segmentation and vote to obtain the final segmentation results of GM and
WM [14]. Although this method uses DTI images as input, the segmentation of GM and
WM given by this method cannot reveal the details of each white matter column. Therefore,
it should be pointed out that the existing methods of spinal cord segmentation based on
DTI images provide limited ROIs within the spinal cord.

In recent years, great attention has been paid to deep learning in the medical field.
One of the most widely used deep learning networks in medical image segmentation is
UNet, which is based on an encoder–decoder architecture [22]. Several deep learning-based
models applied UNet or UNet-like structures on spinal cord segmentation. For instance,
Xiaoran et al. proposed a UNet-based, fully automatic method on 2D axial-view MRI slices
for the whole spinal cord segmentation of patients with CSM [23]. Alhanouf et al. used
a pre-trained MobileNet-V3 CNN model as the backbone for feature extraction, which
was augmented by a set of up-sampling layers and employing skip connection similar
to the UNet architecture used for spinal cord GM segmentation [24]. The deep-learning
model achieved better performance on the spinal cord gray matter segmentation challenge
dataset compared to Spinal Cord Toolbox (SCT), the Variational Bayesian Expectation
Maximization (VBEM) method, and the Gray Matter Segmentation Based on Maximum
Entropy (GSBME) method.

This paper proposes a deep learning model based on the UNet architecture for seg-
menting multiple ROIs within the spinal cord in DTI images. Segmentation results can be
obtained simultaneously for both sides’ ventral, lateral, dorsal columns, and gray matter.
Specifically, heatmap-distance loss (HDL) is proposed to train with the UNet model to make
the model have better performance on the small area of column-based ROI and gray matter.
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This study hopes to provide a more detailed segmentation than the gray and white matter
segmentation of the spinal cord and more details of the internal status of the spinal cord.

2. Materials and Methods
2.1. Study Population

An overall sample size of 89 patients with CSM was recruited for this study. All
of the CSM patients are symptomatic. Clinical examination by the Japanese Orthopedic
Association (JOA) produced scores of 9.78 ± 3.48, while the healthy JOA score is 17 with
motor function of upper and lower limb (8 scores), sensory (6 scores) and sphincter function
(3 scores). Inclusion criteria were a clinical diagnosis of CSM without a history of spinal
surgery. Those with neurological disorders or prior neurological trauma were excluded.
Every participant in this study completed a written informed consent form approved by
the institutional review board.

DTI scanning protocol was performed with a Philips 3T Achieva scanner (Philips Medical
System, Best, Netherlands). Specifically, the one-shot echoplanar imaging sequence was used.
We carried out diffusion encoding in 15 nonlinear and noncoplanar directions with a b value
of 600 s/mm2. The scanning parameters are listed as follows: field of view = 80 × 80 mm2,
thickness of slices = 7 mm, gap between slices = 2.2 mm, fold-over direction = anteroposterior,
reconstruction resolution = 0.63× 0.63× 7 mm3, and voxel resolution = 1.0× 1.26× 7 mm3,
and TTE/TR = 60 ms/5 heartbeats. For the purpose of sup-pressing the fold-over effect, spatial
saturation was inverted and spectral presaturation was applied. To minimize the effects of
cerebrospinal fluid on cardiac vector cardiograms, cardiac vector cardiograms were triggered.

2.2. Manual Segmentation

The manual delineation of the ROI is an essential step for feature extraction to provide
more information about the inside of the spinal cord. FA is one of the most popular parameters
in DTI studies to evaluate the microstructural abnormality of the spinal cord [13,14]. Each CSM
patient extracted 12 axial slices from three stacks covering the vertebrae between C2 and C7/T1.
Spinal Cord Toolbox, Version 2.3 [25] was used to preprocess the DTI images, extract the B0
images, and calculate the FA map. B0 and FA images were used as input for spinal cord ROI
auto-segmentation in the following experiments. The auto-segmentation ROIs and manual
segmentation ROIs were superimposed on the FA images to extract the mean FA value for
each ROI.

An experienced researcher in the cervical spinal cord manually drew ROIs on B0
images supplemented with FA images. The ROIs have covered more specific columns
within the entire cord region, as showed in Figure 1. A total of eight regions were identified
for each image to obtain detailed information about the spinal cord: lateral column (LC),
dorsal column (DC), ventral column (VC), and gray matter (GM) on both sides of the spinal
cord. We acquired 96 segmentation masks for each subject (8 ROIs × 12 slices). A total of
8472 segmentation masks have been created for all patients with CSM (8 ROIs× 1059 slices)
except for images that are difficult to segment manually. The manual delineated ROIs were
defined as the ground truth. A second expert manually segmented these ROIs to enhance
confidence in identifying these eight ROIs. Whenever there was a discrepancy, a third
expert was consulted until a consensus was reached.

2.3. Segmentation Models

The UNet [22] was introduced for its popularity in medical image segmentation.
The model structure is similar to a fully convolutional network, which consists of two
parts. The first part consists of layers of convolution and max pooling (known as the
encoder). B0 images will be used as input to extract multi-scale features. The second part is
mirror-symmetric to the first part (also known as the decoder), consisting of transposed
convolution and up-sampling layers for feature expansion of a feature vector of an image
of sizes corresponding to the original medical image. Several skip connections between the
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encoder and decoder were added to further utilize the multi-scale feature of the encoder
for feature expansion. Figure 2 demonstrates the detailed parameters of the UNet model.
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Generally, the feature extracted from the encoder highly affects the segmentation per-
formance. Two different depth general network structures, VGG-16 [26] and ResNet50 [27],
were used as the backbone for feature extraction. Two segmentation tasks corresponded to
two models with different backbones for feature extraction, including vgg_9classes for nine
classes (plus background) segmentation using VGG16 as the backbone and resnet_9classes
for nine classes (plus background) segmentation using ResNet50 as the backbone.

A challenge that needs to be noticed in this study is the small object of manual
segmentation. In our dataset, all ROIs are small areas, and the largest ROI only takes about
1/1000 of the whole DTI images from Figure 3. The challenge for model training comes from
small-shape annotations that contribute less to the loss than background annotations, which
makes the model prone to classify a pixel as background because image segmentation is a
pixel-wise classification. Wentao et al. [28] use the Dice loss combined with the focal loss to
segment small-volume organs in the Organs-At-Risk delineation problem and achieve good
segmentation accuracy, while the Dice loss learns the imbalanced class distribution, and
the focal loss trains the model to learn hard segmented annotations for these small-volume
organs. Hence, this hybrid loss was selected for the training of two models. The total loss
can be formulated as follows:

TP(i) =
N

∑
n=1

pn(i)gn(i) (1)
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FN(i) =
N

∑
n=1

(1− pn(i))gn(i) (2)

FP(i) =
N

∑
n=1

pn(i)(1− gn(i)) (3)

Ltotal = LDICE + LFocal = C−
C−1

∑
i=1

TP(i)
TP(i) + FN(i) + FP(i)

− 1
N

C−1

∑
c=1

N

∑
n=1

gn(i)(1− pn(i))
2 log(pn(i)) (4)

where TP(i), FN(i), and FP(i) are the true positives rate, false negatives rate, and false
positives rate for the classes. pn(i) is the predicted output value for the pixel n class i, gn(i)
is the ground truth label for pixel n class i, and C is the total number of anatomies included
in the background. N is the total number of pixels in one slice of a B0 slice image.
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However, the performance of the segmentation model using B0 images as input on
the test dataset was not satisfactory. Although we tried to use the FA images as input, the
segmentation performance was also unsatisfactory. Except for the small object, there is
another challenge in this dataset: the difference in pixel values between different classes is
minimal, making it difficult to distinguish the boundaries of different ROIs. Based on the
above challenges and performance on the test dataset, we believe the Dice loss combined
with focal loss is unsuitable for this research.

Inspired by the landmark localization based on two-dimensional (2D) heatmaps [29]
and the boundary-weighted map from Qikui’s research [30], we proposed the heatmap-
distance loss (HDL). The loss can be formulated as follows:

HDL =
9

∑
i=1
‖Hi(X)− Ĥi(X)‖2 (5)

Ĥi(x) =

 1, x ∈ Xlandmark

exp
(
− ‖max(x−Xlandmark)‖2

2
2σ2

)
, x /∈ Xlandmark

(6)

where X denotes the set of pixels in 2D space from any class ground truth mask, and x
represents any pixels from X. Let Xlandmark denote the set of landmark points whose pixel
value is equal to one. The notation ‖·‖2 denotes the L2 or Euclidean distance. Ĥi(x) refers
to the ground truth heatmap for the ith class of ground truth masks, while Hi(X) is the



Diagnostics 2023, 13, 817 6 of 15

predicted heatmap for the ith class. The pixel value of the heatmap Ĥi(x) is created based
on formulation (6). When the point from X has the same coordinate with the point in
Xlandmark, the value of Ĥi(x) is equal to one. Otherwise, each point will calculate the L2 or
Euclidean distance between the point and each landmark point. The max distance between
each pixel and the set of landmark points will be used as input to a Gaussian function with
variance σ2 to generate the value of Ĥi(x). The rationale behind the design is that the small
area of segmentation can be expanded to a large area, and the pixels created by Gaussian
based on distance could make the small area contribute to the training process. Based on the
test dataset performance and the model structure’s complexity, a better encoder between
VGG16 and ResNet50 would be used as a backbone trained with the proposed loss.

2.4. Training and Evaluation

We use 81% (857 images) of our dataset for training, 9% (96 images) of our dataset
for validation, and 10% (106 images) as a test dataset. The UNet model is trained on
the training dataset and validated on the validation dataset. The final performance is
exclusively reported on the test set.

The experiments were performed in the Pytorch environment, and we trained the
segmentation model on NVIDIA RTX3080Ti. The batch size was set to 16 based on the
memory of the GPU and computer. We used the Adam optimizer with a momentum of 0.9
and a cosine learning rate strategy with a learning rate range from 1 × 10−4 to 1 × 10−6;
the number of epochs is 500. The Dice loss combined with focal loss and the HDL loss was
trained under the same hyperparameters. The threshold definition is an essential step that
transforms the model output into segmentation results. The threshold values for different
segmentation classes are selected from 0 to 1 with intervals of 0.001 on validation datasets,
and the threshold value of the best performance was to evaluate the final performance on
the test dataset.

For evaluation of the proposed method, three metrics for each class are used, including
the Recall (also known as True Positive Rate), which represents a method’s ability to
segment pixels as a proportion of all correctly labeled pixels, the Precision, which measures
the ratio of correctly segmented pixels and the Dice coefficient, which is a similarity index
between two masks. The following equations define these three metrics: GT refers to
ground truth, and PM refers to predict mask. Symbols FN, FP, and TP are explained as
follows: true positive (TP) if it was a pixel in GT mask and it was segmented in PM; false
positive (FP) if it was not a pixel in GT mask and it was segmented in PM; and finally, false
negative (FN) if it was a pixel in GT mask and it was not segmented in PM:

DICE =
2|GT ∩ PM|
|GT|+ |PM| (7)

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

To further evaluate the accuracy of the mean FA value from the segmentation model,
a metric FAi

error, the percentage of absolute error of FA was utilized to compare the mean
value of the ground truth mask superimposing on the DTI metric map (FA map) and the
prediction segmentation mask superimposing on the DTI metric map (FA map), which is
formulated as follows:

FAi
error =

∣∣FAi
GT − FAi

PM
∣∣

FAi
GT

(10)

where FAi
GT refers to the FA mean value from the ground truth mask of the ith segmen-

tation class and FAi
PM refers to the FA mean value from the predicted mask of the ith

segmentation class.
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The performance of the algorithm was evaluated using basic statistics, such as the
mean and standard deviation of FAi

error. Outliers were defined as slices of DTI images that
did not obtain the segmentation results from the model. After removing these outliers, the
performance was calculated. The author performed an outlier assessment by calculating
the percentage of outliers within this dataset.

3. Results
3.1. Encoder Comparison

Figure 4 demonstrates the performance of the UNet with different backbones on the
test dataset (B0 as input images). We used the VGG16 and ResNet50 as the encoder for
UNet training with a hybrid loss of Dice loss and focal loss. The UNet with VGG16 as the
backbone achieves the highest Dice value of 0.65 on the right dorsal column and reaches the
lowest Dice value of 0.48 on the left ventral column. Figure 4 demonstrates that the UNet
model with VGG16 as the backbone performs better than using ResNet50 as the backbone
on all segmentation classes. Therefore, VGG16 will be used as a backbone for UNet trained
with the proposed loss function.
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𝐹𝐹𝐹𝐹𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖 =
�𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝑖𝑖 −𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑖𝑖 �

𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝑖𝑖
 (10) 

where 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝑖𝑖  refers to the FA mean value from the ground truth mask of the ith segmen-
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3.2. Model Performance

Figure 5 shows the segmentation result of several samples using the proposed model.
In these pictures, the line in blue color is by GT and the line in red color is by PM.
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Figure 6 demonstrates the performance on test datasets (FA as input images) of UNet
training with hybrid loss and HDL loss. The UNet with VGG16 as the backbone achieves
the highest Dice value of 0.69 on the left dorsal column and the lowest Dice value of 0.54 on
the left gray matter. Figure 6 demonstrates that the UNet model trained with the proposed
HDL loss performs better than the hybrid loss on all segmentation classes. Table 1 presents
the overall performance of UNet using the proposed HDL loss.
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Table 1. The performance of UNet with proposed HDL loss.

Class Dice Recall Precision

Left dorsal column 0.69 ± 0.19 0.78 ± 0.23 0.64 ± 0.2
Left lateral column 0.67 ± 0.24 0.74 ± 0.29 0.63 ± 0.23
Left ventral column 0.57 ± 0.29 0.62 ± 0.33 0.55 ± 0.28

Left gray matter 0.54 ± 0.28 0.59 ± 0.33 0.53 ± 0.28
Right dorsal column 0.68 ± 0.21 0.74 ± 0.25 0.65 ± 0.2
Right lateral column 0.67 ± 0.22 0.74 ± 0.26 0.65 ± 0.22
Right ventral column 0.59 ± 0.26 0.63 ± 0.29 0.58 ± 0.27

Right gray matter 0.55 ± 0.31 0.56 ± 0.34 0.57 ± 0.32

To eliminate the effect of different kinds of images, Figure 7 demonstrates the perfor-
mance of the UNet model training under different loss functions and using different types
of DTI images. UNet model training with the proposed HDL loss using FA as input images
achieves the highest performance.
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There is a situation in which several images could not obtain the segmentation result
from the model defined as the outlier slices. Table 2 illustrates the statistics of performance
removing these outlier slices. The Dice coefficients of the left lateral column, ventral column,
and gray matter were improved by 1%, 4%, and 3%, respectively. The Dice coefficients of
the right lateral column, ventral column, and gray matter were improved by 2%, 4%, and
6%, respectively. The “Outliers” column demonstrated the percentage of DTI slices that
cannot obtain output from segmentation.

Table 2. The performance of UNet with proposed loss removed outlier slices.

Class Dice Recall Precision Outliers

Left dorsal column 0.69 ± 0.19 0.78 ± 0.23 0.64 ± 0.2 0
Left lateral column 0.68 ± 0.23 0.76 ± 0.27 0.64 ± 0.21 2%
Left ventral column 0.61 ± 0.25 0.67 ± 0.3 0.59 ± 0.25 7%

Left gray matter 0.57 ± 0.25 0.63 ± 0.3 0.56 ± 0.25 7%
Right dorsal column 0.68 ± 0.2 0.74 ± 0.24 0.66 ± 0.2 1%
Right lateral column 0.69 ± 0.18 0.76 ± 0.23 0.67 ± 0.19 3%
Right ventral column 0.63 ± 0.23 0.67 ± 0.26 0.61 ± 0.24 6%

Right gray matter 0.61 ± 0.27 0.63 ± 0.3 0.63 ± 0.27 10%

3.3. Accuracy of FA Prediction

Furthermore, segmentation aims to extract the mean FA value within ROIs from
the spinal cord. Therefore, we calculate the mean FA values from auto-segmented and
manual-segmented ROIs. A series of higher intra-class correlation coefficients were found
in Figure 8, indicating excellent agreement between the FA from segmented ROIs and the
FA from ground truth ROIs. Table 3 demonstrates the percentage of the absolute error
between the mean FA value from the ground truth mask and the mean FA value from the
prediction mask. The percentage of the mean absolute error for lateral, dorsal, ventral, and
gray matter was 0.07, 0.07, 0.11 and 0.08 on the left side as well as 0.07, 0.1, 0.1 and 0.07 on
the right side, respectively.
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Table 3. The percentage of absolute error between two types of FA value.

Class FAi
error

Left dorsal column 0.07 ± 0.07
Left lateral column 0.07 ± 0.11
Left ventral column 0.11 ± 0.17

Left gray matter 0.08 ± 0.14
Right dorsal column 0.07 ± 0.08
Right lateral column 0.1 ± 0.11
Right ventral column 0.1 ± 0.23

Right gray matter 0.07 ± 0.09

4. Discussion

Microstructural spinal cord abnormalities are vital for CSM patients. DTI can reveal
the microstructural change in the spinal cord compared to conventional MRI. However, the
DTI analysis based on the whole cord region cannot reveal the details of the spinal cord.
The subtle abnormality of DTI parameters caused by minor microstructure impairment in
a small ROI may be missed due to the whole cord analysis dilution effect. ROI-based DTI
analysis could avoid the drawback and enable the quantitative evaluation of specific regions
with the spinal cord. This study combines UNet with the proposed heatmap distance loss
to segment multiple ROIs within the spinal cord on DTI-related images from CSM patients.
Many previous studies in spinal cord segmentation mainly focus on T1-weighted [31–33]
and T2-weighted images [23,34,35] instead of DTI-related images. The related studies in
spinal cord segmentation approaches on DTI images are semi-automatic [14,21] or diffusion-
tensor-tracking-based [36] instead of fully automatic. The segmentation region of associated
studies is the whole cord [23,31–33,35–37] or gray matter/white matter [14,19,20,24,38–41]
instead of multiple ROIs within the spinal cord. To the authors’ knowledge, this is the first
study using the deep learning method to fully automate and segment the multiple ROIs
within the spinal cord on DTI images from CSM patients. We focused on developing an
approach to help clinicians provide a more detailed description of spinal status of CSM
patients by providing ROI-based features to facilitate ROI-specific analysis of DTI images.

We used two backbone networks to extract the feature within DTI-related images.
VGG16 [26] and ResNet50 [27] are well-known convolutional neural networks in many
natural-images-related tasks, and these networks achieve good performance on feature
extraction. We hypothesize that the higher-level feature would be beneficial for segmen-
tation. Figure 4 illustrates that the hypothesis is wrong. Figure 3 demonstrates that the
percentages of pixels for all classes are small than 0.0011. Hence, the advanced features
would not be suitable for this task because the convolutional process from a deeper layer
would eliminate the efficient information for the training of the segmentation model.

The obstacle to fulfilling the segmentation in this dataset is the ROIs within the spinal
cord. Figure 5 demonstrates several samples with the auto-segmentation result. Because
the spinal medulla is misshaped in CSM patients, the ROIs contain variable sizes. To
deal with the above issue, several loss functions have been proposed. The Dice loss and
focal loss are commonly used for segmentation. Wentao [28] used focal loss combined
with Dice loss for organ-at-risk (OAR) segmentation, especially for small-volume organ
segmentation, achieving better segmentation accuracy. In this research, we use the focal
loss combined with Dice loss to train the UNet to fulfill the segmentation of ROIs within
the spinal cord. Figure 4 demonstrates that the segmentation performance of sub-ROIs
with the spinal cord is not satisfied. The possible reason is that the region of sub-ROIs
from the spinal cord is smaller than the volume of OARs in Wentao’s research, and the
boundary of these ROIs in DTI-related images is not as clear as in computed tomography
(CT) images. We proposed a new heatmap distance loss function inspired by landmark
localization. Figure 6 demonstrates that the UNet with the proposed HDL achieves the
highest segmentation performance for all classes. The basic principle of HDL is that we
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manually expand the ground truth area by designing the pseudo-probability, which makes
the small area significantly contribute to the model training.

However, the higher performance in Figure 6 was based on the FA images, while the
lower performance in Figure 6 was based on the B0 images. Regardless of the image types,
Figure 7 illustrates that the UNet model training using HDL performs better than hybrid
loss. The B0 images have a wide range, as well as the CT image in Wentao’s research, while
the value range of FA images is from 0 to 1. A wide range of values would be beneficial for
the convolutional process to extract the high-level feature and the hybrid loss, which could
be the reason that VGG_B0_hybird_loss has better performance than VGG_FA_hybird_loss.
Figure 7 also illustrates that the pixel value of images has less effect on the model training
using proposed HDL loss.

Figure 8 demonstrates the correlation between the mean FA of auto-segmented ROIs
and the mean FA of ground truth. The high intra-class correlation on the diagonal position
of the correlation matrix demonstrated the high agreement between the mean FA value
from auto-segmented ROIs and ground truth ROIs. Several values on the correlation matrix
need to be explored. It should be noted that the correlations from several pairs are high,
including {L_DC, R_DC}, {R_DC, L_DC}, {L_VC, R_VC}, {R_VC, L_VC}, {L_GM, R_GM},
and {R_GM, L_GM}. This result illustrated that the ROI of Pred_L_DC or Pred_R_VC
intersects with GT_L_DC or GT_R_VC, and there is a high agreement between the left
and right of DC, VC, and GM, which could be the factor that affects the segmentation
performance. Table 3 demonstrates the absolute error percentage between the FA of auto-
segmented ROIs and ground truth ROIs on the test dataset. The mean distance between
the mean FA value obtained from the segmentation model and the mean FA value obtained
from manually segmented ROIs is small, demonstrating that the mean FA value extracted
from the segmentation model has the potential for detailed spinal cord status evaluation,
such as the mean FA value extracted from the ground truth. The spinal medulla misshaped
in CSM patients still significantly affects segmentation performance. However, most of the
segmentation result is close to the manual segmentation, and most of the auto-segmentation
results are on the related region, which could be why the distance between mean FA values
from the auto-segmentation and mean FA values from manual segmentation are small.

Clinically, DTI has three applications. Firstly, it has the ability to identify spinal cord
structures and injuries, localization, and diagnosis of CSM. Cui et al. [10]’s research demon-
strated that the orientation entropy from DTI analysis is a valuable tool for identifying
the pathological level in multilevel CSM patients. Shu-Qiang Wang [42] combined the
eigenvalues from DTI and machine learning methods to achieve satisfactory performance
in recognizing the levels of CSM. According to Monika Skotarczak [43], the DTI metrics
can be used as a biomarker to illustrate the microstructural disorder of the spinal cord not
visible on conventional MRI. Secondly, there is the indication of surgery. As demonstrated
by Karsten Schöller et al. [44], DTI metrics achieve higher sensitivity in identifying levels
requiring decompression surgery than increased MRI signals. Thirdly, there is dynamic
spinal function examination and prognosis assessment. For instance, Ellingson et al. [45]’s
study demonstrated that DTI has the potential to monitor symptomatic patients and asymp-
tomatic patients, and Chun Yi Wen et al. [46]’s research revealed that FA is a biomarker
for surgical outcomes. The auto-segmentation of ROIs with the spinal cord DTI has the
potential to reduce inter-rater and intra-rater variability in manually drawn ROIs and help
the entire DTI analysis workflow be automated.

There are several limitations. Firstly, there is space for improvement in segmentation
performance. Based on the findings from Figure 5, the deep learning model with fewer
layers will be explored, which will be regarded as part of the future extension of this re-
search. Secondly, the intersection between the ROI of Pred_L_DC and the ROI of GT_R_DC,
the ROI of Pred_R_DC and the ROI of GT_L_DC, the ROI of Pred_L_VC and the ROI of
GT_R_VC or the ROI of Pred_R_VC and the ROI of GT_L_VC is a problem that could
be regarded as one reason to improve the segmentation performance of DC(L & R) and
VC(L&R). A specified preprocessing or postprocessing method needs to be explored in the
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future. Thirdly, the diffusion tensor for calculation of the DTI metric is reconstructed based
on a series of diffusion-weighted images and the b-matrix that integrates the parameters of
diffusion-sensitizing gradients. However, many factors influence the accuracy or reliability
of the diffusion tensor evaluation, including image noise [47], eddy currents [48], diffusion
gradient nonlinearity [47], and others. For example, in the circumstance of low anisotropy,
imaging noise could lead to the wrong estimation of eigenvalues, therefore causing an
overestimation of DTI metrics (such as FA) due to the incorrect order of eigenvalues [49],
and diffusion gradient inhomogeneities would cause distortion of the diffusion tensor’s
eigenvalues as well as rotation of the eigenvectors [50]. The diffusion gradient inhomogene-
ity is an important source of systematic error, and several methods have been proposed to
correct the error due to diffusion gradient inhomogeneity [51–54]. They are either based on
a calibration that uses an anisotropic phantom as a reference for estimation of the diffusion
tensor, mapping the actual magnetic field, or using the coil system’s manufacturer-provided
specifications. The b-matrix spatial distribution in DTI (BSI-DTI) [55] is a frequently em-
ployed technique for correcting this kind of inaccuracy and has the capacity to minimize
the impact on the assessment of DTI metrics. To reduce the effects of inhomogeneous
magnetic field gradients and make the data as accurate as possible, we intend to adopt
the BSI-DTI approach in the future. Finally, different types of input images potentially
affect the performance of segmentation, and many factors of MRI sequences can affect the
DTI images. The MRI scanner involves the measurement of DTI metrics (such as FA) [56].
Except for the MRI scanner, several studies demonstrated that the parameters of MRI
sequence, such as the b-value [57], echo time [58], the number of DTI directions [59], and
the number of signal acquisitions [60], could influence the diffusion quantification. In order
to expand the scope of application of the model, it is necessary to extend the diversity of the
DTI image dataset: for instance, acquiring the DTI images of CSM patients with different
b-value and different numbers of DTI directions.

In future work, we will consider the continuation path for this research in the following
steps. Firstly, we will continue to expand the size of our dataset, as the sample size in this
research is insufficient for deep learning training. Secondly, weak-supervised training will
be used on the new dataset. A new and helpful segmentation model will be developed
using the manual segmentation result in this research. Thirdly, DTI images of CSM patients
will be classified into several categories based on the types of CSM compression or the
classification result from unsupervised learning. The segmentation model will be trained
on the specified cases to verify the algorithm’s effectiveness in the specific category of
CSM cases.

5. Conclusions

This paper proposed using UNet and the heatmap distance loss to automatically
segment the sub-ROIs within the spinal cord on DTI images from CSM patients. The
performance of the segmentation model and the agreement between the mean FA value of
auto-segmented ROIs and the mean FA value of manually segmented ROIs demonstrates
that the deep learning model has the potential to provide more details of the internal status
of the spinal cord.
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