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Abstract: Limitations of the chest X-ray (CXR) have resulted in attempts to create machine learning
systems to assist clinicians and improve interpretation accuracy. An understanding of the capabilities
and limitations of modern machine learning systems is necessary for clinicians as these tools begin
to permeate practice. This systematic review aimed to provide an overview of machine learning
applications designed to facilitate CXR interpretation. A systematic search strategy was executed to
identify research into machine learning algorithms capable of detecting >2 radiographic findings on
CXRs published between January 2020 and September 2022. Model details and study characteristics,
including risk of bias and quality, were summarized. Initially, 2248 articles were retrieved, with
46 included in the final review. Published models demonstrated strong standalone performance and
were typically as accurate, or more accurate, than radiologists or non-radiologist clinicians. Multiple
studies demonstrated an improvement in the clinical finding classification performance of clinicians
when models acted as a diagnostic assistance device. Device performance was compared with that of
clinicians in 30% of studies, while effects on clinical perception and diagnosis were evaluated in 19%.
Only one study was prospectively run. On average, 128,662 images were used to train and validate
models. Most classified less than eight clinical findings, while the three most comprehensive models
classified 54, 72, and 124 findings. This review suggests that machine learning devices designed
to facilitate CXR interpretation perform strongly, improve the detection performance of clinicians,
and improve the efficiency of radiology workflow. Several limitations were identified, and clinician
involvement and expertise will be key to driving the safe implementation of quality CXR machine
learning systems.

Keywords: machine learning; chest X-ray; deep learning; radiology

1. Introduction

Chest X-rays (CXRs) have been used as the baseline chest imaging modality for more
than a century [1]. This relatively simple method of image acquisition has provided access
to radiological investigation of chest pathology to almost every corner of the globe, encom-
passing the investigation of infection, cardiac pathology, chest trauma, and malignancy.
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The development of safe principles of ionizing radiation usage and advancements in the
acquisition of digital images have led to reduced radiation exposure, improved image
quality, and wider CXR availability. The CXR remains the most frequently performed
medical imaging investigation worldwide [2].

There are, however, limitations to the diagnostic utility of the CXR. Soft tissue contrast
assessment is limited by the projection of X-rays through multiple organs and the genera-
tion of a two-dimensional image with superimposed densities, which can lead to reduced
sensitivity for subtle findings [3]. This makes CXR interpretation particularly challenging
and, as a result, most cases of missed lung cancer appear to be due to errors in CXR inter-
pretation [4]. Human error, reader inexperience, fatigue, and interruptions contribute to
interpretation inaccuracy [3,5], and the availability of experienced thoracic radiologists is
limited. Other imaging modalities are capable of providing high-sensitivity visualizations
of the chest, including computed tomography (CT) and ultrasound. These modalities
have been shown to have higher sensitivity for many findings, including pneumotho-
rax [6], pneumonia [7], and lung nodules [8]. However, due to widespread availability,
short scan time, low cost, and low radiation exposure, the CXR remains the first line of
imaging modality for chest assessment [9]. For these reasons, there have been many at-
tempts to create artificial intelligence (AI) systems to assist radiologists in the task of CXR
interpretation [10,11].

Machine learning, a subdomain of AI that involves learning patterns in data to en-
able effective prediction and classification, is profoundly influencing care delivery across
medical specialties from pathology to radiology [12–16]. Deep learning image processing
algorithms are based on convolutional neural networks (CNNs) and have been trained
to detect pneumothorax [17], pneumonia [18], COVID-19 [19–24], pneumoconiosis [25],
tuberculosis [26], and lung cancer [27]. Models have been developed to automate lung
segmentation and bone exclusion [28], identify the position of feeding tubes [29], and
predict temporal changes in imaging findings [30]. While these studies have not assessed
the usefulness of AI models across many findings simultaneously, they have shown that
deep learning diagnostic tools can improve the classification performance of radiologists
in the detection of pulmonary nodules [31], pneumoconiosis [25], pneumonia [18], em-
physema [10], and pleural effusion [32]. Coupling AI models with clinicians can result in
higher diagnostic accuracy performance than either AI or clinicians alone [33]. In addition
to this, they appear to improve reporting efficiency by reducing interpretation time [18].

Most deep learning systems developed to date, however, have been limited in scope,
often to a single or a few findings [10,34]. While demonstrating high performance within
their narrow application domains, their lack of clinical breadth may limit their utility in
practice. Concerns have also been raised regarding potential risks and biases that may
accompany the use of deep learning systems for image interpretation assistance, such as
poor generalizability across populations [35] and automation bias [36].

The application of machine learning on chest X-rays to assist in the diagnosis of
COVID-19 was a real-world example that highlighted both the benefits and pitfalls of
medical imaging AI. Multiple algorithms have been developed for this purpose in recent
years and have demonstrated high levels of accuracy in standalone tests [19–24]. However,
the performance of some COVID-19 machine learning models has been shown to suffer
when applied to datasets more representative of real-world cohorts [37], attributed, in
part at least, to the issue of hidden stratification and confounded training data. A broad
understanding of the modern capabilities of AI systems applied to CXR interpretation, as
well as potential limitations, will be necessary for clinicians as these and similar tools are
introduced into their workflow in the coming years.

To that end, this literature review aimed to provide a contemporary and compre-
hensive overview of deep learning applications designed to facilitate CXR interpretation.
Specifically, we sought to identify algorithm performance and scope, risks and benefits, and
opportunities for future research and model development. Section 2 of this paper includes
a description of our applied methods; Section 3, the results of our systematic review; and
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Section 4, a discussion of the implications of recent developments in this subdomain of
applied machine learning in medicine.

2. Methods and Materials

The methods applied in this systematic review were guided by the standards of the
Institute of Medicine [38] and the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines [39]. The prospective protocol was developed and
approved by senior study authors. Risk of bias (ROB) within selected studies was assessed
using PROBAST [40] (prediction model risk of bias assessment tool).

2.1. Search Strategy

A comprehensive search strategy was developed and applied to the PubMed and
ScienceDirect databases. To collate a contemporary sample of the literature within the
rapidly developing field of deep learning technology, studies published between January
2020 and September 2022 were identified. The search strategy was based on combinations
of domain specific and methodological search terms, both keywords and Medical Subject
Headings (MeSH) terms (Table 1).

Table 1. Search terms used in the search strategy. * Designates truncated search for variant spellings.

Region Modality Methodology Task Performance

Keyword
chest

thora *
cardiorespiratory

CXR
X-ray

radiograph

artificial intelligence
machine learning

neural net *
radiomics

supervised learning
random forest

naive bayes
CNN

convolution *

diagnosis
image interpretation
radiographic image

interpretation
decision Support

system
classif *
screen
detect *

interpret *
identifi *

diagnos *
prognos *
inferiority
validat *

superiority
predict *
reader *

decision *
clinical *

risk *
classif *

performance
bootstrapping
split sample

area under the curve
ROC
AUC

performance
sensitiv *
accura *

MeSH Terms

machine learning
artificial intelligence
Neural Networks,

Computer

diagnosis
roc curve

sensitivity and
specificity

triage

2.2. Eligibility Criteria

Publications were selected for full text review if they satisfied inclusion criteria: orig-
inal research published in a peer review journal; published in English; involved the ap-
plication of machine learning techniques to facilitate CXR interpretation and diagnosis;
involved the use of CXR image data; addressed multiple radiological findings relevant to
CXRs (>2 pathologies); and included data from adult patients. Studies were included if
they evaluated model performance with one or more of the following performance met-
rics: accuracy, area under the receiver operating characteristics curve (AUC), sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), F1 score, and
Matthews correlation coefficient (MCC). Articles were excluded if they were review articles,
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books, book chapters, or conference abstracts; did not involve the deployment of deep
learning; did not involve the processing of CXR data; focused on a nonclinical application;
or focused on data from a pediatric population.

2.3. Study Selection Process

Database searches were completed by one author, with all references imported and
consolidated into a web-based bibliographic software package (Paperpile LLC, MA, USA).
Citations and study details, including abstracts, were exported to a custom excel spread-
sheet for data management. Keywords (e.g., “letter”, “proceedings”, “review”, “computed
tomography” (also “CT”), “pediatric”), were used to identify articles for exclusion. Dupli-
cates were removed. Multiple authors (M.R.M, Q.D.B, H.K.A, N.E, G.S, H.C) conducted
manual screening to exclude titles and abstracts that did not meet predefined eligibility
criteria. Two review authors (M.R.M, J.C) repeated this manual screening review on a 20%
sample of the identified studies as a quality check. There was no disagreement between the
main review process and the quality check. Studies passing the title and abstract screen
underwent full text review and were appraised for inclusion. Disagreement or uncertainty
regarding the inclusion of an article was resolved via discussion within the review team.

2.4. Data Extraction and Appraisal

For each included study, specific items for data extraction were collected and coded.
These included study identifiers, study characteristics such as purpose, design, type, and
setting, study outcomes and performance measurement, methods for model development
and validation, machine learning algorithm characteristics, study results and findings,
whether the article was a duplicate, whether the article was included or excluded, and the
reason for exclusion. Included studies underwent an assessment of design and method-
ological quality using criteria defined in Table 3 and the PROBAST [40] tool.

2.5. Synthesis and Assessment

A PRISMA flow diagram [41] was produced to illustrate study screening, selection,
and inclusion. Study and model details, including the number of clinical findings classified,
design, dataset size, datasets used, validation techniques applied, performance metrics,
and key findings were tabulated to facilitate analysis and benchmarking. Outcomes and
key themes were summarized using descriptive statistics.

3. Results
3.1. Included Articles

The search resulted in the retrieval of 2248 records (Figure 1). We assessed 90 full text
articles and included 46 in the final quantitative and qualitative analysis. Model and study
details, along with ROB and quality, were summarized for each study.
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Figure 1. PRISMA flow diagram indicating study identification, selection, and inclusion.

3.2. Summary of Included Articles

The literature review identified 46 primary studies that met inclusion criteria. Most
studies employed a retrospective data analysis approach to investigate device performance
(97%). Only one was conducted as a prospective study in a real-world environment (Jones
et al., 2021 [42]). Device performance was compared with that of physicians in 14 of the
46 included studies (30%). Of these 14 studies, device augmentation effects on clinical
perception and diagnosis were evaluated in 9 out of 14 of these studies (19%). A summary
of included studies, their aims, design, datasets, and number of findings identified are
outlined in Table 2.
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Table 2. Summary of studies identified that evaluate comprehensive CXR deep learning models.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Ahn et al., 2022 [43]

Evaluate whether a
deep-learning–based AI engine used

concurrently can improve reader
performance and efficiency in

interpreting CXR abnormalities

Retrospective reader study Two sources: MIMIC-CXR
(public) and MGH (private)

MIMIC-CXR: 247 images;
MGH: 250 images 4

Albahli et al., 2021 [44] To achieve a fast and more accurate
diagnosis of COVID-19 Retrospective COVID Chest X-ray

dataset [45] 112,812 15

Altaf et al., 2021 [46] Classify thoracic pathologies Retrospective Chest X-ray14 [47],
COVID-19 CXRs [48] 112,777 14

Baltruschat et al., 2021 [49]

Evaluate whether smart worklist
prioritization by AI can optimize
radiology workflow and reduce

report turnaround times (RTATs) for
critical findings in CXRs

Retrospective workflow
simulation study

Chest X-ray14 (public)
(112,120), Open-I dataset

(public) (3125)
112,120 + 3125 images 8

Bharati et al., 2020 [50]
Develop a new hybrid deep learning

algorithm suitable for predicting
lung disease from CXR images

Retrospective Chest X-ray14 [47] 112,120 14

Chakravarty et al., 2020 [51] Develop a CXR pathology classifier Retrospective CheXpert [52] 223,648 13

Chen et al., 2020 [53]
Present a deep hierarchical

multi-label classification approach
for CXRs

Retrospective PLCO dataset [54] 198,000 19

Cho et al., 2020 [55]
Evaluate the reproducibility of CADs

with a CNN on CXRs of abnormal
pulmonary patterns in patients

Retrospective - 9792 5

Cho et al., 2020 [56]

Develop a convolutional neural
network to differentiate normal and

five types of pulmonary
abnormalities in CXRs

Retrospective - 9534 5
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Table 2. Cont.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Choi et al., 2021 [57]

Evaluate the deep-learning-based
CAD algorithm for detecting and

localizing three major thoracic
abnormalities on CXRs and compare
the performance of physicians with

and without the assistance of
the algorithm

Reader study using
retrospective data - 244 3

Fang et al., 2021 [58]
Propose a deep learning framework
to explore discriminative information

from lung and heart regions
Retrospective Chest X-ray14 [47] 112,120 14

Gipson et al., 2022 [59]

Evaluate the performance of a
commercially available deep CNN

for detection of traumatic injuries on
supine CXRs

Retrospective Internal dataset (private) 1404 patients/images 7

Gündel et al., 2021 [60] Train high performing CXR
abnormality classifiers Retrospective Chest X-ray14 [47], PLCO [54] 297,541 17

Han et al., 2022 [61]

Develop ChexRadiNet to utilize
radiomics features to improve

abnormality classification
performance

Retrospective Chest X-ray14 112,120 images 14

Hwang et al., 2022 [62]

Investigate the efficacy of utilizing AI
for the identification and correction
of false-negative interpretations in

consecutive CXRs that were initially
read as normal by radiologists

Retrospective feasibility
study

Dataset from Seoul National
University Hospital (private) 4208 images 3

Jabbour et al., 2022 [63]

Validate a model to act as a
diagnostic aid in the evaluation of

patients with acute respiratory
failure combining CXR and

EHR data

Retrospective CheXpert and
MIMIC-CXR-DICOM (public) 1618 patients 3
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Table 2. Cont.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Jadhav et al., 2020 [64]

Predict a large set of CXR findings
using a deep neural network

classifier and improve prediction
outcomes using a knowledge-driven

reasoning algorithm

Retrospective MIMIC [65] 339,558 54

Jin et al., 2022 [66]

Evaluate a commercial AI solution
on a multicenter cohort of CXRs and
compare physicians’ ability to detect

and localize referable thoracic
abnormalities with and without

AI assistance

Retrospective reader study Dataset from respiratory
outpatient clinics (private) 6006 patients/images 3

Jones et al., 2021 [42]
Evaluate the real-world usefulness of
the model as a diagnostic assistance

device for radiologists

Real-world prospective
reader study Internal dataset (private) 2972 cases 124

Kim et al., 2021 [67] Test the performance of a
commercial algorithm

Retrospective
generalizability study - 5887 3

Kim et al., 2022 [68]

Evaluate the concordance rate of
radiologists and a commercially

available AI for thoracic
abnormalities in a multicenter health

screening cohort

Retrospective reader study Health screening dataset
(private) 3113 patients/images 3

Kuo et al., 2021 [69]
Explore combining deep learning

and smartphones for
CXR-finding detection

Retrospective
generalizability study CheXpert [52], MIMIC [65] 6453 6

Lee et al., 2022 [70]

Create a model that counters the
effects of memory inefficiency

caused by input size and treats high
class imbalance

Retrospective ChestX-ray14 and
MIMIC-CXR (public)

Training—77,871 images,
Testing—25,596 + 227,827

images
14

Li et al., 2021 [71]

Investigate the performance of a
deep learning approach termed
lesion-aware CNN to identify 14

different thoracic diseases on CXRs

Retrospective Chest X-ray14 [47] 10,738 14



Diagnostics 2023, 13, 743 9 of 31

Table 2. Cont.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Majkowska et al., 2020 [72]

Develop and evaluate deep learning
models for CXR interpretation by

using radiologist-adjudicated
reference standards

Retrospective Chest X-ray14 [47] 871,731 4

Mosquera et al., 2021 [73]

Present a deep learning method
based on the fusion of different
convolutional architectures that

allows training with heterogeneous
data with a simple implementation
and evaluates its performance on

independent test data

Retrospective Chest X-ray14 [47] 5440 4

Nam et al., 2021 [74]

Develop a deep learning algorithm
detecting 10 common abnormalities
on CXRs and evaluate its impact on

diagnostic accuracy, timeliness of
reporting, and workflow efficacy

Reader study using
retrospective data PadChest [75] 146,717 10

Niehues et al., 2021 [76]

Develop and evaluate deep learning
models for the identification of

clinically relevant abnormalities in
bedside CXRs

Retrospective - 18,361 8

Park et al., 2020 [77]

Investigate the feasibility of a
deep-learning–based detection
system for multiclass lesions on

CXRs, in comparison with observers

Reader study using
retrospective data - 15,809 4

Paul et al., 2021 [78]

Propose a method for few-shot
diagnosis of diseases and conditions

from CXRs using discriminative
ensemble learning

Retrospective Chest X-ray14 [47],
Openi [79] >112,000 14

Pham et al., 2021 [80]

Present a supervised multi-label
classification framework based on

CNNs for predicting the presence of
14 common thoracic diseases

Retrospective CheXpert [52] 224,316 13
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Table 2. Cont.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Rudolph et al., 2022 [81]

Develop an AI system that aims to
mimic board-certified radiologists’

performance and support
non–radiology residents in clinical

settings lacking 24/7 radiology
coverage

Retrospective reader study EU CXR dataset (private) 563 images 4

Rudolph et al., 2022 [82]

Investigate multiple clinically
relevant aspects that might influence
algorithm performance, considering

patient positioning, reference
standards, and comparison to
medical expert performance

Retrospective reader study 3 cohorts (private)
3 cohorts: 563 images,
6258 images, and 166
patients, respectively

7

Seah et al., 2021 [83]
Assess the accuracy of radiologists

with and without the assistance of a
deep learning model

Reader study using
retrospective data

MIMIC [65], PadChest [75],
Chest X-ray14 [47],

CheXpert [52]
821,681 124

Senan et al., 2021 [84]

Introduce two deep learning models,
ResNet-50 and AlexNet, to diagnose

X-ray datasets collected from
many sources

Retrospective
Chest X-ray dataset

comprising images from
several public sources

21,165 images 4

Sharma et al., 2020 [85]

Create efficient deep learning
models, trained with CXR images,

for rapid screening of
COVID-19 patients

Retrospective Montgomery County X-ray
Set [86] 352 4

Sung et al., 2021 [87]
Evaluate effects of a deep learning

system on radiologist
pathology detection

Reader study using
retrospective data - 228 5

Van Beek et al., 2022 [88]

Evaluate the performance of a
machine-learning-based algorithm

tool for CXRs, applied to a
consecutive cohort of historical
clinical cases, in comparison to

expert radiologists

Retrospective reader study
Internal training dataset

(private) from primary care
and ED settings

Training—168,056 images,
Testing—1960 images 10
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Table 2. Cont.

Study Study Aim Study Design Datasets Used Dataset Size Number of Pathologies
Investigated

Verma et al., 2020 [89]

Implementation of computer-aided
image analysis for identifying and

discriminating tuberculosis, bacterial
pneumonia, and viral pneumonia

Retrospective Shenzhen chest X-ray set [86] 5894 3

Wang et al., 2021 [90]

Construct a multi-scale adaptive
residual neural network (MARnet) to
identify CXR images of lung diseases
and compare MARnet with classical

neural networks

Retrospective Chest X-ray14 13,382 images 4

Wang et al., 2020 [91]

Propose a novel deep convolutional
neural network called Thorax-Net to

diagnose 14 thorax diseases
using CXRs

Retrospective Chest X-ray14 [47] 112,120 14

Wang et al., 2021 [92] Propose the triple-attention learning
(A 3 Net) model Retrospective Chest X-ray14 [47] 112,120 14

Wang et al., 2020 [93] Use deep learning techniques to
develop a multi-class CXR classifier Retrospective Chest X-ray14 [47] 112,120 14

Wu et al., 2020 [11]

Assess the performance of AI
algorithms in realistic radiology

workflows by performing an
objective comparative evaluation of
the preliminary reads of AP CXRs
performed by an AI algorithm and

radiology residents

Reader study using
retrospective data CheXpert [52], MIMIC [65] 342,126 72

Xu et al., 2020 [94]
Explore a multi-label classification

algorithm for medical images to help
doctors identify lesions

Retrospective Chest X-ray14 [47] 112,120 14

Zhou et al., 2021 [95]

Develop and evaluate deep learning
models for the detection and
semiquantitative analysis of

cardiomegaly, pneumothorax, and
pleural effusion on chest radiographs

Retrospective

Montgomery County
Department of Health and
Human Services, Shenzhen
No. 3 People’s Hospital [86]

2838 3
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3.3. Quality Appraisal and Risk of Bias

Included studies underwent a quality appraisal. Results of the assessment of study
quality, including appraisal criteria and scores for article quality, are presented in Table 3.
The quality of studies varied across assessment domains, with some studies demonstrating
a marked lack of methodological quality. A total of 29 studies were considered high quality,
with an overall quality score of 70, while 15 studies were considered moderate quality, with
a score of 50–60. Two studies were low quality, with an overall score of 30–40. The most
common factor adversely affecting study quality was the lack of an appropriate comparator
for device performance. All studies demonstrated an appropriate design, whereas only
67% involved the use of appropriate comparators. Some studies involved training a single
model and did not compare its performance to other baseline models or to clinicians.
Model training datasets were of sufficient size and quality in 78% of studies. Likewise,
appropriate validation methods were applied in 78% of studies. Often, training dataset
characteristics and validation methods were not reported; however, this was not considered
a negative indicator of study quality because several studies investigated commercial
or previously established devices, and these details were reported in previous studies.
Appropriate sample size, performance metrics, and statistical analysis techniques were
prevalent, evident in 97%, 100%, and 93% of studies, respectively.

The PROBAST [40] ROB tool assessed shortcomings in study design, conduct, and
analysis that may have put the results of a study at risk of being flawed or biased. Of the
46 studies assessed, 39 were determined to be at low risk of bias, 6 at high risk, and 1 study
was of unclear risk [89] (Table A1 in Appendix A). Assessment across the four PROBAST
domains presented as percentages are displayed in Figure 2. The primary contributor to
the high ROB in these studies was associated with patient selection methods.
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Table 3. Quality appraisal of included studies. NA, not applicable (article not disqualified if the model training or validation methods were not relevant for reporting
due to the study design, e.g., MRMC studies examining CXR reader performance). For cumulative study quality score, Yes and NA = 10, No = 0.

Study Appropriate
Study Design

Appropriate
Comparators

Appropriate
Training Dataset

Appropriate
Validation Methods

Appropriate
Sample Size

Appropriate Metric
Used to Measure

Performance

Appropriate
Statistics Methods
Used to Measure

Performance

Study Quality
Score

Ahn et al., 2022 [43] Yes Yes Yes NA Yes Yes Yes 70

Albahli et al., 2021 [44] Yes No Yes Yes Yes Yes Yes 60

Altaf et al., 2021 [46] Yes No Yes Yes Yes Yes Yes 60

Baltruschat et al., 2021 [49] Yes Yes Yes Yes Yes Yes Yes 70

Bharati et al., 2020 [50] Yes No Yes Yes Yes Yes Yes 60

Chakravarty et al., 2020 [51] Yes Yes Yes Yes Yes Yes Yes 70

Chen et al., 2020 [53] Yes No Yes Yes Yes Yes Yes 60

Cho et al., 2020 [55] Yes Yes NA Yes Yes Yes Yes 70

Cho et al., 2020 [56] Yes No Yes Yes Yes Yes Yes 60

Choi et al., 2021 [57] Yes Yes NA Yes Yes Yes Yes 70

Fang et al., 2021 [58] Yes Yes Yes Yes Yes Yes Yes 70

Gipson et al., 2022 [59] Yes Yes Yes NA Yes Yes Yes 70

Gündel et al., 2021 [60] Yes Yes Yes Yes Yes Yes Yes 70

Han et al., 2022 [61] Yes Yes Yes NA Yes Yes Yes 70

Hwang et al., 2022 [62] Yes Yes NA NA Yes Yes Yes 70

Jabbour et al., 2022 [63] No No No NA Yes Yes No 30

Jadhav et al., 2020 [64] Yes No Yes Yes Yes Yes Yes 60

Jin et al., 2022 [66] Yes Yes Yes Yes Yes Yes Yes 70

Jones et al., 2021 [42] Yes Yes Yes NA Yes Yes Yes 70

Kim et al., 2021 [67] Yes No NA NA Yes Yes Yes 60

Kim et al., 2022 [68] Yes Yes Yes NA Yes Yes Yes 70

Kuo et al., 2021 [69] Yes Yes NA Yes Yes Yes Yes 70

Lee et al., 2022 [70] Yes Yes Yes Yes Yes Yes No 60
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Table 3. Cont.

Study Appropriate
Study Design

Appropriate
Comparators

Appropriate
Training Dataset

Appropriate
Validation Methods

Appropriate
Sample Size

Appropriate Metric
Used to Measure

Performance

Appropriate
Statistics Methods
Used to Measure

Performance

Study Quality
Score

Li et al., 2021 [71] Yes Yes Yes Yes Yes Yes Yes 70

Majkowska et al., 2020 [72] Yes Yes Yes Yes Yes Yes Yes 70

Mosquera et al., 2021 [73] Yes Yes Yes Yes Yes Yes Yes 70

Nam et al., 2021 [74] Yes Yes Yes Yes Yes Yes Yes 70

Niehues et al., 2021 [76] Yes Yes Yes Yes Yes Yes Yes 70

Park et al., 2020 [77] Yes Yes Yes Yes Yes Yes Yes 70

Paul et al., 2021 [78] Yes No Yes Yes Yes Yes Yes 60

Pham et al., 2021 [80] Yes Yes Yes Yes Yes Yes Yes 70

Rudolph et al., 2022 [81] Yes Yes No Yes Yes Yes Yes 60

Rudolph et al., 2022 [82] Yes No No Yes No Yes Yes 40

Seah et al., 2021 [83] Yes Yes Yes Yes Yes Yes Yes 70

Senan et al., 2021 [84] Yes No Yes NA Yes Yes Yes 60

Sharma et al., 2020 [85] Yes No No Yes Yes Yes Yes 50

Sung et al., 2021 [87] Yes Yes NA NA Yes Yes Yes 70

Van Beek et al., 2022 [88] Yes Yes Yes Yes Yes Yes Yes 70

Verma et al., 2020 [89] Yes No Yes Yes Yes Yes Yes 60

Wang et al., 2021 [90] Yes No Yes Yes Yes Yes No 50

Wang et al., 2020 [91] Yes Yes Yes Yes Yes Yes Yes 70

Wang et al., 2021 [92] Yes No Yes Yes Yes Yes Yes 60

Wang et al., 2020 [93] Yes Yes Yes Yes Yes Yes Yes 70

Wu et al., 2020 [11] Yes Yes Yes Yes Yes Yes Yes 70

Xu et al., 2020 [94] Yes Yes Yes Yes Yes Yes Yes 70

Zhou et al., 2021 [95] Yes Yes Yes Yes Yes Yes Yes 70



Diagnostics 2023, 13, 743 15 of 31

3.4. Comprehensiveness and Algorithm Development

A clear theme that emerged from this systematic review was that machine learning
models designed to facilitate CXR interpretation have become substantially more clinically
comprehensive. Many models were only capable of classifying less than eight clinical
findings. The mean number of clinical findings classified by models was 16, with a mode
of 14. The frequency of models classifying 14 findings correlates to the recurring use
of the Chest X-ray14 [47] dataset, which is labeled for 14 diseases. The top three most
comprehensive CXR classification models, however, markedly exceeded these benchmarks.
These models were Jadhav et al., 2020 [64] with 54 findings, Wu et al., 2020 [11] with
72 findings, and Seah et al., 2021 [83] Jones et al., 2021 [42] with 124 findings. A breakdown
of findings evaluated per device is presented in Figure 3. Algorithm architectures applied
included UNet [96], DenseNet [97], ResNet [98], EfficientNet [99], and the VGG neural
networks [100].

Diagnostics 2023, 13, 743 16 of 34 
 

 

These models were Jadhav et al., 2020 [64] with 54 findings, Wu et al., 2020 [11] with 72 
findings, and Seah et al., 2021 [83] Jones et al., 2021 [42] with 124 findings. A breakdown 
of findings evaluated per device is presented in Figure 3. Algorithm architectures applied 
included UNet [96], DenseNet [97], ResNet [98], EfficientNet [99], and the VGG neural 
networks [100]. 

 
Figure 3. Number of findings detected across included studies. 

3.5. Data, Model Training, and Ground Truth Labeling 
The development of effective comprehensive CXR machine learning models relies on 

access to large datasets. Of the studies that reported their training and validation dataset 
size, on average, 128,662 images were used to train and validate models. The most com-
prehensive CXR models encompassing more than 10 clinical findings have been based on 
just four public datasets: MIMIC [65], PadChest [75], Chest X-ray14 [47], and CheXpert 
[52]. Figure 4 illustrates the commonly used datasets in the studies identified. 

0 2 4 6 8 10 12

3

4

5

6

7

8

10

13

14

15

17

19

54

72

124

Count of Studies

Nu
m

be
r o

f C
lin

ica
l F

in
di

ng
s

Frequency of Clinical Findings Assessed

Figure 3. Number of findings detected across included studies.

3.5. Data, Model Training, and Ground Truth Labeling

The development of effective comprehensive CXR machine learning models relies
on access to large datasets. Of the studies that reported their training and validation
dataset size, on average, 128,662 images were used to train and validate models. The
most comprehensive CXR models encompassing more than 10 clinical findings have been
based on just four public datasets: MIMIC [65], PadChest [75], Chest X-ray14 [47], and
CheXpert [52]. Figure 4 illustrates the commonly used datasets in the studies identified.
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Figure 4. Dataset use prevalence amongst included articles.

Model validation methods varied but generally adhered to the standard three-way
dataset split paradigm (train–validation–test). Limited studies conducted external vali-
dation on a dataset from a different setting than the training dataset. No models were
validated in a randomized controlled trial. Ground truth processes employed by researchers
varied. Most studies employed a consensus of radiologists (usually two to five) who often
had access to CXR reports and, in some cases, were able to correlate CXRs with CTs. A
triple consensus of general (rather than subspecialist) radiologists was the most common
ground truth labeling approach.

3.6. Performance and Safety

Identified studies used several different indicators to assess device performance, with
the most common of these being the measurement of finding detection accuracy (Table 4).
Comparators included other CXR models and clinician readers.

Table 4. Summary of the published performance statistics of CXR deep learning models.

Deep Learning Model Model Architecture Model Validation Process Model Performance and Study Results

Ahn et al., 2022 [43] Not specified Not specified—commercial

AI was associated with higher sensitivity
for all findings compared with readers

(nodule, 0.816 vs. 0.567; pneumonia, 0.887
vs. 0.673; pleural effusion, 0.872 vs. 0.889;

pneumothorax, 0.988 vs. 0.792)

Albahli et al., 2021 [44]
Unet, NasNetLarge, Xception,

Inception-V3,
Inception-ResNetV2, ResNet50

Train, test Test accuracy: 0.66 and 0.62

Altaf et al., 2021 [46] DenseNet-201, ResNet50,
Inception-V3, VGG-16 Train, test with cross-validation Specificity 0.95, sensitivity 0.65, F1 0.53,

accuracy 0.91

Baltruschat et al., 2021 [49] ResNet-50
5-fold resampling

scheme—7:1:2 (training,
validation, testing)

Average RTAT for all critical findings was
significantly reduced in all prioritization

simulations compared to the
first-in-first-out simulation, while the

maximum RTAT for most findings
increased. Pneumothorax (Min/Max)

80.1/890 vs. 35.6/1178, congestion
80.5/916 vs. 45.3/2018, pleural effusion

80.5/932 vs. 54.6/2144, infiltrate 80.3/916
vs. 59.1/2144, atelectasis 80.4/906 vs.
61.7/1958, cardiomegaly 80.5/932 vs.

62.5/1698, mass 81.0/902 vs. 64.3/1556,
foreign object 80.4/930 vs. 80.6/2093,

normal 80.2/940 vs. 113.9/2093
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Table 4. Cont.

Deep Learning Model Model Architecture Model Validation Process Model Performance and Study Results

Bharati et al., 2020 [50] VDSNet Train, test Accuracy 0.73

Chakravarty et al., 2020 [51] DenseNet-121 Train, test Average AUC 0.82

Chen et al., 2020 [53] DenseNet-121 Train, test Average AUC 0.89

Cho et al., 2020 [55] eDenseYOLO Train, tune, test (7:1:2) Percent positive agreement: 83.39%,
74.14%, 95.12%, 96.84%, and 84.58%

Cho et al., 2020 [56] ResNet-50 Train, tune, test (7:1:2) Accuracy: 0.90, 0.90, 0.91, 0.92, and 0.93

Choi et al., 2021 [57] Insight CXR, Lunit -

Average AUC 0.99, sensitivity 0.97,
specificity 0.93, and accuracy of 0.96. The

model outperformed board-certified
radiologists, non-radiology physicians,

and general practitioners. Average AUC
of physicians was 0.87 without model

assistance and 0.91 with model assistance

Fang et al., 2021 [58] CXR-IRNet Train, test, validation Average AUC 0.83

Gipson et al., 2022 [59]
EfficientNet architecture,

segmentation CNN based on
U-Net/EfficientNet backbone

Not specified

AI superior to radiologists for
pneumothorax (AI AUC = 0.926,

sens. = 39.2%, spec. = 99.8%, FP n = 2,
p = 0.007) and lobar/segmental collapse

(AI AUC = 0.917, sens. = 36.1%,
spec. = 98.5%, FP n = 21, p = 0.012). AI
inferior for clavicle (AI AUC = 0.831,

sens. = 55.7%, spec. = 97.2%, FP n = 37,
p = 0.002), humerus (AI AUC = 0.836,
sens. = 32.3%, spec. = 99.4%, FP n = 8,
p < 0.001), and scapular fracture (AI

AUC = 0.855, sens. = 34.6%, spec. = 95.2%,
FP n = 64, p = 0.014). No sig. diff. for rib
fracture (AI AUC = 0.749, sens. = 41.1%,
spec. = 92.9%, FP n = 75, k = 0.39) and
pneumomediastinum (AUC = 0.872,
sens. = 11.1%, spec. = 100%, FP n = 0,

k = 0.19)

Gündel et al., 2021 [60] DenseNet architecture Train, test, validation Average AUC 0.88

Han et al., 2022 [61] ChexRadiNet Not specified

The model achieved AUC scores of 0.831,
0.934, 0.817, 0.906, 0.892, 0.925, 0.798, 0.882,
0.734, 0.846, 0.748, 0.867, 0.737, and 0.889,

respectively, for the pathologies
(atelectasis, cardiomegaly, consolidation,

edema, effusion, emphysema, fibrosis,
hernia, infiltration, mass, nodule, pleural

thickening, pneumonia, and
pneumothorax)

Hwang et al., 2022 [62] Not specified Not specified—commercial

16.5% of scans initially labeled normal
classified abnormal by model. 103/591

were clinically relevant (488 false
positives). 13.3% of detected abnormalities
accepted by radiologist. Situation (a) AI as

the advisor: detection yield = 1.2%,
FRR = 0.97%, PPV = 55.4%. Situation (b)

AI as the final consultant: detection
yield = 2.4%, FRR = 14%, PPV = 14.8%.
Higher net benefit of AI as an advisor
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Table 4. Cont.

Deep Learning Model Model Architecture Model Validation Process Model Performance and Study Results

Jabbour et al., 2022 [63] CNN with DenseNet-121
architecture External validation

Pneumonia: (k = 0.47) (AUC: combined
int. = 0.71, ext. = 0.65) (Combined

sens. = 81%, spec. = 60%), heart failure:
(k = 0.48) (AUC: combined int. = 0.82,
ext. = 0.82) (Combined sens. = 62%,

spec. = 83%), COPD: (k = 0.56) (AUC:
combined int. = 0.76, ext. = 0.86)

(Combined sens. = 68%, spec. = 94%).
Combined model sensitivity higher than
both other models, lower specificity than

both other models. Combined model
AUROC higher than physician for heart
failure (0.79 vs. 0.77) and COPD (0.89 vs.
0.78), lower for pneumonia (0.74 vs. 0.75)

Jadhav et al., 2020 [64] VGGNet (16 layers), ResNet
(50 layers) Train, validation, test (7:1:2) Precision 0.85, recall 0.83, F1 0.84

Jin et al., 2022 [66] Not specified Not specified—commercial

Standalone model performance average
sensitivity, specificity, and AUC of 0.885,

0.723, and 0.867, respectively. For readers,
average AUC and AUAFROC significantly
increased with AI assistance (from 0.861 to

0.886; p = 0.003 and from 0.797 to 0.822;
p = 0.003, respectively)

Jones et al., 2021 [42]
EfficientNet architecture,

segmentation CNN based on
U-Net/EfficientNet backbone

Not specified

90% of radiologists reported increased
reporting accuracy with model by

radiologists w/ (a) 5> yrs. experience,
(b) 6–10 yrs. exp., (c) 10+ yrs. Exp., (a) 5%
(b) 1.3% (c) 1.6% rate of sig. report change

with model, (a) 2.4% (b) 0.4% (c) 0.9%
patient management change, and (a) 1.5%

(b) 0.5% (c) 0.6% increase in
recommendations for further imaging. No

sig. impact of radiologist experience on
these rates

Kim et al., 2021 [67] Insight CXR, Lunit - Sensitivity 0.83, specificity 0.79

Kim et al., 2022 [68] ResNet-34 based architecture Not specified—commercial

Thoracic abnormalities were found in
343 cases (11.0%) based on the CXR

radiology reports and 621 (20.1%) based
on the Lunit results. The concordance rate
was 86.8% (accept: 85.3%, edit: 0.9%, and
add: 0.6%), and the discordance rate was

13.2%. The median reading time increased
after the clinical integration of Lunit

(median, 19 s vs. 14 s, p < 0.001)

Kuo et al., 2021 [69] - Train, test, validation and
external validation Average AUC 0.75

Lee et al., 2022 [70] DuETNet: DenseNet backbone,
dual encoder Train, validation, test

Model superior to all other models. AUC:
atelectasis = 0.7711, cardiomegaly = 0.914,

effusion = 0.8197, infiltration = 0.7096,
mass = 0.8582, nodule = 0.8223,

pneumonia = 0.8928,
pneumothorax = 0.8805,

consolidation = 0.7976, edema = 0.8892,
emphysema = 0.9331, fibrosis = 0.93,
PT = 0.8493, hernia = 0.997, average

AUC = 0.8617

Li et al., 2021 [71] ResNet-38 Train, test, validation with
10-fold cross-validation

The model generated statistically
significant higher AUC performance

compared with radiologists on atelectasis,
mass, and nodule, with AUC values of

0.83, 0.96, and 0.93, respectively. For the
other 11 pathologies, there were no
statistically significant differences
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Table 4. Cont.

Deep Learning Model Model Architecture Model Validation Process Model Performance and Study Results

Majkowska et al., 2020 [72] - Train, validation, test AUCs 0.94, 0.91, 0.94, and 0.81

Mosquera et al., 2021 [73] RetinaNet, Inception-ResnetV2,
AlbuNet-34 Train, test, external validation AUCs 0.75 and 0.87, sensitivity 0.86,

specificity 0.88

Nam et al., 2021 [74] ResNet34 -

Model AUCs 0.90–1.00 (CT-confirmed
dataset) and 0.91–1.00 (PadChest dataset).
The model correctly classified significantly

more critical abnormalities (95%) than
radiologists (84%). Radiologists detected
significantly more critical (71% vs. 29%)
and urgent (83% vs. 78%) abnormalities

when aided by the model

Niehues et al., 2021 [76] - Train, test AUCs 0.90, 0.95, 0.85, 0.92, 0.99, 0.99, 0.98,
and 0.99

Park et al., 2020 [77] - Train, validation, test AUC 0.99 vs. 0.96

Paul et al., 2021 [78] DenseNet Train, test, external validation AUCs 0.55–0.79

Pham et al., 2021 [80] - Train, validation, test Average AUC 0.94 (validation set), 0.93
(test set)

Rudolph et al., 2022 [81] Not specified External validation

AUC of 0.940 (pneumothorax), 0.953
(pleural effusion), 0.883 (lung lesions), and

0.847 (consolidation). The AI system
matched radiology residents’ performance,

and significantly outperformed
non-radiology residents’ diagnostic
accuracy for pneumothorax, pleural

effusion, and lung lesions

Rudolph et al., 2022 [82] CheXNet External validation

CheXNet was similar to radiology resident
(RR) detection of suspicious lung nodules

(cohort, AUC AI/RR: 0.851/0.839,
p = 0.793), basal pneumonia (cohort, AUC

AI/reader consensus: 0.825/0.782,
p = 0.390), and basal pleural effusion
(cohort, AUC AI/reader consensus:

0.762/0.710, p = 0.336)

Seah et al., 2021 [83] EfficientNet Train, test

Average AUC of the model 0.96. Average
AUC of unassisted radiologists 0.72.

Average AUC when radiologists used the
model 0.81. Model use significantly

improved accuracy for 102 (80%) clinical
findings

Senan et al., 2021 [84] ResNet-50 and AlexNet Not specified

The ResNet-50 network reached average
accuracy, sensitivity, specificity, and AUC

of 95%, 94.5%, 98%, and 97.10%,
respectively

Sharma et al., 2020 [85] Not reported Train, test, external validation Accuracies 1.00, 1.00, 0.95, 0.00, 0.94, and
0.00

Sung et al., 2021 [87] Med-Chest X-ray -
AUC of radiologists using the model

(from 0.93 to 0.98), sensitivity (from 0.83 to
0.89), and specificity (from 0.89 to 0.97)
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Table 4. Cont.

Deep Learning Model Model Architecture Model Validation Process Model Performance and Study Results

Van Beek et al., 2022 [88]

ResNet34 basis, AutoAugment
+ Attend and Compare modules,

binary cross-entropy
loss function

Not specified—commercial

Atelectasis (AUC = 0.914, 0.891,
sens. = 0.816, 0.55, spec. = 0.887, 0.961),

calcification (AUC = 0.92, 0.922,
sens. = 0.765, 0.692, spec. = 0.887, 0.919),

cardiomegaly (AUC = 0.943, 0.97,
sens. = 0.88, 0.85, spec. = 0.884, 0.962),

consolidation (AUC = 0.903, 0.881,
sens. = 0.886, 0.922, spec. = 0.792, 0.674),
fibrosis (AUC = 0.948, 0.92, sens. = 0.933,
0.714, spec. = 0.895, 0.924), mediastinal

widening (AUC = 0.909, 0.998, sens. = 0.8,
1, spec. = 0.97, 0.993), nodule

(AUC = 0.881, 0.905, sens. = 0.794, 0.833,
spec. = 0.848, 0.886), pleural effusion

(AUC = 0.954, 0.988, sens. = 0.784, 0.837,
spec. = 0.942, 0.986), pneumoperitoneum
(AUC = 0.999, insuff. case no., sens. = 1, –,

spec. = 0.975, 0.996), pneumothorax
(AUC = 0.954, insuff. case no.,

sens. = 0.833, 1, spec. = 0.978, 0.992).
Non-significant difference of performance

in acute and non-acute sources; model
outperformed radiologists for all findings

Verma et al., 2020 [89] Not reported Train, test Accuracy 0.99

Wang et al., 2021 [90] MARnet 5-fold cross-validation
AUC: nodule 0.90, atelectasis 0.93, normal
0.99, infection 1.00. MARnet outperformed

all other CNNs

Wang et al., 2020 [91] Thorax-Net Train, test, validation Average AUC 0.79 and 0.90

Wang et al., 2021 [92] DenseNet-121 Train, test, validation Average AUC 0.83

Wang et al., 2020 [93] DenseNet-121 Train, validation Average AUC 0.82

Wu et al., 2020 [11] ResNet50, HVGG16 S Train, validation, test
Average AUC: model 0.77, residents 0.72.

PPV: model 0.73, residents 0.68.
Specificity: model 0.98, residents 0.97

Xu et al., 2020 [94] MS-ANet Train, test, validation Average AUCs 0.85 and 0.82

Zhou et al., 2021 [95] - Training, test (9:1)
Accuracy for cardiomegaly 0.98,
pneumothorax 0.71, and pleural

effusion 0.78

4. Discussion

Machine learning applied to the analysis and interpretation of CXRs carries with it
significant potential for clinical quality and safety improvement. The field is developing
quickly. This study was designed to comprehensively assess the performance and scope
of modern algorithms and their associated risks, benefits, and development opportuni-
ties. The 46 studies included in this systematic review offer an insight into emerging
themes within the contemporary landscape of deep learning models designed to interpret
CXRs. There are clear trends towards increasing device comprehensiveness and improving
model performance.

Published models generally demonstrated strong performance for detecting a range of
clinical findings on the CXR. Some demonstrated moderate performance and likely require
further development before attempts are made to apply them to clinical practice. In contrast,
one comprehensive model demonstrated standout performance, with an average AUC of
0.96 across 124 findings [83]. The next most comprehensive model, which was capable of
detecting 72 findings, demonstrated an average AUC of 0.77 [11]. When compared with
physician detection accuracy, the identified devices were typically found to be as accurate,
or more accurate, than radiologist or non-radiologist clinicians [11,43,59,63,71,74,81–83,88].
Taking this further, multiple studies demonstrated that use of well-trained and validated
deep learning models can improve the clinical finding classification performance of clini-



Diagnostics 2023, 13, 743 21 of 31

cians when acting as a diagnostic assistance device [42,43,57,62,66,74,83,87]. This points to
the potential utility and impact of machine learning systems applied to clinical practice.
Transfer learning and open access to pretrained models and model architectures have un-
derpinned the development of effective deep learning models in radiology. The continued
development and optimization of these kinds of transferable models would be beneficial
for facilitating further improvements in healthcare.

Another endpoint assessed by several studies was reporting and interpretation effi-
ciency. Some included studies evaluated the performance of high-accuracy devices within
the scope of developing triage or prioritization tools, which are designed to alert clini-
cians to cases suspected of containing time-sensitive findings. These devices have the
potential to improve efficiency and patient safety by reducing the time between image
acquisition and reporting by the physician. Simulation studies indicate that when these
devices are used to triage studies, the report turnaround time (RTAT) of cases that include
time-sensitive findings is significantly reduced [49,74]. In addition to RTAT, reporting time
is another indicator used to measure efficiency. Several studies investigated the impact
of AI-assisted interpretation on reading time, with some studies indicating that reporting
time was reduced [43,74,87], while others found that reporting time was increased [42].
A demonstrable impact to patient outcomes may follow AI-enabled efficiency gains to
radiology workflows; however, further research is necessary to establish the presence or
extent of such benefits.

While the majority of studies were conducted on retrospective datasets, one study was
conducted in a prospective real-world reporting environment and evaluated radiologist
agreement and impact on clinical decision making due to device findings [42]. Results
indicated that the radiologist and device were in complete agreement in 86.5% of cases, and
device predictions led to significant report changes, changed patient management planning,
and altered further imaging recommendations in 3.1%, 1.4%, and 1.0% of cases respectively.
A similar retrospective study was conducted, producing comparable results [68]. In an-
other study, a device was used to flag cases suspected of containing clinically significant
findings that were initially labeled normal [62]. The device initially overlooked relevant
abnormalities with a detection yield and a false referral rate of 2.4% and 14.0%, respectively.

4.1. Risk and Safety

Several recurring risks were highlighted by researchers including the potential for poor
model generalizability, suboptimal case labeling, and the potential for data perturbation.
The overfitting of CXR models has also been identified as a performance risk, leading
to overestimation of performance or poor generalizability of machine learning models
on external datasets [9]. External validation is an important issue in applied machine
learning that has potential implications for patient safety. Some evidence suggested that
high performing models may not generalize well [69]. In this review, only a limited number
of included studies performed external validation of the evaluated device. Some studies
reported significant drops in model performance when they were applied to external
data [73,85]. These studies that reveal the so called ‘generalization gap’ underscore the
need for vigilance by healthcare providers whenever efforts are made to translate machine
learning models into clinical practice.

Limitations in availability of large, high quality, and accurately labeled CXR datasets
can present a potential risk for developing and testing high performing and appropriately
generalizable machine learning models [9]. More than half of included studies used training
data from publicly available datasets originating solely from US patients (Chest X-ray14 [47],
CheXpert [52], MIMIC [65]), while many others used curated private datasets with images
from institutions limited to a single country or region [42,55,56,59,62,66,68,74,76,77,81,87,88].
A limited number of studies leveraged data from multiple countries [44,46,82–84,95]. Ad-
ditional generalizability studies are required to test and verify the performance of deep
learning models across different patient populations. The ethical public release of large de-
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identified datasets may facilitate the development of higher quality and more generalizable
machine learning systems.

Natural language processing (NLP) can be problematic and noisy when used for the
generation of training or ground truth labels [53]. At present, several common public
datasets use NLP on the original radiologist reports to identify pathology contained in CXR
images [47]. Reports are often incomplete representations of clinical findings present in the
associated imaging. NLP is, therefore, prone to inaccurate image annotation, leading to
negative downstream effects on model training. For example, it has been reported that the
NLP-generated labels in the ChestX-ray14 [47] dataset, which was used in 17 studies, do not
accurately reflect the visual content of the CXR images [101]. Investments in high-quality
data labeling by expert clinicians may serve to address this issue, but these activities are
resource intensive.

Testing datasets should ideally be representative of the target population (e.g., include
diverse demographic groups) and the target disease, condition, or abnormality for which
the model is intended. The use of datasets that include limited patient subgroups or are
enriched for particular findings may not reflect the true prevalence of a disease or condition
in the real world, potentially leading to spectrum bias. Spectrum bias present in the dataset
can lead to model generalizability issues, resulting in reduced performance and limited
clinical applicability. Several studies were identified that may have been affected. Examples
include datasets that contained only one or two findings per image [57,87], only included
CXRs with an associated follow-up CT scan [66], and datasets that were hand-picked
rather than consecutively selected [81,82]. Further work testing and demonstrating the
generalizability characteristics of published models is warranted and will serve to reinforce
user confidence and patient safety.

Another consideration is the potential negative influence of AI systems on physician
decision making. Automation bias, where overreliance on automated systems may lead
to false positives being overlooked or a reluctance to question the suggestions made by
the AI model, appears to be a particular risk for less experienced clinicians. While these
issues were not assessed empirically in the included studies, the issue was highlighted and
discussed. Models with a high false positive rate may require greater clinical expertise
to separate true from false positives [61,62,67]. Conversely, evidence also suggests that
less experienced clinicians may see the greatest benefit from AI diagnostic assistance [42].
To mitigate the risk of automation bias, manufacturers are expected to clearly report the
performance details of their AI assist devices, and clinicians are expected to understand
the performance characteristics and limitations of the systems they use. When developing
algorithms for real-world use, vendors should be aware of evolving evidence pertaining
to the mitigation of automation bias, including implementation principles and interface
design choices [102].

The quality of the dataset labeling method is likely to be a cornerstone of safe deep
learning model development for systems intended for clinical use. Open source datasets
may be vulnerable to adversarial perturbation, which can induce model failure or falsely
high performance in image classification tasks [103]. Image perturbations are often difficult
to detect. They can be extremely small (a few pixels) and hence may not substantially affect
data distributions. Attention to data security controls is necessary for systems intended for
clinical application.

AI-assisted triage may lead to longer RTAT in the case of false negatives through down-
prioritization of these cases and up-prioritization of cases with positive AI predictions. One
study highlighted that there was a risk of false negatives leading to greatly increased RTAT
for these studies, which would equate to a significant delay in patient treatment in the real
world [49]. The performance characteristics and limitations of clinically applied models
must be rigorously evaluated and clearly understood.



Diagnostics 2023, 13, 743 23 of 31

4.2. Benefits

The clinical benefits of AI models for medical image interpretation can be divided
into two primary domains: improved accuracy in detecting pathology on the image, and
improved reporting efficiency. Improved reporting accuracy was highlighted in numerous
included studies [42,43,57,62,66,74,83,87]. This has the potential to reduce false positive
and false negative rates and reduce unnecessary follow-up CT examinations and associated
radiation exposure. This may lead to earlier finding detection and improved patient
outcomes in screening, outpatient, emergency, and inpatient settings. While the majority
of studies appeared to demonstrate improved physician performance with diagnostic
device assistance, the device evaluated by Hwang and colleagues focused on detecting
false negatives in CXRs originally interpreted as normal by radiologists [62]. CXRs with
“normal” reports were assessed by the AI model. Researchers demonstrated a false referral
rate of 0.97% and found that 1.2% contained salient clinical findings. Employing machine
learning models to reduce false negative rates and improve the quality of reporting in
this way will continue to be of interest to radiology providers as workload volume and
complexity grow.

Several included studies demonstrated improved reporting efficiency, which coalesced
into two primary categories. These were (1) reduced time to report studies that contain
critical pathology [49,74] and (2) a reduction in reporting time per case [43,74,87]. An
increase in reporting efficiency may impact patient outcomes by reducing the time to
treatment for patients presenting with time-sensitive pathologies and increasing the rate at
which physicians can report CXRs.

A further benefit identified was the ability for some AI models to provide consistent
detection accuracy across variations in image quality. Some studies demonstrated that
model performance was resilient to different image sources and suboptimal acquisition
quality [57,60,82,88], demonstrating this kind of model resilience provides additional
quality and safety assurance to the practicing clinician.

In addition to the benefits outlined above, a study conducted by Jabbour and col-
leagues highlighted the value of using an AI model capable of combining and evaluating
patient information from multiple sources to further improve diagnostic accuracy [63]. In
this study, a model designed to differentiate between causes of acute respiratory failure
was trained using CXRs and clinical data from electronic health records, leading to a detec-
tion accuracy similar to, or better than, clinician readers. The application of multimodal
AI systems is a developing trend in medicine [104]. A summary of the clinical benefits
identified in the included studies is presented in Table 5.

4.3. Study Strengths and Limitations

The strengths of this systematic review include adherence to the PRISMA guidelines
and standards of the Institute of Medicine and a critical assessment of risk of bias for the
included studies using a robust assessment tool, PROBAST. Another was the comprehensive
search strategy applied and the replicated screening review by multiple authors of a portion
of identified studies as a quality control process. Limitations of this review include the use
of a detailed although unvalidated tool for the assessment of study quality and a restriction
of our screened studies to the English language. Recent evidence suggests that an English
language search strategy restriction is unlikely to affect results [105].
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Table 5. Summary of the clinical benefits of CXR machine learning systems identified in the literature.

Identified Benefit Clinical Setting Associated Clinical Outcomes Reference

Improved radiologist
accuracy in detecting

pathology on the
medical image

All clinical settings

Reduced unnecessary and increased
appropriate follow-up CT

examinations or earlier detection of
findings, leading to improved patient

outcomes. Reduction in
false positives

Choi et al., 2021 [57]
Nam et al., 2021 [74]
Seah et al., 2021 [83]
Sung et al., 2021 [87]

Jin et al., 2022 [66]
Jones et al., 2021 [42]

Hwang et al., 2022 [62]
Ahn et al., 2022 [43]

Reduced time to report
studies that contain critical

pathology
All clinical settings

Reduction in report turnaround time
for sensitive findings such as

pneumothorax and rib fracture
allowing correct patient management

and earlier treatment

Nam et al., 2021 [74]
Baltruschat et al., 2021 [49]

Reduced per-study
reporting time

Inpatient or outpatient
or screening Increased reporting efficiency

Nam et al., 2021 [74]
Sung et al., 2021 [87]
Ahn et al., 2022 [43]

Consistent detection
accuracy across variations

in image quality

Inpatient or outpatient or
screening or emergency

Accurate detection of pathology on
CXRs regardless of imaging source or

quality of the acquisition

Choi et al., 2021 [57]
Gündel et al., 2021 [60]

Rudolph et al., 2022 [82]
van Beek et al., 2022 [88]

5. Conclusions

Deep learning has been widely applied to successfully facilitate CXR interpretation.
Models have been developed to classify a wide range of pathologies, and it is evident that
models are becoming progressively more clinically comprehensive. It is also apparent that
classification performance is improving over time.

This review focused on machine learning devices for classification of CXRs, revealing
that many such software devices have been developed since January 2020. The benefits of
the devices described fall under several categories, including improved pathology detection
accuracy, improved triage to reduce time to treatment for critical findings, and a reduction
in reporting time.

While the benefits of these devices were well reported, the potential risks associated
with their adoption remained poorly characterized, with risks only superficially noted in
some primary studies and not examined explicitly. The key risks associated with these
devices include the potential for dataset spectrum bias, resulting from datasets not being
reflective of the real-world environment, potentially limiting their clinical application.
Additionally, external validation to test model generalizability was often not reported.
Another risk, particularly for less experienced clinicians, is automation bias.

The world is currently experiencing a global shortage of radiologists and increased
rates of clinician burnout [106]. In the United States, the number of radiologists as a
percentage of the physician workforce is decreasing, and the geographic distribution of
radiologists favors larger, more urban settings [107]. Even when trained radiologists are
available, CXRs are often interpreted first and acted upon by non-radiologist clinicians such
as intensivists and emergency physicians [108]. In developing countries, radiology services
are scarce. As of 2015, only 11 radiologists served the 12 million people of Rwanda, while
the entire country of Liberia, with a population of four million, had only two practicing
radiologists [108]. In our experience, in some health systems, as few as one in ten CXRs
are ever reviewed and reported by a radiologist. The accurate automated analysis of
radiographs has the potential to improve radiologist workflow efficiency and extend life-
changing clinical expertise to underserved regions [49]. In developing countries, solving
the cost, complexity, skill requirement, and sustainability issues of radiology services has
been a long-standing challenge [109,110]. The use of deep learning diagnostic adjuncts
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represents potential for increasing radiology capacity and providing better access to these
services for patients.

The quality of clinical machine learning decision support systems is dependent
upon the quality of the full product development lifecycle, from initial design to post-
implementation monitoring [111,112]. Careful data curation and processing are required
to ensure that data are broadly representative of clinical populations, to manage label
fidelity and to ensure quality model training and validation [71]. Robust clinical evidence
is required to demonstrate reliability, validity, safety, and beneficial clinical impact. Us-
ability and interpretability for clinical end users are critical to adoption, and effective
post-implementation performance and safety monitoring is key to quality management
and ensuring patient care improvement [113].

The immediate future of applied machine learning in CXRs seems likely to follow the
trends established in this systematic review. Broader comprehensiveness and continual
improvements in model performance will approach and exceed that of human expert
counterparts. In pursuit of these aspirations, we may see increasing use of novel devel-
opment techniques such as generative adversarial networks (GANs) to augment training
datasets and overcome the challenge of data limitations [114]. CXR data may be drawn
upon by multimodal deep learning models and combined with other modalities such
as ECGs to better predict specific disease states [115,116]. Early work has even shown
that two-dimensional CXRs can be used to reconstruct three-dimensional CT images and
improve pathology detection and classification efforts [117]. Interpretation automation
may benefit patients in communities lacking radiologist expertise and where investigations
presently go unreported.

Machine learning is driving the future of radiology. Developments will require shifts
in clinical practice and careful risk mitigation. Radiologists need to be a part of the machine
learning development process and drive the safe implementation of high-quality systems.
Radiologists will play a key role in quality control and innovation as machine learning
systems are applied to achieve better patient outcomes at scale.
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Appendix A. Assessment Criteria for Quality and Risk of Bias

Table A1. Risk of bias assessment of included studies. + Indicates low ROB, - indicates high ROB,
and ? indicates unclear ROB.

PROBAST ROB Assessment

Study Participants Predictors Outcome Analysis Overall

Ahn et al., 2022 [43] + + + + +

Albahli et al., 2021 [44] + + + + +

Altaf et al., 2021 [46] + + + + +

Baltruschat et al., 2021 [49] + + + + +

Bharati et al., 2020 [50] + + + + +

Chakravarty et al., 2020 [51] + + + + +

Chen et al., 2020 [53] + + + + +

Cho, Kim et al., 2020 [55] + + + + +
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Table A1. Cont.

PROBAST ROB Assessment

Study Participants Predictors Outcome Analysis Overall

Cho, Park et al., 2020 [56] + + + + +

Choi et al., 2021 [57] + + + + +

Fang et al., 2021 [58] + + + + +

Gipson et al., 2022 [59] + + + + +

Gündel et al., 2021 [60] + + + + +

Han et al., 2022 [61] + + + + +

Hwang et al., 2022 [62] + + + + +

Jabbour et al., 2022 [63] + + - + -

Jadhav et al., 2020 [64] + + + + +

Jin et al., 2022 [66] + + + + +

Jones et al., 2021 [42] + + - + +

Kim et al., 2021 [67] + + + + +

Kim et al., 2022 [68] + + + + +

Kuo et al., 2021 [69] + + + + +

Lee et al., 2022 [70] + + + + +

Li et al., 2021 [71] + + + + +

Majkowska et al., 2020 [72] + + + + +

Mosquera et al., 2021 [73] + + + + +

Nam et al., 2021 [74] + + + + +

Niehues et al., 2021 [76] + + + + +

Park et al., 2020 [77] + + + + +

Paul et al., 2021 [78] + + + + +

Pham et al., 2021 [80] + + + + +

Rudolph et al., 2022 [81] - + + + -

Rudolph et al., 2022 [82] - + + + -

Seah et al., 2021 [83] + + + + +

Senan et al., 2021 [84] - + + + -

Sharma et al., 2020 [85] + + + - -

Sung et al., 2021 [87] + + + + +

Van Beek et al., 2022 [88] + + + + +

Verma et al., 2020 [89] + + + ? ?

Wang et al., 2021 [90] - + + + -

Wang et al., 2020 [91] + + + + +

Wang et al., 2021 [92] + + + + +

Wang et al., 2020 [93] + + + + +

Wu et al., 2020 [11] + + + + +

Xu et al., 2020 [94] + + + + +

Zhou et al., 2021 [95] + + + + +
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