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Abstract: Small bowel polyps exhibit variations related to color, shape, morphology, texture, and size,
as well as to the presence of artifacts, irregular polyp borders, and the low illumination condition
inside the gastrointestinal GI tract. Recently, researchers developed many highly accurate polyp
detection models based on one-stage or two-stage object detector algorithms for wireless capsule
endoscopy (WCE) and colonoscopy images. However, their implementation requires a high com-
putational power and memory resources, thus sacrificing speed for an improvement in precision.
Although the single-shot multibox detector (SSD) proves its effectiveness in many medical imaging
applications, its weak detection ability for small polyp regions persists due to the lack of information
complementary between features of low- and high-level layers. The aim is to consecutively reuse
feature maps between layers of the original SSD network. In this paper, we propose an innovative
SSD model based on a redesigned version of a dense convolutional network (DenseNet) which em-
phasizes multiscale pyramidal feature maps interdependence called DC-SSDNet (densely connected
single-shot multibox detector). The original backbone network VGG-16 of the SSD is replaced with
a modified version of DenseNet. The DenseNet-46 front stem is improved to extract highly typical
characteristics and contextual information, which improves the model’s feature extraction ability.
The DC-SSDNet architecture compresses unnecessary convolution layers of each dense block to
reduce the CNN model complexity. Experimental results showed a remarkable improvement in the
proposed DC-SSDNet to detect small polyp regions achieving an mAP of 93.96%, F1-score of 90.7%,
and requiring less computational time.

Keywords: polyp; wireless capsule endoscopy images (WCE); single-shot multibox detector (SSD);
image augmentation; multiscale DenseNet

1. Introduction

Recently, small bowel tumors have been the third leading cause of death in the word.
Adenomatous polyps formed by glandular tissue are considered as one of the most com-
mon cases of colorectal cancer. Contrary to hyperplastic polyps, which have no malignant
potential, adenomas are considered precancerous and can transform into malignant struc-
tures despite being benign tumors. The prevalence of this disease is expected to rise in the
coming years [1]. For that reason, the endoscopic removal of benign and early malignant
polyp regions in the GI tract in their early stage is required. Thus, doctors need a full direct
visualization of the GI tract [2]. Wireless capsule endoscopy (WCE) is an advanced tool
that revolutionizes the diagnosis technology [3]. It provides a feasible noninvasive method
for detecting the entire gastrointestinal (GI) tract without pain and sedation compared with
traditional colonoscopies. However, its short working time, low image resolution, and low
frame rates restrict its wide application. In fact, the large quantity of data produced per
examination per patient (approximation 55,000 images) is a laborious task for physicians to
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accurately locate the polyp regions in each WCE frame. An automated tumor detection
technique is required to relieve specialists of the time-consuming task of reviewing the
whole video before making a diagnosis. The presence of artifacts and complex characteris-
tics (e.g., texture, shape, size, and morphology) inside the GI tract may hinder the detection
process of polyp regions, as shown in Figure 1. As a result, small polyp regions are invisible
to the naked eye, preventing doctors from identifying suspicious areas and manually locat-
ing polyp regions in each WCE frame. With the rise of artificial intelligence, deep learning
(DL) frameworks, as opposed to handcrafted methods, have widely been investigated
in medical image analysis due to their superior performance in image classification [4–6].
Many CAD systems have been proposed for polyp detection purposes to assist endo-
scopists by providing an automated tool that acquires some knowledge without requiring
their physical attendance [7]. Therefore, they help clinicians to correctly determine the
polyp frame’s ground truth and make the correct decision by reducing human error. Some
manuscripts aimed to automatically detect and localize polyp regions on both colonoscopy
and capsule endoscopic images [8–10]. The lack of public and annotated datasets for
polyp detection purpose is a common issue in the field. However, researchers use their
own dataset, and the results may lack of subjectivity. According to their initiative, other
studies on colonoscopy have used public data sets (e.g., the MICCAI 2015 subchallenge
on automatic polyp detection in colonoscopy). Based on their architecture, preexisting
cross-domain image object detectors are split into two categories: one-stage detectors, such
as YOLO [11], SSD [12], etc., and two-stage detectors (R-CNNs [13] and their numerous
variations (Faster R-CNN [14], R-FCN [15], etc.)). One-stage detectors are generally faster
but less accurate. Even though speed-focused object detection research in medical image
analysis runs in real time on high-end GPUs, a trade-off between precision and speed
prevents SSD models from detecting small objects quickly. Even though it succeeds in
keeping location information in shallow/deeper layers of the network, the SSD model’s
detector fails to preserve semantic information for small polyp regions. Two-stage detec-
tors are typically more accurate but slower, and using a fixed receptive field limits deep
learning’s practical application in detecting small polyp regions. The main motivation
of this work is to improve the performance of the polyp detection task in term of mean
average precision (mAP) with less computational cost, using more powerful deep learning
frameworks. Thence, a new SSD model is redesigned based on a modified version of
DenseNet. The original backbone network, VGG16, is replaced by DenseNet-46, which
can address the issue of high computational runs and overfitting during the optimization
process. The redesigned DenseNet framework significantly reduces the number of model
parameters while improving the backbone network’s feature extraction capability. It can
also capture more target information than VGG networks. The unnecessary convolution
layers of each dense block are compressed to get significant increases in performance
without increasing network complexity. The DenseNet-46 design reduces the number of
layers used to speed up the run time while gaining significant precision, and the front stem
is improved to enable the extraction of more powerful contextual information. Inspired
by the DenseNet-S-32-1 [16], this manuscript presents a densely connected single-shot
multibox detector (DC-SSDNet) for detecting small polyp regions in WCE and colonoscopy
frames. To reach the main target, the proposed network takes advantage of the power
architectural design of dense blocks to create an ultimate architecture that serves as the
backbone of the SSD detector. It changes the traditional procedure of the shallow part of
the VGG16 network’s alternating convolutional and pooling layers with a couple of dense
blocks and transition blocks. The DenseNet architecture tends to be very deep, and an
effective DenseNet compression is essential for reaping all the benefits of dense blocks,
consistent with the VGG16 architecture, to target the small polyp detection while retaining
computational efficiency. As a result, an entire extraction of polyp patterns of various sizes
within the same layer is possible while avoiding heavy parameter redundancy. The strategy
of altering dense blocks and transition blocks is aimed at incorporating contextual and se-
mantic information into deep networks and construct a multiscale feature map. Inspired by
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stacking-based models, the proposal adopts the SSD network structure [12]. The backbone
pyramidal network is modified to reuse missed information. Moreover, we propose a new
DenseNet network to optimize the SSD network’s ability to improve small object feature
extraction in the shallower network and to overcome scale variation limitations in detecting
small polyp regions. Properly tuning the hyperparameters of the proposed DC-SSDNet,
our experiments yield a higher mAP than the conventional SSD, with gains of 16.76, 17.74,
and 16.74 points on the WCE, CVC-ClinicDB, and Etis-Larib datasets, respectively, with an
enhancement of the speed–precision trade-off for the detection of small polyp regions.

Figure 1. Examples of polyp image artifacts used in the current study. (a) Bubbles; (b) images
with medical instruments; (c) white liquid and specular reflections; (d) cloudy liquid and specular
reflections; (e) debris; (f) blurry images caused by different factors; (g) bile and specularity; (h) low
contrast between polyp region and normal tissues.

The following are the primary contributions of this study:

1. The application of a modified version of DenseNet called DenseNet-46 as a backbone and
smoothly adapted to the SSD detector to improve its ability for small polyp detection.

2. Based on the inception v4 stem part, the backbone DenseNet-46 front stem is improved,
allowing the extraction of highly relevant features and contextual information.

3. To capture enough patterns and representative information, we increased the filter
numbers of the first convolution layers in the stem part of the DenseNet-46 backbone
from 32 to 64.

4. We omitted the unnecessary convolution layers of each dense block of the DenseNet-46
backbone to reduce the DC-SSDNet model’s complexity and to achieve a faster speed
while preserving a lesser computation time.

5. DC-SSDNet adds a couple of new dense and transition blocks to match the structure
of SSD that detects targets in images using a single deep neural network.

6. DC-SSDNet introduces additional convolution layers to the multiscale feature pyra-
mid, which is consistent with the traditional SSD.

7. The proposed model is trained from scratch.
8. We conducted several experiments on three well-known datasets in the field (WCE,

CVC-ClinicDB, and Etis-Larib) to verify the DC-SSDNet model’s effectiveness for a
fair comparison with previously published methods of the literature.

9. This manuscript provides a thorough examination of the benefits and drawbacks of
the proposed framework.

The rest of this paper is structured as follows: Section 2 contains references to related
works. The proposed DC-SSDNet model is presented in detail in Section 3. The experi-
mental results are reported and compared to those of other models in Section 4. Finally,
Section 5 discusses the conclusions.
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2. Literature Review

WCE images exhibit great variations in terms of size, shape, and morphology making
the automated polyp detection process more difficult. Handcrafted features have been
widely investigated, showing a significant progress for gastrointestinal classification tasks.
A previous study [17] presented a model-based pyramid histogram for polyp classification
using T-CWT and gamma. The major problem is the misunderstanding of biological
mechanisms. They rely heavily on prior knowledge and have limited generalizability.
Thus, handcrafted methods encode only a portion of the image and ignore the intrinsic
data of the whole frame. They use low-level features created manually to describe the
structures of regions that are not sufficiently robust to be applied for automatic polyp
detection. Recently, the development of deep learning and powerful computing devices
made the realization of deep CNNs (DCNNs) feasible. Several attempts have been made
to use existing deep-learning frameworks to classify colonoscopy polyp abnormalities:
VGGNet repeatedly stacked 3 × 3 convolution layers and 2 × 2 pooling layers to reach a
maximum depth of 19 layers; GoogleNet [18] increased both the network depth and the
width to enhance the feature representation by parallelly performing multiple convolution
and pooling operations at each layer; and ResNet [19]. However, the vanishing-gradient
problem always persists when training DCNNs. Inspired by the end-to-end frameworks
for the polyp recognition task, Yuan et al. [16] used the most recent DenseNet model in
2019 as the basic model to directly calculate representative features from image information
rather than using low-level handcrafted features to characterize the WCE image. Thus, they
improved feature propagation through dense connections and significantly reduced the
number of tuning while maintaining a high performance. The main proposal was to localize
polyps in WCE/colonoscopy images by drawing a bounding box around the emphasis
region, whereas polyp classification was a localization interstage conducted directly. In
general, CNN-based methods are divided into two categories: the two-stage algorithms
that generate region proposals as a first step and then classify them into different object
categories (e.g., Faster R-CNN [20]), and the one-stage algorithms based on regression
(e.g., YOLO [21] and SSD [22]). The Faster R-CNN [20] and R-FCN [23]) proposed anchors
for different scales using a one-scale feature map. However, they failed to detect multiscale
objects of small sizes. The FPN [24] and DSSD [25] methods used bottom-up and top-down
frameworks, respectively; however, using the layer-by-layer feature map fusion results
slowed the detection process. As a solution, the conventional SSD [12] made predictions
by utilizing the feature of shallower layers and scaling them from the bottom to the top to
generate a new pyramidal feature map. In this context, a two-stage framework based on
deep learning was presented by Jia et al. [26] for automatic polyp recognition in colonoscopy
images. The authors of [27] presented a modified version of the mask R-CNN model for
performing polyp detection and for segmentation purposes. TASHK et al. [28] proposed an
improved version of the CNN algorithm based on DRLSE to automatically locate polyps
within a frame. However, two-stage algorithms sacrifice speed for a high-performing
localization and object recognition performance. Thus, they hardly meet the real-time
requirements of polyp detection. Oppositely, the one-stage algorithms achieve a high
inference speed by ignoring the region proposal step and using the predicted boxes directly
from the input images. To detect polyps in colonoscopy videos, Liu et al. [29] investigated
the potential of the ResNet50 and VGG16 frameworks used as a backbone to propose a
new architecture-based single-shot detector (SSD). However, the traditional SSD using the
VGG16 network as a backbone repeatedly stacks convolution and pooling layers, and its
feature extraction ability is inefficient due to its use of only 1× 1 and 3× 3 convolution
kernels. Improving the polyp detection process necessitates a robust backbone (such as
DenseNets [30]). Regarding the advantages of you only look once (YOLO) algorithms
in real-time detection speed at the expense of precision, they eliminate a preprocessing
step to obtain an ROI and abandon the process of proposal generation. Misawa et al. [31]
presented a YOLOv3-based polyp detection system that achieved real-time detection
with greater than 90% sensitivity and specificity. However, the spatial constraints of the
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algorithm limited it to perform with small regions within the image. Researchers made
many efforts based on SSD algorithms to tackle the limitations of small polyp detection
and localization. In this context, the authors of [32] proposed a rainbow SSD-based method.
It applied a simple concatenation and deconvolution operation of feature maps produced
from SSD layers. Zhang et al. [33] presented an SSD-GPNet-model-based SSD network
by combining feature maps of the low level with the deconvolution of high-level feature
maps. However, adding deconvolution layers increased the computational complexity of
the SSD architectures at the expense of speed, even if it improved the performance of small
polyp region detection. Regarding the success of DenseNet frameworks in many fields,
Zhai et al. [16] presented an improved SSD network that used the residual prediction block
and switched the network backbone to DenseNet. They then used a multiscale feature layer
fusion mechanism to reinforce the relationships between the levels in the feature pyramid.
However, it exhibited a decrease in detection speed by using a complex network and
adding complicated feature fusion modules. To extract more semantic information while
keeping the detection speed constant, we propose a densely connected single-shot detector
called DC-SSDNet. The characteristic ramification of the feature maps within the same
block would become quite beneficial if the purpose was to reuse them to perform stacked
dense and transition blocks with the capacity of the SSD network to be more compact while
going deeper. A typical compression method of a network’s feature maps is to remove
unnecessary layers by reducing parameter dimensions. Concretely, there is no need for
feature extraction enhancement using a lightweight feature fusion of shallower and deeper
layers due to the power of dense networks for capturing more representative patterns and
reassembling contextual and semantic information. Indeed, meeting the requirements of a
detection process involves the reduction of the model complexity while preserving a high
detection speed. Thus, clinical applications require a real-time detection and promising
precision [34].

3. Proposed Method

Figure 2 depicts the network structure of DC-SSDNet for the polyp detection task.
A redesigned SSD-detector-based compact DenseNet-46 network used as a backbone
is proposed to strengthen the network detection ability. The conventional SSD with the
VGG16 as a backbone fails to preserve contextual information in the multilayer transmission
process. Therefore, unbalanced feature maps appear at each layer. To reuse the rich object
information of low-level layers and incorporate it with high-level layers, DC-SSDNet splits
the network structure into two sections: a compact version of DenseNet (a DenseNet-46
network as a backbone) for feature reuse and extraction and the front-end network to
perform multiscale object detection. Firstly, a preprocessing step is performed to remove
the black regions in the WCE images and keep only useful information. Then, a data
augmentation strategy is investigated to handle overfitting in deep learning models due to
the data insufficiency problem. The model input size is 299× 299. For object classification
and location regression, the conventional SSD model selects VGG-16 layers Conv4_3 and
Conv_7 and adds new ones Conv8_2, Conv9_2, Conv10_2, and Conv11_2. Consistent
with the SSD network, we construct a multiscale feature pyramid under the premise
of maximizing the use of synthetic information from all feature layers and improving
precision without sacrificing speed. To improve the model’s detection ability, we use our
own multiscale feature pyramid Dense_C1, Dense_C2, Dense_C3, Dense_C4, Dense_C5,
and Dense_C6. The main parts of the DC-SSDNet detector are described in detail below.
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Figure 2. Architecture of the proposed densely connected single shot multibox detector (DC-SSDNet).

3.1. Compact DenseNet-46

A deep CNN uses many repeated convolution layers resulting in the bottom-level
features being destroyed. Many medical imaging applications utilize DenseNet to improve
precision caused by the vanishing gradient in high-level neural networks. DenseNet reuses
some not-useful redundant information to concatenate the high-level features with the
residual sparse low-level ones, even if it does not propagate them effectively. In this paper,
we propose a compact DenseNet-46 as a backbone network of DC-SSDNet by applying
certain modifications to DenseNet. Table 1 depicts the main structure based on the number
of layers. DenseNet-46 use the feature maps from all previous layers as input in the next
layer to alleviate the lack of region location information of high-level features, as depicted
in Table 1. Despite the success of deep DenseNets applications in many fields, we believe
that using this network directly as an ultimate SSD backbone is probably not going to
be an effective solution for small polyp detection. Compared to other deep DenseNet
versions, the compact DenseNet-46 compresses some repeated dense connections in each
dense block to allow fewer feature propagations and reduce the destruction of low-level
features. Compressing each block’s unnecessary convolution layers, the compact DenseNet-
46 avoids generating more redundant information, preventing the small polyp’s features
from being submerged, and reducing the system’s complexity. Unlike the commonly
used structure in the DenseNet model design, the backbone network consists of a stem
block and six phases of dense and transition blocks. Only the sixth phase does not use a
transition block.
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Table 1. Compact DenseNet-46 architecture (growth rate k = 32) in each dense block.

Phase Layer Setting Output Size
(Input 299 × 299 × 3)

Stem block 75× 75× 96

Phase 1
Dense block (1)

(
1× 1 Conv

3× 3 ConvbPad−Validc

)
× 2 75× 75× 160

Transition block (1)
1× 1 ConvbPad− validc 75× 75× 160

2× 2 AveragePoolbstride2c 38× 38× 160

Phase 2
Dense block (2)

(
1× 1 Conv

3× 3 ConvbPad−Validc

)
× 3 38× 38× 256

Transition block (2)
1× 1 ConvbPad− validc 38× 38× 256

2× 2 AveragePoolbstride2c 19× 19× 256

Phase 3
Dense block (3)

(
1× 1 Conv

3× 3 ConvbPad−Validc

)
× 3 19× 19× 352

Transition block (3)
1× 1 ConvbPad− validc 19× 19× 352

2× 2 AveragePoolbstride2c 10× 10× 352

Phase 4
Dense block (4)

(
1× 1 Conv

3× 3 ConvbPad−Validc

)
× 3 10× 10× 448

Transition block (4)
1× 1 ConvbPad− validc 10× 10× 448

2× 2 AveragePoolbstride2c 5× 5× 448

Phase 5
Dense block (5)

(
1× 1 Conv

3× 3 ConvbPad−Validc

)
× 2 5× 5× 512

Transition block (5)
1× 1 ConvbPad− validc 5× 5× 512

2× 2 AveragePoolbstride2c 3× 3× 512

Phase-6 Dense block (6)
(

1× 1 Conv
3× 3 ConvbPad−Validc

)
× 2 3× 3× 576

3.1.1. Stem Block

The motivation behind the DenseNet-46 stem block design originates from the consid-
erable success of the Inception-v4 structure [35] in small polyp detection. It is designed in
the same manner before the first dense block, as depicted in Figure 3. Experimentally, the
DenseNet-46 stem block can slightly reduce the information loss from input frames com-
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pared with the conventional structure of DenseNet, which includes a 7 × 7 convolutional
layer and a 3 × 3 max pooling before the first dense block. The redesigned stem block can
also reinforce the DC-SSDNet network’s ability for feature extraction with less computa-
tional cost. However, the DenseNet-46 stem block structure excerpted from the asymmetric
convolution kernel structure used in Inception-v4 reduces the model complexity while
maintaining a small loss of feature information.

Figure 3. Structure of stem block.

3.1.2. Dense Block

The dense block is the basic unit of the compact DenseNet-46 structure, as shown in
Figure 4. We denote the feature maps of the K − 1 layer as m× n× p0, where m and n
represent the width and height of feature maps, and p0 means the number of channels.
R(·) represents a nonlinear transformation consisting of a rectified linear unit (Relu) as an
activation function, a 1× 1 convolution layer, and a 3× 3 convolution layer. It changes the
number of channels to k (k = 32) without altering the size of the feature maps. To reduce
the number of channels, we used the 1× 1 convolution operation, and we adopted the
3× 3 convolution operation for feature restructuring and to improve the network perfor-
mance. Each dense block reduces the redundancy of dense connectivity represented by
the long dashed arrow, in which feature maps of the K − 1 layer are connected directly to
those of the K layer and then make a concatenation with the output of R(·), thus resulting
in m× n× (p0 + p). The output of the K + 1 layer is m× n× (p0 + 2p). Previous studies
based on DenseNet used a fixed number of dense blocks (4 dense blocks in all DenseNet
architectures) to keep the same scale of outputs. They also added new layers to each
DenseNet network’s dense blocks to increase framework depth. A connectivity increase
may decrease network performance due to contextual and semantic information redun-
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dancy. For this reason, the proposed DenseNet-46 backbone structure adds two additional
dense blocks to increase the network depth rather than increasing the connections of each
dense block. The DenseNet-46 backbone structure used in this work has two base blocks
in dense blocks (1), three in dense blocks (2), three in dense blocks (3), three in dense
blocks (4), two in dense blocks (5), and two in dense blocks (6).

Figure 4. Structure of dense block.

3.1.3. Transition Block

After several dense connections, the number of feature maps of the DenseNet-46
grows dramatically. Consistent with the original DenseNet, we designed transition layer
blocks to reduce the dimension of previous dense blocks’ features, as depicted in Figure 5.
The transition block includes a 1× 1 convolution layer with valid padding to reduce the
number of channels of the previous layers. Then, it performs a 2 × 2 average pooling layer
to decrease half of the feature map sizes. In the last phase, the transition block is not used
to not reduce the final feature map resolution for further modification related to the SSD
output requirements.

Figure 5. Structure of transition block.

3.1.4. Growth Rate

Table 1 shows the details of the compact DenseNet-46 backbone. The growth rate of
the DenseNet denoted as ’k’ is referred to as the number of 3× 3 convolution kernels in
each dense block. It changes the number of channels of the input feature maps in each dense
block. Since each dense block is concatenating to its previous ones, the succeeding layer
channels grow by k after each dense block. The number of base blocks in the dense block,
which consists of 4k 1× 1 convolutions and 1k 3× 3 convolutions, varies depending on the
dense block location. It is well known an increase in growth rate gives good performance
due to the large amount of information circulating in the network. This assumption is
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not always verified as it depends on the context environment, and the system complexity
will also increase. In the DenseNet-64 base model used in this proposal, we utilized three
settings: k = 16, k = 32, and k = 48. The growth rate choice was validated experimentally.

3.2. Multiscale Feature Pyramid Network

Several feature layers (Conv6_2, Conv7_2, Conv8_2, and Conv9_2) are added to the
original SSD via the base network’s end (VGG16) for object classification and location
regression from multiple feature maps at different depths. Inspired by the pyramidal
feature hierarchy, the proposed approach adopts the SSD network structure [12]. However,
the original backbone network VGG-16 of SSD is replaced with DenseNet-46 to enhance the
feature extraction ability of the SSD model and address the problem of scale variations in
detecting small polyp regions. The DC-SSDNet network uses the output of each transition
block as the input of the multiscale feature pyramidal except for the sixth phase, to keep
the final feature map resolution not reduced. Convolutional layers are used to perform
pyramidal feature maps for small polyp detection but with different configurations. Con-
sistent with the SSD model, the final feature layers have target sizes of 38× 38, 19× 19,
10× 10, 5× 5, 3× 3, and 1× 1.

4. Experiments
4.1. Datasets and Experimental Environments

The WCE dataset is from PillCam©COLON 2 polyps [36]. It consists of 120 polyps
and 181 normals images collected from one patient’s VCE test with a resolution of
256 pixels × 256 pixels, as shown in Figure 6. A preprocessing stage was performed to
avoid overfitting and increase the training dataset size. Hence, the regenerated dataset
comprised 1250 polyp patches and 1864 normal ones. Two highly qualified experts manu-
ally labeled and annotated frames as positive and negative samples. To provide ground
truths, they defined binary masks corresponding to the polyp regions covered. To meet the
needs of polyp detection tools, the bounding boxes of polyp regions were delimited using
the specialists’ ground-truth mask using a graphical image annotation tool to label objects’
bounding boxes in images (LabelImg). Then, experts corrected them. The second dataset
was the popular CVC-ClinicDB [37]. In this regard, researchers reviewed 25 colonoscopy
videos to choose at least 29 sequences with at least one polyp region and selected a set
of frames for each of them. The CVC-ClinicDB dataset contains 612 polyp images with
a resolution of 384 × 288. The specialists manually defined masks for the polyp-covered
regions in each image to provide the ground truths. Then, they were drawn based on the
ground truth provided by the specialists using advanced medical annotation tools. To
confirm the proposed model’s credibility, we used the annotated ETIS-Larib dataset [38]
in which 34 colonoscopy videos produced 196 polyp images of various shapes and sizes,
as shown in Figure 6. Skilled experts annotate the ETIS-Larib dataset ground truths. The
colonoscopy images were from the MICCAI 2015 subchallenge on the automatic polyp
detection task. Polyps’ images were rescaled to 299 × 299 pixels. We divided the data
into 70% for training, 10% for validation, and 20% for model testing. We employed a
fivefold cross-validation to validate the model’s state and convergence after each epoch.
The validation data step automatically adjusted the iterations and the learning rate. The
model adopted a validation set according to the five group performances in the models.
Finally, the performances were averaged across the splits to calculate the mean average
precision measure.

In this study, we performed the training and testing phases using the Colab Pro Plus
solution provided by Google, with a maximum RAM of 52 Gb and a disk of 166.83 Gb. The
CUDA 8.0.61-1, CuDNN6.0, Keras 2.1.0, Python 3.7, protobuf 3.20.*, h5py 2.10.0, NumPy
1.16.3, TensorFlow 1.14, TensorFlow-GPU 1.14, OpenCV-python, scikit-learn, scikit-image,
tqdm, beautifulsoup4, lxml, html5lib, bs4, ipykernel, and OpenCV 3.1 packages were used
to implement the algorithm. For all used datasets, an aspect ratio between one and two was
adopted depending on the small polyp regions’ true bounding boxes.
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Figure 6. Example of samples: (a–c) WCE polyp images; (d–f) Etis-Larib polyp images; (g–i) CVC-
ClinicDB polyp images.

4.2. Training

Many training hyperparameters were adjusted to strengthen the DC-SSDNet capability
for detecting polyp abnormalities in WCE and colonoscopy frames as shown in Table 2.
The presence of black regions in WCE images may impair detection performance and
lengthen computation time. Hence, the original capsule endoscopy image was reduced to a
center square-shaped image in the peripheral area as a first preprocessing step in order to
remove unwanted black regions. We used a batch size of 32 and rescaled the input images
to (299 × 299 × 3). The model employed 100 training epochs and 500 steps per epoch. The
motivation behind the data augmentation was a lack of data for the WCE classification and
detection tasks. Moreover, data access was tightly restricted owing to privacy concerns. In
this regard, we applied popular augmentation methods used in recent studies [10,35]. We
applied geometric methods which altered the geometry of the resulted region-of-interest
(ROI) image as a second preprocessing step, by mapping the individual pixel values to
new destinations. To perform data augmentation techniques, the flipping approach was
examined in order to mirror the ROI WCE frames across their vertical and horizontal axes
at first, then across both in the second pass. Finally, we rotated the ROI WCE images by
270◦ about their center, as shown in Figure 7.
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Table 2. Hyperparameter settings of the densely connected single-shot multibox detector (DC-SSDNet).

Hyperparameters Values

Optimizer Adam
beta_1 0.9
beta_2 0.999
epsilon 1 × 10−8

Initial learning rate 0.0001
Learning rate decay drop factor 0.5

Epoch drop factor 10
epoch < 80: 0.0001

Learning rate epoch < 100: 0.00001
0.000001 otherwise

α parameter 1
neg_pos_ratio 3

Batch size 32
Training epochs 100
Steps per epoch 500

Aspect ratio 1–2

Figure 7. A flow-chart of the preprocessing steps: (a) acquiring the region of interest (ROI) of the
WCE polyp image (b); sample of image from the WCE dataset with geometric transformation.

We trained the proposed model from scratch to not rely on any model pretrained
on classification tasks to initialize the network, as commonly known visual purposes
of classification and detection are distinct. For training DC-SSDNet, we used adaptive
moment estimation (Adam) as the optimizer (beta_1 of 0.9, beta_2 of 0.999, and an epsilon
of 1 × 10−8). The learning rate was initially set to 0.0001, and the learning rate decay policy
differed slightly from the original SSD with a drop of 0.5 and an epoch drop of 10, which
allowed the network to converge by controlling its learning rate. If the epoch number was
less than 80, the learning rate was 0.0001, 0.00001 if the epoch number was less than 100,
and 0.000001 otherwise. Recent state-of-the-art approaches targeting polyp detection were
investigated in this study to compare them with the proposed model [10]. We used a loss
function consistent with that used in the traditional SSD [12]. The cross-validation method
adjusted the α parameter to one and the neg_pos_ratio to three. More information about
SSD_Loss can be found in [16]. The proposal evaluated the detection performance with the
most used metrics in the field, the mean average precision (mAP), the number of frames
per second (FPS), and other indicators.
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4.3. Evaluation Indexes

This study evaluated polyp detection performance using the mean average precision
(mAP) and frames per second (FPS), which are well-known in target object detection. The
mAP represents the average of all object categories’ average precision (AP), expressed as:

mAP =
∑S

s=1 AveP(s)
S

(1)

where S denotes the number of queries in the set and s denotes the average precision query.
The precision indicator represents a measure of exactness and the recall a measure of

completeness. The expected overlap between the ground-truth bounding box annotated
by the experts and the predicted one produced by the network expresses the intersection
over union (IoU). The following equations formulate the precision, recall, and F1-score
indicators as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(2)

F−measure/F1− score =
(2× Recall × Precision)

Recall + Precision
(3)

where TP represents the true positives with an IoU greater than 0.5, FP represents the
false positives, and FN represents the false negatives. The frames per second (FPS) metric
measures the detection speed and denotes the number of frames sent per second. A detailed
evaluation metric of the model’s performance is provided in the work of [10].

4.4. Results and Discussion
4.4.1. Ablation Studies

On the WCE, CVC-ClinicDB, and ETIS-Larib colonoscopy datasets, we performed an
ablation study to investigate the impact of each component of the DC-SSDNet detector on
performance. Table 3 shows different model settings using the compact DenseNet-46 as a
backbone, where the training was conducted on the WCE images, the CVC-ClinicDB+ETIS-
Larib joint training sets, and tested on the WCE, CVC-ClinicDB, and ETIS-Larib test sets.
Using three values of the growth rate K, the performance was 81.96% when K = 16 and
improved to 85.41% mAP at K = 32. The use of a small growth rate produced better
results for K = 32, and a larger K = 48 could also provide a better model performance
according to the DF-SSD as it showed a smaller mean AP of 84.54% than K = 32. It is
highly recommended not to set a higher growth rate to reduce network complexity and
computing costs. The growth rate of DC-SSDNet was set to 32. Table 3 demonstrates that
the stem block improved the model’s mAP performance by 7.78% (89.74% vs. 81.96%) at
K = 16, 8.55% (93.96% vs. 85.41%) at K = 32, and 7.08% (91.62% vs. 84.54%) at K = 48 on
the WCE dataset. The results proved the relative importance of stem blocks in preserving
information in the original input image and contributing to small polyp detection. Then,
we evaluated transition pooling techniques (average pooling and max pooling) and report
their influence on the proposed system’s performance mAP (%). We can see from Table 3
that an average pooling on the WCE test set obtained a higher mAP of 93.96% compared
with max pooling (90.56% mAP) using the stem block at K = 32. Consistent with the
traditional DenseNet, we used the average pooling layer to decrease the resolution of the
feature maps. As reported in Table 3 (row 5, row 6, and row 8), without batch normalization
for each conv layer, the proposed approach obtained better results (mAP of 85.41%, 90.56%,
and 93.96%) at K = 32, whereas the mAP was 83.54% and 84.97% when utilizing batch
normalization on the WCE training and test sets at K = 32 and K = 48, respectively. The
ETIS-Larib and CVC-ClinicDB test sets in Table 3 (rows 11–20 and 21–30) complement the
WCE image results and illustrate the efficacy of the stem block and growth rate parameters
in emphasizing more salient aspects for small polyp identification.
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Table 3. Results of an ablation study on the WCE and colonoscopy datasets. BN denotes the addition
of a batch normalization layer to each convolution layer. K refers to the growth rate. The stem block
represents the front layers of the DenseNet-46 backbone. The transition pool is either an average
pooling layer or a max pooling layer. The mAP represents the mean average precision on the WCE,
Etis-Larib, and CVC-ClinicDB test sets.

Training Data Test Data Stem Block K BN Transition Pool mAP (%)

× 16 × Average 81.96
× 32 X Max 83.54
X 48 X Average 91.62
× 48 X Max 84.97

WCE WCE × 32 × Average 85.41
X 32 × Max 90.56
X 16 × Max 88.16
X 32 × Average 93.96
X 16 × Average 89.74
× 48 × Average 84.54

× 16 × Average 80.68
× 32 Max 81.32
X 48 X Average 89.22
× 48 X Max 83.14

CVC-ClinicDB × 32 × Average 83.75
joint CVC-CLinicDB X 32 × Max 88.09

Etis-Larib X 16 × Max 87.09
X 32 × Average 92.24
X 16 × Average 89.36
× 48 × Average 84.77

× 16 × Average 79.98
× 32 X Max 81
X 48 X Average 89.46
× 48 X Max 83.98

CVC-ClinicDB × 32 × Average 84.52
joint Etis-Larib X 32 × Max 87.55

Etis-Larib X 16 × Max 87.14
X 32 × Average 90.86
X 16 × Average 89.34
× 48 × Average 82.72

4.4.2. SSD Results on WCE and Colonoscopy Datasets

We trained the detector-based SSDs on the WCE, CVC-ClinicDB, and ETIS-Larib
combined training set and tested on each dataset separately as depicted from Tables 4 and 5.
SSD300 with VGG16 (as a backbone) showed that the WCE, CVC-ClinicDB, and ETIS-Larib
test sets had mAPs of 77.2%, 74.5%, and 74.22%, respectively. Tables 4 and 5 (rows 5–6)
prove that the FSSD300 and FSSD500 models showed gains of 12.58% and 9.25%, 12.76% and
9.16%, and 12.18% and 11.47% in terms of mAP compared to the original SSD. DenseNet-
S-32-1 replaces VGGNet as the backbone network on the DF-SSD300. Thus, for the WCE,
CVC-CLinicDB, and Etis-Larib data sets, it outperformed the FSSD300 model by 1.46%,
2.66%, and 0.54% for the mAP with 91.24% vs. 89.78%, 89.92% vs. 87.26%, and 86.84%
vs. 86.3%, respectively. To incorporate contextual and semantic information, the L_SSD
model in Tables 4 and 5 (row 8) replaced the VGG16 network with the ResNet-101 backbone
showing an improvement in terms of mAP compared to the FSSD model for all employed
datasets. The DF-SSD300 algorithm outperformed the L_SSD algorithm in terms of mAP
with a gain of 1.26 points (91.24 % vs. 89.98%), 1.74 points (89.92 % vs. 88.18%) on the
WCE and CVC-ClinicDB test sets, respectively, due to the power of DenseNet in feature
reuse and extraction abilities. However, it showed a slight drop in mAP on the Etis-Larib
test set. The proposed DC-SSDNet model surpassed the DF-SSD300, MP-FSSD, and Hyb-
SSDNet networks by 2.72 points (93.96% vs. 91.24%), 0.56 points (93.96% vs. 93.4%), and
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0.67 points (93.96% vs. 93.29%) on the WCE dataset. The DC-SSDNet framework achieved a
32.5 FPS real-time detection, compared to 11.6 FPS, 17.4 FPS, and 40 FPS for the DF-SSD300,
DSOD300, and L-SSD, respectively.

Table 4. SSD comparison with previously reported approaches based on the WCE test set. Pretrain
denotes a pretrained backbone to initialize the model, as opposed to starting from scratch. The
Google Colab pro+ GPU was used to assess the speed (FPS) and performance (mAP).

Training Data Methods Backbone Input Size Pretrain FPS mAP@0.5 (%)

WCE

SSD300 VGG16 300 × 300 × 3 X 46 77.2
SSD300 ResNet-101 300 × 300 × 3 X 47.3 81.65
SSD500 VGG16 300 × 300 × 3 X 19 79.45
SSD500 ResNet-101 300 × 300 × 3 X 20 84.95

FSSD300 VGG16 300 × 300 × 3 X 65.9 89.78
FSSD500 VGG16 500 × 500 × 3 X 69.6 88.71

DF-SSD300 [16] DenseNet-S-32-1 300 × 300 × 3 × 11.6 91.24
L_SSD [39] ResNet-101 224 × 224 × 3 X 40 89.98

MP-FSSD [10] VGG16 300 × 300 × 3 X 62.57 93.4
Hyb-SSDNet [35] Inception v4 299 × 299 × 3 X 44.5 93.29

DSOD300 [40] DS/64-192-48-1 300 × 300 × 3 × 17.4 91.70
DC-SSDNet (ours) DenseNet-46 299 × 299 × 3 × 32.5 93.96

Table 5. SSD comparison with previously reported approaches based on CVC-ClinicDB and Etis-Larib
test sets. Pretrain denotes a pretrained backbone to initialize the model, as opposed to starting from
scratch. The Google Colab pro+ GPU was used to assess the speed (FPS) and performance (mAP).

Training Data Methods Backbone Input Size Pretrain FPS mAP@0.5 (%)

CVC-ClinicDB ETIS-Larib

SSD300 VGG16 300 × 300 × 3 X 46 74.5 74.12
SSD300 ResNet-101 300 × 300 × 3 X 47.3 78.85 75.73

CVC-ClinicDB SSD500 VGG16 500 × 500 × 3 X 19 78.38 75.45
joint SSD500 ResNet-101 500 × 500 × 3 X 20 82.74 80.14

ETIS-Larib FSSD300 VGG16 300 × 300 × 3 X 65.9 87.26 86.3
FSSD500 VGG16 500 × 500 × 3 X 69.6 87.54 86.92

DF-SSD300 [16] DenseNet-S-32-1 300 × 300 × 3 × 11.6 89.92 86.84
L_SSD [39] ResNet-101 224 × 224 × 3 X 40 88.18 87.23

MP-FSSD [10] VGG16 300 × 300 × 3 X 62.57 89.82 90
Hyb-SSDNet [35] Inception v4 299 × 299 × 3 X 44.5 91.93 91.10

DSOD300 [40] DS/64-192-48-1 300 × 300 × 3 × 17.4 90 89.3
DC-SSDNet (ours) DenseNet-46 299 × 299 × 3 × 32.5 92.24 90.86

4.4.3. Comparison with Existing Detection Methods

We compared the performance of the proposed DC-SSDNet approach to the most
prominent networks in the literature-based SSDs models, YOLOv3 and Faster R-CNN, as
shown in Table 6. For further comparing DC-SSDNet with previous studies’ target polyp
detection, we trained the model on the joint ETIS-Larib and CVC-ClinicDB training sets
and evaluated it on the publicly accessible ETIS-Larib dataset. The DC-SSDNet model
achieved promising results or similar metrics in the worst cases on the three employed test
sets compared to other state-of-art approaches. One of the main reasons for the difference
in results was that the nature, texture, and lighting conditions of the WCE and colonoscopy
images change inside the GI tract. Following a series of improvements to the initial SSD
model, DC-SSDNet achieved an mAP of 93.96% utilizing only the WCE for both training
and test sets, and outperforming other methods on the CVC-ClinicDB and Etis-Larib test
sets by 92.24% and 90.86%, respectively. Due to the fact the WCE images were gathered from
a single patient’s VCE test, and CVC-ClinicDB images were acquired from 25 colonoscopy
recordings to choose at least 29 sequences with at least one polyp area and a series of
frames for each of them, even if the WCE was accurately divided into training, validation,
and testing sets, there would be some overlap. As a result, the network might have been
familiar with certain hard cases. Moreover, it showed superior performance compared to
the YOLOv3 model [21] and close to that of Hyb-SSDNet [35]. DC-SSDNet yielded good
results in terms of mAP while maintaining the computational cost and a small speed drop.
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Table 6. Results of the WCE or the colonoscopy test with an IoU greater than 0.5 and a batch size of 1.

Training
Dataset Methods Testing

Dataset
Backbone
Network Pretrain Input Size Prec (%) Recall (%) F1 Score (%)

WCE DC-SSDNet
(ours) WCE DenseNet-46 × 299× 299 93.96% 90.82% 90.7%

CVC-ClinicDB
+ ETIS-Larib

DC-SSDNet
(ours) CVC-ClinicDB DenseNet-46 × 299× 299 92.24% 91% 88.40%

CVC-ClinicDB
+ ETIS-Larib

DC-SSDNet
(ours) ETIS-Larib DenseNet-46 × 299× 299 90.86% 90.4% 89.12%

CVC-ClinicDB
+ ETIS-Larib

Shin et al.,
2018 [2] ETIS-Larib Inception

ResNet X 768× 576 92.2% 69.7% 79.4%

ETIS-
Larib+CVC-

ClinicDB

Souaidi et al.,
2022 [35] ETIS-Larib Inception v4 X 299× 299 91.10% 87% 89%

SUN+
PICCOLO+

CVC-ClinicDB

Ishak et al.,
2021 [21] ETIS-Larib YOLOv3 X 448× 448 90.61% 91.04% 90.82%

WCE +CVC-
ClinicDB

Souaidi et al.,
2022 [10] ETIS-Larib VGG16 X 300× 300 90.02% × ×

CVC-ClinicDB Liu et al.,
2021 [41] ETIS-Larib ResNet-101 X 384× 288 77.80% 87.50% 82.40%

GIANA 2017 Wang et al.,
2019 [42] ETIS-Larib AFP-

Net(VGG16) X 1225× 996 88.89% 80.7% 84.63%

CVC-ClinicDB Qadir et al.,
2021 [43] ETIS-Larib ResNet34 X 512× 512 86.54% 86.12% 86.33%

CVC-ClinicDB
Pacal and
Karaboga,
2021 [44]

ETIS-Larib CSPDarkNet53 X 384× 288 91.62% 82.55% 86.85%

CVC-ClinicDB Wang et al.,
2019 [42] ETIS-Larib Faster R-CNN

(VGG16) × 224× 224 88.89% 80.77% 84.63%

CVC-
VideoClinicDB

Krenzer et al.,
2019 [45]

CVC-
VideoClinicDB YOLOv5 × 574× 500 73.21% × 79.55%

4.4.4. Visualization

The main objective of this study was to show the impact of the condensed model
in highlighting small polyp regions for the detection and localization tasks on the WCE,
Etis-Larib, and CVC-ClinicDB test sets. Polyp detection aims at selecting polyp areas and ig-
noring normal parts, feces, artifacts, and water jet sprays to clean the colon. Some examples
of polyp detection of the SSD model and DC-SSDNet network on the employed datasets are
depicted in Figures 8–10. Compared to DC-SSDNet (Figures 8b,f, 9b,d, and 10b,d,h),
Figures 8a,e, 9a,c, and 10a,c,g show false negative results in which the conventional
SSD failed to detect small and flat polyp regions. The polyp region appeared similar
to the surrounding normal mucosa as well the existence of food, air bubbles, and other
debris may have hindered its localization process. Polyp areas showed variations re-
lated to color, texture, size, and shape and required more compact models to limit the
number of false negatives and avoid missed detection. DC-SSDNet performed feature
reuse by directly connecting shallower and deeper layers to distinguish polyp edge areas
from normal ones. Figure 9g shows a false positive case of the SSD model on the ETIS-
Larib test set with an error in detecting the polyp region while it was not there, whereas
Figures 8b,f, 9b,d,g, and 10b,d,h show the correct identifications of the DC-SSDNet net-
work. Besides small polyp detection, the proposed DC-SSDNet network achieved promis-
ing performance even for detecting large polyps on the WCE, CVC-ClinicDB, and ETIS-
Larib test sets; see Figure 8b. With the presence of multiple polyps in one frame and a low
contrast between the polyps and the background regions, both SSD and DC-SSDNet missed
localizing small polyp regions, as illustrated in Figures 9c,d and 10c,d. In these cases, the
problem was most likely one of contrast since the polyp was oversaturated. As a result, the
F1 score decreased significantly. Although DC-SSDNet produced promising mAP results, it
failed to detect some small polyp instances that seemed similar to portions of the colon due
to lighting and contrast, resulting in a misleading bounding box and lowering the mAP
and F1 scores. Even endoscopists may miss some small parts that cannot be detected by the
naked eye or that are hidden from view behind a fold. However, the proposed DC-SSDNet
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model proved its efficiency in localizing small polyp regions at a fast detection speed while
ensuring precision.

Figure 8. On the WCE test set, visualization results comparing SSD300 (a,c,e,g) and the proposed
DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in green,
whereas predicted bounding boxes are in red.

Figure 9. On the Etis-Larib test set, visualization results comparing SSD300 (a,c,e,g) and the proposed
DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in green,
whereas predicted bounding boxes are in red.
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Figure 10. On the CVC-ClinicDB test set, visualization results comparing SSD300 (a,c,e,g) and the
proposed DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in
green, whereas predicted bounding boxes are in red.

5. Conclusions

This work suggested an improved SSD detector based on a redesigned DenseNet
(DC-SSDNet) emphasizing polyp detection in the WCE, Etis-Larib, and CVC-ClinicDB
datasets. Many researchers in the field use their own datasets due to medical imaging
ethics and the lack of publicly available and annotated WCE polyp datasets. Thus, their
results may suffer from subjectivity. The DC-SSDNet network aimed to exploit the potential
of feature reuse as opposed to relearning features in later layers. The proposed approach
used stacked dense and transition blocks instead of simple convolution layers with a
capacity of the SSD network to be more compact while going deeper, yielding condensed
models that were easy to train and highly parameter-efficient. The compact DenseNet-46
compressed unnecessary convolution layers of each dense block to reduce the amount
of feature redundancy, resulting in fewer overall parameters and faster training times.
The small polyp areas’ visual appearance was modeled by directly connecting layers
throughout the network and generating novel pyramidal feature maps. While training data
from scratch, the DC-SSDNet detector achieved comparable, if not superior, performance
in mAP compared to other state-of-the-art pretrained models with real-time processing
speed on the WCE and public datasets (CVC-ClinicDB and Etis-Larib). Artifacts and other
factors may degrade performance and negatively affect the detection process. We will
conduct further studies in the future around this shortcoming while maintaining the smaller
running time. Rather than proposing polyp identification tasks on WCE and colonoscopy
frames, future studies will investigate hybrid architectures to present a unique detection
method for video colonoscopy. Furthermore, it would be interesting to use a hybrid 2D/3D
architecture and assess its performance by employing other promising backbones.
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Abbreviations

GI tract Gastrointestinal tract
WCE Wireless capsule endoscopy
MICCAI Medical Image Computing and Computer Assisted Intervention
YOLO You only look once
SSD Single-shot multibox detector
R-CNN Region-based convolutional neural network
R-FCN Region-based fully convolutional network
DenseNet Dense network
DCNN Deep convolutional neural network
pool pooling
ResNet Residual network
FPN Feature pyramid network
DSSD Deconvolutional single-shot detector
ROI Region of interest
Conv Convolutional layer
DC-SSDNet Densely connected single-shot multibox detector network
MaxPool Max pooling
Pad Padding
AveragePool Average pooling
L2 Regul L2 regularization
VCE Video capsule endoscopy
Adam Adaptive moment
neg-pos-ratio negative positive ratio
mAP Mean average precision
FPS Frames per second
TP True positive
FP False positive
IoU Intersection over union
FN False negative
BN Batch normalization
FSSD Fusion single-shot multibox detector
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