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Abstract: The high dimensionality and sparsity of the microarray gene expression data make it
challenging to analyze and screen the optimal subset of genes as predictors of breast cancer (BC). The
authors in the present study propose a novel hybrid Feature Selection (FS) sequential framework
involving minimum Redundancy-Maximum Relevance (mRMR), a two-tailed unpaired t-test, and
meta-heuristics to screen the most optimal set of gene biomarkers as predictors for BC. The proposed
framework identified a set of three most optimal gene biomarkers, namely, MAPK 1, APOBEC3B,
and ENAH. In addition, the state-of-the-art supervised Machine Learning (ML) algorithms, namely
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Neural Net (NN), Naïve Bayes (NB),
Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), and Logistic Regression (LR) were used
to test the predictive capability of the selected gene biomarkers and select the most effective breast
cancer diagnostic model with higher values of performance matrices. Our study found that the
XGBoost-based model was the superior performer with an accuracy of 0.976 ± 0.027, an F1-Score of
0.974 ± 0.030, and an AUC value of 0.961 ± 0.035 when tested on an independent test dataset. The
screened gene biomarkers-based classification system efficiently detects primary breast tumors from
normal breast samples.

Keywords: primary breast tumor; gene-biomarkers; hybrid-feature selection approach; filter-based fs;
two-tailed unpaired t-test; meta-heuristics techniques; supervised machine learning classifiers; breast
tumor prediction

1. Introduction

In recent years despite the technological advances in imaging tools, the earlier detec-
tion of BC has remained a tenacious challenge. According to a recent statistical analysis,
BC is the most predominant cancer in women and the second most common cause of mor-
tality in undeveloped and developed countries (https://www.who.int/news-room/fact-
sheets/detail/breast-cancer/, accessed on 10 October 2022). An earlier cancer diagnosis
reduces the probability of death in cancer patients, which can be achieved using comprehen-
sive screening programs [1,2]. Moreover, understanding the underlying mechanism and
pathogenesis would improve BC’s efficient diagnosis and treatment. BC’s formation and
development involve genomic, transcriptomic, and epigenomic factors [3]. Therefore, un-
derstanding the pathogenesis of cancer from a molecular perspective will contribute toward
our goal of the early detection and effective treatment of BC. Conventional techniques such
as histopathological classification and imaging tools, such as ultrasound, mammography,
and magnetic resonance imaging, have been proven beneficial [4–6]. However, they offer
little information about the mechanism of cancer development and progression [7,8].
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On the contrary, with the recent development and advancement in DNA microarray
technology, large-scale genomic transcriptomic expression data archives, namely the Cancer
Genome Atlas [9] and CuMiDa [10], have been developed. These provide a platform to
explore and understand the pathogenesis of cancer formation and proliferation from a
molecular perspective. Analyzing the expression of genes among newly diagnosed BC
patients [11–15] and those undergoing treatment [16,17] provides a better understanding of
the disease progression and prognosis. Large-scale cancer genomics screening programs
explore novel BC gene biomarkers to improve early detection and reduce mortality. It is
essential to systematically analyze the possible effect of individual genes, or a combination
of genes, as gene biomarkers indicative of BC to discover more potential predictors to aid
early detection.

However, evaluating each gene or a combination of genes can be viewed as a Feature
Selection (FS) problem executed on a high-throughput multi-dimensional microarray gene
expression dataset. The number of features (genes) is significantly greater than the number
of instances in the high throughput gene expression microarray dataset. Thus, many
features lead to overfitting problems (the curse of dimensionality) where the standard
ML algorithms overfit the data, leading to a significant performance difference between
the trained and tested supervised classifier-based predictive models [18,19]. Therefore,
to address the problem, feature (gene) selection techniques have been applied to BC
microarray gene expression data to reduce the curse of dimensionality by eliminating
redundant and non-informative features (genes) [20,21].

Typically, FS approaches can be grouped into four groups, namely, (1) filter, (2) wrap-
per, (3) embedded, and (4) hybrid methods [22]. Filter methods utilize statistical properties,
namely scores in various statistical tests, to determine the correlation of the particular fea-
ture with the response variable. Moreover, selecting the most statistically relevant feature
in the filter method is independent of any machine learning algorithms and collinear-
ity between the features. Wrapper methods use learning methods to search for optimal
subsets of features. The selection of the best-performing subset of features in a wrapper
method is based on the performance of the specific classifier we are trying to fit on a
given dataset. The Wrapper methods typically apply metaheuristics search approaches
to evaluate all the possible combinations of features against the evaluation metrics, and
these metaheuristics-based wrapper methods have shown excellent performance. However,
wrapper approaches are computationally expensive because they employ a classifier to
evaluate each subset of features. In embedded methods, the FS process is typically built-in
with the classifier to determine the optimal feature subset. Hybrid methods combine filter
and wrapper approaches, and the hybrid methods of FS are popularly used by researchers
worldwide. The Hybrid FS approach uses the advantages of the filter and wrapper FS
techniques [23–33].

Feature selection in a high ratio of features to samples in microarray gene expression
data is an example of an NP-hard problem. Therefore, heuristic-based global minima search
algorithms are most appropriate for finding the most optimal solutions in these complicated
NP-hard problems. Moreover, the hybrid FS methods are sometimes more applicable
than filter-based methods in screening gene biomarkers from the cancer microarray gene
expression dataset [20]. The nature-inspired FS methods select the best optimal feature
subset using heuristic search to maximize the classification accuracy in binary and multi-
class classification problems [34]. Metaheuristics algorithms have also been used to solve
many NP-hard problems in various fields, such as function optimization [35–37], feature
extraction for the image-based classification of cancer [38], feature selection for cancer
diagnosis [39,40], and biomedical engineering [41–44] and circuit design [45,46].

Motivation: FS studies applying metaheuristics in the hybrid learning approach for
gene biomarker selection are still limited in BC classification, thereby enabling an earlier
diagnosis of BC. Thus, the impact studies involving the hybrid approaches using heuristics
algorithms require further research. These facts motivated us to propose a new framework
involving a systematic, comprehensive analysis of the other hybrid FS methods, followed
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by various classifier-based primary tumor prediction analyses to screen genes that have
robust diagnostic efficiency in detecting the earlier stages of BC using the microarray gene
expression dataset. Moreover, our study also provides biological insight into the selected
subset of features. Thus, our method aims to determine genes with robust diagnostic
capability while also providing biological insights that would help understand the early
molecular mechanisms of BC from the topological and physical aspects.

Contribution: The main contributions and the novel aspects of the present study are
the following:

• In the present study, we propose a new framework of a hybrid feature selection
approach to screen predictors from microarray gene expression data with better di-
agnostic efficacy in predicting the earlier stages of BC. In this context, our proposed
hybrid-based FS approach consists of two steps.

1. The first stage involves systematically applying the filter-based, statistical, and
metaheuristics optimization approaches to select the best subset of the predictor.

2. The second stage consists of the classification stage. In this stage, the screened
subset of genes from the FS stage was used to identify BC features with the
highest classification accuracy.

• We compared our proposed hybrid FS method with the state-of-the-art techniques
developed in recent years.

• The experimental results showed that the hybrid FS method presented in this study is
robust in classifying primary BC tumors into binary categories (normal and primary
breast tumor classes), outperforming the state-of-the-art hybrid FS methods developed
to screen gene biomarkers for an earlier diagnosis of BC.

In the present study, a machine learning-based hybrid FS framework was developed
to screen the best optimal feature subset to build a classification model for earlier detection
of primary BC, as represented in Figure 1. Our proposed supervised classification model
was created using the curated gene expression microarray data of 176 primary breast cancer
patients and 10 normal breast samples. First, the gene expression data Breast_GSE22820 [47]
obtained from the CuMiDa database [10] is preprocessed. The preprocessed data were
then introduced into a hybrid FS framework that involves a sequential implementation of
filter-based, statistical, and five metaheuristics optimization approaches.

The hybrid FS method was designed to screen a stable and relevant subset of stable
gene biomarkers (features) to classify primary breast cancer samples from normal breast
samples. The hybrid FS approach yielded the five most optimal subsets of features. First,
five subsets of the gene microarray data were generated using the five feature subsets
obtained using the hybrid FS approach. Next, the seven state-of-the-art supervised clas-
sification algorithms, namely SVM, KNN, NN, NB, DT, XGBoost, and LR, were trained
and tested on the five subsets of the microarray data using ten-fold cross-validation to
test the predictive potential of the selected subsets of gene biomarkers and thereby deter-
mine the most efficient breast cancer diagnostic model with higher accuracy, F1-Score, and
AUC value.

Finally, the supervised classification model’s predictive ability was estimated using a
set of statistical matrices whose mean and standard deviation values are documented in
the result section of the present article. Figure 1 shows a schematic representation of gene
microarray data’s hybrid FS for primary BC tumor classification.

The remaining part of this research article is organized as follows: Section 3 includes
the methodology of the research paper that has (1) the description of the datasets docu-
mented, (2) a detailed discussion of data preprocessing, (3) an explanation of the proposed
hybrid feature selection strategy, (4) a description of the filter based FS algorithm and
the metaheuristics techniques employed for developing the proposed hybrid FS strategy,
(5) a description of the various machine learning classifiers used in the study, and (6) a
description of the model performance evaluators. Section 4 discusses the results of the
hybrid FS approach and the performance evaluation of the various classifier-based models.
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Section 5 discusses the results and compares the performance against available Hybrid
FS-based ML models for earlier detection of BC patients. Finally, Section 6 involves the
concluding remarks, future scope, and the limitations of the present study.
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Figure 1. A pictorial representation of the proposed framework for screening a stable set of gene
biomarkers from gene microarray data to build a supervised classifier-based application for classifying
primary breast cancer samples from normal breast samples.

2. Literature Review

Many Hybrid FS methods involving heuristic algorithms have been developed in
recent years to resolve the breast cancer classification problem. Here, we present and
discuss the recently developed hybrid FS methods available in the literature.

As shown in Table 1, Shaban et al. [23] developed a new hybrid feature selection
method (NHFSM) that takes advantage of the filter and wrapper FS methods. Firstly, in the
preselection stage, the relevant nonredundant genes were selected using information gain
(IG), a filter method. Next, the selected non-redundant features using IG were processed
using a hybrid bat algorithm and particle swarm optimization (HBAPSO). The most optimal
feature subset was then selected using the maximum fitness value. Lastly, a MATLAB tool
was used to evaluate the efficacy of the proposed NHFSM method, which computed the
value of the different performance measures such as accuracy, sensitivity/recall, F-measure,
precision, and error rate. The NHFSM method enhances the accuracy of BC patients’
classification compared to the state-of-the-art feature selection approaches by obtaining
an accuracy of 0.97. Tahmouresi et al. [24] proposed an FS method that merges gene rank
and improved Binary Gravitational Search Algorithm (iBGSA), and the combination was
named a pyramid Gravitational Search Algorithm (PGSA). The authors observed that the
suggested FS method outperformed other wrapper techniques, having more than 70%
of features reduced from the original number of features. Hamim et al. [25] suggested a
hybrid method for gene biomarker selection from the gene microarray data.
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Table 1. Comparison of various FS algorithms for selecting the most informative features to classify microarray BC data. The symbol “-“means the unavailability of
data.

Studies
Reference Number

Feature Selection Methods

Classification Methods No. of Selected
Genes/miRNA/DNAm

Percentage
Accuracy/AUC

Limitations

Filter
Methods

Wrapper
Methods Other Methods

Shaban et al. [25] IG Bat Algorithm Particle Swarm
Optimization (PSO) NB 5 0.97

Cross-validation studies were not performed for
the validity of the results, and there was a higher

degree of complexity.

Tahmouresi et al. [25] Gene Rank iBGSA - SVM 73 genes 84.5/-
The higher number of screened features makes the

decision-making system complex and has a
smaller sample size.

Hamim et al. [26] Fisher Score (FS) ACO - C5.0 Decision Tree Five genes 95.44/0.96 Only one Filter method and wrapper method were
used in the study.

Ghozy et al. [27] IG GA - FLNN 49 genes 85.63/-

A higher number of screened features makes the
decision-making system complex, and

a smaller sample size and only one filter and
wrapper method were used in the study.

AbdElNabi [27] IG GWO - SVM 70 genes 94.87/-

The higher number of screened features makes the
decision-making system complex, and a smaller
sample size and only one wrapper method were

used in the study for analysis.

Tang et al. [28]
Maximum–Relevance–

Maximum–Distance
(MRMD)

- Principal Component
Analysis (PCA) RF

25 (miRNA)
971(CpGs)-MRMD
573 (CpGs)-PCA

91.3/-

A higher number of screened features makes the
decision-making system complex and the training
time longer, and cross-validation studies were not

performed.

Jain et al. [29] CFS iBPSO - NB 32 92.75/-

The higher number of screened features makes the
decision-making system complex,

there is a very low sample size, and only one
wrapper method is used in the study for analysis.

Shukla et al. [30] CMIM AGA - ELM 6 94.29/-
The study used a very low sample size and only

one filter-based FS and the wrapper-based
algorithm for analysis.

Lu et al. [31] MIM AGA - ELM 216 95.21/-

The higher number of screened features makes the
decision-making system complex. There is a

very low sample size, and only one filter-based FS
algorithm and the wrapper-based algorithm are

used in the study for analysis.

Mohapatra et al. [32] - MCSO Max-min
scaling/normalization

Kernel Ridge Regression
(KRR) 50 97.0/-

A higher number of screened features makes the
decision-making system complex,

and the study has a low sample size.

Shreem et al. [33] SU HS - Instance-based Learning
algorithm -1 (IB1) 25 83.39/-

A small sample size and a higher number of
screened features make the decision-making

system complex.
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The method combines a Fisher Score-based filter and the Ant Colony Optimization
(ACO) algorithm. The Hybrid FS method was named the Hybrid fisher-Ant Colony Opti-
mization (HFACO) algorithm. The combination of HFACO with the C5.0 classifier showed
high classification accuracy. Ghozy et al. [26] proposed a hybrid FS framework using
Information Gain (IG) as a filtering method and Genetic Algorithm (GA) as a wrapping
method to decrease the dimension of the feature set. Finally, classification was performed
using a Functional Link Neural Network (FLNN).

The experimental result showed that the authors could screen 49 gene biomarkers to
classify breast cancer with an accuracy of 85.63%. AbdElNabi et al. [27] proposed an FS
method that comprises IG and Grey Wolf Algorithm (GWO) to detect BC from microarray
data by applying an SVM classifier. Tang et al. [28] developed a novel FS strategy to detect
extremely tissue-specific biomarkers, namely miRNA and DNA methylation markers.
They then used the random forest approach to construct a classifier that can efficiently
predict the origin of breast tumors. Jain et al. [29] created a hybrid gene selection method
employing a combination of Correlation-based FS (CFS) with improved-Binary Particle
Swarm Optimization (iBPSO). The hybrid CFS-iBPSO method and NB classifier attained
greater than 90% accuracy in the BC microarray dataset. Using the hybrid method, out
of 24,481 genes in the data, only thirty-two differentially expressed genes from the BC
dataset were screened, which equates to only 0.13% of the original number of genes in
the BC dataset. Shukla et al. [30] proposed a framework for gene selection that combines
Conditional Mutual Information Maximization (CMIM) and Adaptive GA (AGA). The
suggested gene selection approach was tested on the BC microarray dataset. The results of
the CMIMAGA method with the Extreme Learning Machine (ELM) classifier exhibited the
maximum classification accuracy among other classifiers.

Lu et al. [31] proposed a gene selection method that combines Mutual Information
Maximization (MIM) and adaptive GA (MIMAGA). The suggested approach successfully
reduced the original 20,000 genes from the BC data to below three hundred with a mean
accuracy of 80% in classifying the target variable. Mohapatra et al. [32] proposed a novel
FS method for microarray data built on the Modified Cat Swarm Optimization (MCSO)
algorithm. The results showed that MCSO-based Wavelet Kernel Ridge Regression (WKRR)
outclassed other classifiers for the microarray dataset employed in their research. Finally,
Shreem et al. [33] introduced a hybrid FS method using the Symmetrical Uncertainty (SU)
with Harmony Search (HS) algorithm. The introduced method selected less than thirty
genes for the detection of BC. Table 1 summarizes different gene selection techniques for
predicting the earlier detection of BC using various microarray datasets.

3. Materials and Methods
3.1. Dataset and Preprocessing

The Breast_GSE22820 gene expression microarray data were used for hybrid FS, and
supervised classification models were downloaded from the CuMiDa database [10]. The
Breast_GSE22820 dataset is preprocessed data provided by CuMiDa, where data has been
carefully and manually curated from sample quality, undesirable probes, background cor-
rection, and finally normalized to generate a more trustworthy resource of gene expression
microarray data for computational cancer genomic studies. The Breast_GSE22820 com-
prised 33,580 gene expression profiles of 186 samples (10 normal breasts and 176 primary
breast cancer patient samples) [48]. The target classes, namely the normal breast and pri-
mary breast cancer samples, were transformed into categorical string variables, i.e., Normal
breast samples encoded as “0” and Primary Breast cancer samples encoded as “1”. Further-
more, the sample column variable was removed from the original Breast_GSE22820 dataset.
Finally, the Quasi constant technique was applied to the transformed Breast_GSE22820
dataset variables to screen and filter similar variables using a variance threshold of 0.01.
After applying the quasi constant, 2184 variables were filtered, and a subset of data compris-
ing the remaining features and the class variable was created. The filtered Breast_GSE22820
dataset with 10 normal breasts and 176 primary breast cancer patient samples represents
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a class imbalance problem where one of the classes is under represented. One approach
to address the imbalance of classes in the Breast_GSE22820 dataset is to oversample the
minority class (normal breasts sample encoded as “0”). In our paper, we have used a
popular data augmentation technique named the Synthetic Minority Oversampling Tech-
nique (SMOTE) [47,49] to artificially synthesize new sample values for the minority class
(normal breasts sample) variable. The SMOTE parameter setting for performing oversam-
pling of the minority class is as follows: sampling strategy = auto, random_state = None,
k-neighbors = 5, and n_jobs = None. In the transformed Breast_GSE22820 dataset, upon
oversampling, the number of samples of each class (encoded as 0 and 1) is balanced (1:176,
0:176). The balanced data is divided into 80 % training and 20 % testing data. Table 2 shows
the distribution of the balanced gene expression dataset in training and testing data across
the two classes (primary breast tumor and normal breast).

Table 2. The balanced microarray gene expression data is distributed across the training and testing data.

Class Training Data Test Data Total

Primary Breast Tumor 141 35 176
Normal Breast 141 35 176

Total 282 70 352

3.2. Proposed Hybrid FS Strategy

The proposed hybrid FS method involves an mRMR, a two-tailed unpaired t-test, and
five state-of-the-art meta-heuristics algorithms to screen the most optimal and stable subset
of features for the classification objective, depicted in Figure 2a. Furthermore, a detailed
illustration of the framework is employed to screen the most optimal subsets of features
to train and test various supervised classification models which classify the two classes of
the Breast_GSE22820 gene expression microarray data with better accuracy, F1-Score, and
AUC value, which is shown in Figure 2b.
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In the proposed hybrid FS method, firstly, the multivariate filter-based mRMR tech-
nique using the F-statistic with a Correlation Quotient (FCQ) scoring scheme was used
to screen the most relevant and nonredundant feature subset. Eventually, a subset of
the twenty most relevant and nonredundant features was selected based on the FCQ
score. A subset of the original data, including the twenty-one features (20 independent
features + 1 dependent variable), was then generated and used for further analysis. Sec-
ondly, a two-tailed unpaired t-test was performed to compare the mean of the distribution
among two classes (primary breast cancer samples and normal breast samples) of the
twenty most relevant and nonredundant features screened using mRMR at a 5% signifi-
cance level. Next, a subset of data was generated, including the class variable and features
with a significant mean difference between the two classes (groups) at a 5 % significance
level. Thirdly, five state-of-the-art meta-heuristic algorithms were used to screen the most
optimal feature subsets from a subset of features whose average distribution values are
significantly different between the two classes (groups). Finally, the five most optimal fea-
ture subgroups obtained using the five meta-heuristic algorithms were trained and tested
using stratified ten-fold cross-validation on various supervised classification algorithms to
develop supervised ML models that can classify the primary breast cancer samples from
the normal breast cancer sample with higher accuracy, F1-Score, and AUC value.

3.2.1. FS Based on mRMR (FCQ)

The mRMR [50] is a minimal-optimal multivariate filter-based FS method that tends to
screen a subset with a minimal number of most relevant (high relevance with the response
variable) and nonredundant features (minimum correlation between the selected features).
In the present study, the Breast_GSE22820 microarray data and the genes (features) expres-
sion data are continuous, and response variable labels are binary category variables (0 and
1). Therefore, the relevance and redundancy information of mRMR among selected gene
biomarkers and class labels (0 and 1) in the present study is measured by F-statistic and
Pearson’s coefficients, respectively. The working of the mRMR algorithm is represented
using the following equations:

For continuous attributes (individual gene expression data), the F-statistic between
the genes and the target variable h can be chosen as the maximum relevance score. The
F-test value of gene (feature) gi in K classes represented by h is written as Equation (1):

F(gi, h) = [
k
∑ nk(gk − g)/(K− 1)]/s2 (1)

Here g is the average value of a gene (gi) in each tissue sample, gk is the average value
of gi within the kth class, K is the number of classes, and σ2 = [∑

k
(n k−1)σ2

k](n− K) is the

collective variance (here σk and (nk) and are the variance and size of the kth class). Using the
relation F = t2, the F-test will reduce to the t-test for the two-class classification problem.
Consequently, for the gene biomarker set S, the maximum relevance can be represented as:

max VF, VF =
1
|S|∑i∈S

F(i, h) (2)

The present study specifies the minimum redundancy condition between the input
variables using the Pearson correlation coefficient c(g i, gj) = c(i, j). Here both high nega-
tive and high positive correlations’ mean redundancy is considered. Therefore, the absolute
value of these correlations has been taken, and the given condition (minimum relevance
between the input variables) has been represented below in Equation (3).

min Wc, Wc =
1

|S|2 ∑
i,j
|c(i, j)|, (3)
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Next, the following features are screened using the mRMR optimization criterion
function involving FCQ. Finally, in Equation (4), we combine F-test with Correlation using
Quotient, which is written as:

max
i∈ΩS

{F(i, h)/[
1
|S|∑j∈S

|c(i, j)|]} (4)

The precise solution to the MRMR requirements needs exploration (N is the number
of genes in the whole gene set, Ω). Normally, a near-optimal solution is enough. Therefore,
a simple linear incremental search (heuristic) algorithm is required to solve the MRMR
optimization function and choose the following features assuming we have already selected
m features.

In the present study, we selected the top 20 features (S = 20) as the size of the minimal-
optimal feature subset. Subsequently, a data subset was generated comprised of twenty
genes (features) from the mRMR algorithm, which was further analyzed using a Student’s
t-test to select features whose mean significantly differed between the target class sample
populations (primary breast cancer samples and normal breast samples).

3.2.2. FS using a Two-Tailed Unpaired t-Test

A two-tailed unpaired t-test [51] at a 5% significance level was performed on the
subset data with twenty-one features (twenty features from mRMR and one class variable).
The two-tailed unpaired t-test was executed to screen features that demonstrate significant
differences between the mean values of the feature across the two classes’ populations.

3.2.3. FS Using Meta-Heuristic Algorithms

In the present study, five state-of-the-art meta-heuristic algorithms, namely, Equilib-
rium Optimizer (EO), Binary Bat Algorithm (BBA), Cuckoo Search Algorithm (CSA), Red
Deer Algorithm (RDA), Genetic Algorithm (GA), were used to obtain the most optimal
feature subset from the subset of a dataset comprising the significant features set attained
using a two-tailed unpaired t-test. The five state-of-the-art meta-heuristic algorithms,
namely EO, BBA, CSA, RDA, and GA, are discussed below.

1. Binary Bat Algorithm

The bat moves in a search space toward continuous-valued locations. However, in
the selection, the bat travels across the corners of a hypercube since the search space is
modeled as an n- dimensional Boolean framework [52]. Meanwhile, the bat’s position is
represented by binary vectors since the optimization problem is to choose or not choose a
particular feature. Thus, the Bat Algorithm restricts the new bat’s location to binary values
by employing a sigmoid function [53], as shown below:

S(vj
i) =

1

1 + e−vj
i

(5)

Suppose for each bat bi an initial position xi, velocity νi, and frequency f i are initialized.
Then, for an individual iteration, say t, where T is the maximum number of iterations,
the movement of the virtual bats is represented by revising their position and velocity by
employing Equations (6)–(8), as shown below:

fi = fmin + ( fmin − fmax)β, (6)

vj
i(t) = vj

i(t− 1) + [x̂j − xi
j(t− 1)] fi, (7)

xi
j(t) = xi

j(t− 1) + vj
i(t), (8)

Here β signifies an arbitrarily created number between 0 and 1. It signifies the value
of the decision attribute denoted by j for a given bat i at an iteration t. The outcome of fi,
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as shown in Equation (1), is utilized to regulate the range and pace of the bat’s movement.
The variable x̂jdepicts the present global best solution (global minima) for the decision
attribute j, which is achieved by comparing all the positions (solution) presented by the m
bats. The binary Bat Algorithm limits the new bat’s location to a binary value by using a
sigmoid function, as shown in Equation (9). Thus, Equation (8) can be substituted by:

xi
j(t) =

{
1 i f S(vj

i) > σ,
0 otherwise

(9)

Here σ ∼ U(0, 1). Thus, Equation (9) can offer only binary values for a given bat’s
coordinates within the Boolean framework, which stands for choosing or not choosing
the features.

2. Genetic Algorithm

The GA is a heuristic search-based optimization algorithm inspired by Charles Dar-
win’s theory of evolution and natural selection. The GA is used to find the optimal or
near-optimal solution to NP problems that are difficult to solve [54–56]. In GA, we have a
set of solutions for a given problem. Each candidate solution (variables) has a fitness value
based on the corresponding objective function. The fitter individuals (solutions) are more
likely to mate and produce more “fit” individuals (solutions). The GA concept aligns with
the Darwinian theory of “Survival of the Fittest.” These screened solutions (parents) then
undergo crossover (recombination) and mutation, generating new solutions with better
fitness values. This process repeats over various generations (iterations), and eventually,
the selection process is terminated once a generation with the fittest (optimal) solution is
found. The complete procedure GA is illustrated by a flow diagram, as shown in Figure 3.
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3. Equilibrium Optimizer Algorithm

The EO algorithm is a new meta-heuristic algorithm developed in 2019 for solving
single-objective optimization problems [57]. EO uses the best-so-far solutions (equilibrium
candidates) to update each particle (solutions) to reach an optimal solution (equilibrium
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state) finally. The EO algorithm uses the well-defined “generation rate,” which enables
the EO to have strong exploration and exploitation abilities and local optimum avoidance.
The structure of EO is simple and easy to implement. Moreover, the EO algorithm is
computationally effective, as its complexity is of polynomial order:

O(EO) = O(1 + nd + tcn + tn + tnd) ∼= O(tnd + tcn) (10)

Here, O = Big − O notation is used as common terminology, t = a number of iterations,
n = a number of particles, d = number of dimensions, and c = cost of function evaluation.

4. Cuckoo Search Algorithm

The cuckoo search is a metaheuristic optimization algorithm developed for solving
optimization problems [58,59]. It is a nature-inspired algorithm centered on the brood
parasitism of certain cuckoo species using levy flights-random-walks to lay their eggs
in the nests of host birds of another species. Moreover, the cuckoo search is a specific
case of the familiar (µ + λ)-evolution approach [60]. The CS algorithm employs the
following depictions:

In a straightforward case, we assume that each nest holds one egg. An individual egg
in a nest signifies a solution, and an additional cuckoo egg represents another solution. The
CS algorithm aims to replace a not-so-good solution (host egg) in the host nest with a better
solution (cuckoo egg). The algorithm can be further expanded to a more complex scenario
where each nest consists of many eggs representing multiple solution sets.

Additionally, the CS algorithm is built on three central rules:

• An individual cuckoo lays only one egg at a time and leaves its egg in an arbitrarily
selected nest of a host species;

• The finest nests with superior-quality eggs will be passed down to the
subsequent generation;

• The number of accessible hosts and their corresponding nests are set, and the probabil-
ity of an egg laid by a cuckoo to be discovered by the host bird is given as follows:

pa ∈ (0, 1) (11)

In the present scenario, the host bird can put the cuckoo egg away or desert the nest,
or the host can construct a new nest.

A significant benefit of the CS algorithm is its simplicity. Compared with other agents-
or population-based meta-heuristic algorithms, namely harmony search and particle swarm
optimization, there is an additional single parameter pα more in the CS algorithm along
with the parameter, which is the population size n. Thus, the CS algorithm is significantly
simpler in implementation.

5. Red deer Algorithm

The Red Deer algorithm (RDA) is a population-based meta-heuristic algorithm [61].
The RD algorithm is nature-inspired. The RD algorithm combines the competence and
strength of heuristic search techniques and the survival of the fittest concept of the evolu-
tionary algorithms [62]. The main inspiration of the meta-heuristic RD algorithm originates
from an uncommon mating manner in a breading season by the Scottish red deer. Like
the other population-based meta-heuristics, the RDA starts with an initial population
(solutions) randomly distributed, and each solution is called Red Deer. Here, each red deer
is considered to have a subset of features. The fitness of the red deer (individual feature
subset) is calculated, sorted, and the best fittest feature subset (red deer) is selected as stags
(Nm). The remaining are classified as hinds (Nf) using Equation (12).

fi =

{
1 i f r > 0.5
0 otherwise

(12)
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Where fi represents the discrete format of the fitness vector. r is a continuous random
variable between 0 and 1

The stages are employed to exploit feature space, and the hinds are utilized to explore
the feature space. Exploitation by stags is confirmed by assessing the nearby stags made
using Equation (13) given below.

Stagnew =

{
Stagold + r1 ∗ ((UB− LB) ∗ r2) + LB i f r3 ≥ 0.5
Stagold − r1 ∗ ((UB− LB) ∗ r2) + LB i f r3 < 0.5

(13)

The Upper Boundary (UB) and the Lower Boundary (LB) of the search space represent
the highest number of features that can be selected and the lowest number of features
that must be selected, respectively. The variables r1, r2, and r3 signify continuous random
values ranging from 0 to 1. The current fittest solution (Stag) is designated as Stagold,
and the adjacent stag is designated Stagnew. If the fitness value of the Stagnew is greater
than the fitness value of the, then the Stagnew will replace the Stagold as the fittest solution
(best feature subset). Finally, the best solution (deer) amongst the stag is chosen as the
commander. The commander then breeds 80% of the female (hind) in the feature space
(population) to generate offspring. Equation (14) shows the commander’s breeding with
the hind.

RDnew =
(Com + Hind)

2
+ (UB− LB) ∗ c (14)

RDnew is the new Red deer (new solution or feature subset). The commander and hinds
in Equation (5) are designated by Com, and Hind, respectively. The variable “c” signifies
a continuous random variable with its value ranging from 0 to 1. The breeding process
results in an acceptable level of exploration or diversification of all possible solutions.
Moreover, the present commander will fight with randomly chosen stags in the feature
space (population). The stag who defeats the current commander will become the next
commander (optimal solution). Next, the fitness value of all the existing stags is calculated
again. The process endures until the commander deer obtains the maximum fitness value
or the greatest number of deer is generated. The pseudocode of the feature selection process
used in the RD algorithm is shown below in Figure 4:
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3.3. Feature Selection Methods Parameter Setting

All FS experiments were performed on a laptop with an Intel Core i7 processor with
2.4 GHz and 8 GB of RAM. Table 3 shows the configuration of the parameters settings of
the FS algorithms based on filter and nature-inspired metaheuristics algorithms.

Table 3. Feature selection methods’ parameter settings.

Feature Selection Algorithm Type of FS Method Parameter Value

mRMR Filter

The minimum value of Correlation 0.00001
score_func FCQ

K [No. of feature to select] 20
Execution time in CPU 20.4 s

Bat Algorithm Heuristics

Number of agents 20
Max_Iteration 100
Loudness A 1.0

Emission Rate (r) 0.15
Alpha 0.95

Gamma 0.5
Minimum Frequency 0
Maximum Frequency 2

Stopping criteria Max Iteration
save_convergence_graph False

Execution time in CPU 8.16 s

Genetic Algorithm Heuristics

Number of agents 20
Max_Iteration 100

The objective function (Fitness) roulette_wheel
probability of crossover 0.4
probability of Mutation 0.3

Stopping criteria Max Iteration
save_convergence_graph False

Execution time in CPU 12.64 s

Equilibrium Optimizer
Algorithm Heuristics

Number of agents 20
Max_Iteration 100

Objective Function Compute Fitness
The shape of the transfer function s

Pool size 4
Omega 0.9

Constant (a2) 1
weight constant coefficient of the global search (a1) 2

Generation rate (GP) 0.5
Stopping criteria Max Iteration

save_convergence_graph False
Execution time in CPU 4.80 s

Cuckoo Search Algorithm Heuristics

Number of agents 20
Max_Iteration 100

Fraction of nests to be replaced 0.25
Objective Function Compute Fitness

The shape of the transfer function s
save_convergence_graph False

Stopping criteria Max Iteration
Execution time in CPU 7.48 s

Red Deer Algorithm Heuristics

Number of agents 20
Max_Iteration 100
Upper bound +5
Lower bound −5

Fraction of the total number of males who are chosen
as commanders (γ) 0.5

Fraction of the total number of hinds in a harem who
mate with the commander of their harem (α) 0.2

Fraction of the total number of hinds in a harem who
mate with the commander of a different harem (β) 0.1

Objective Function Compute Fitness
The shape of the transfer function s

save_convergence_graph False
Stopping criteria Max Iteration

Execution time in secs 15.99 s
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3.4. Partitioning of the Microarray Datasets Obtained Using Hybrid FS Techniques

Each of the five subsets of the gene microarray dataset generated from the five optimal
feature subsets obtained after the hybrid FS techniques was partitioned into 80% training
and 20% independent testing datasets. Each of the 80% training datasets consists of 282
samples, of which 141 samples belong to primary breast cancer, and the other 141 samples
belong to normal breast samples, as shown in Table 2. Stratified ten-fold-training-cum-
cross-validation on the 80% training sets was used to train seven supervised classification
models: DT, RF, KNN, SVM, XGBoost, Gaussian-NB, and LR. To avoid prediction bias, it
is mandatory to test the trained models on independent test data unseen by classification
models during the model training phase.

Subsequently, stratified ten-fold cross-validation on the 20% testing datasets was
performed to assess the classifying proficiency of each ML-based trained model. All five
20% testing data derived from the five heuristics FS method consist of 35 samples belonging
to the primary breast cancer samples and the other 35 samples belonging to the normal
breast samples, as shown in Table 2. The mean and standard deviation of each performance
evaluator (accuracy, F1-Score, and ROC-AUC) were recorded and compared to select the
best set of features and the corresponding feature subset-based model that can classify
primary breast cancer samples from the normal breast samples with higher accuracy, F1-
Score, and AUC value. Each testing dataset consisted of 70 samples, while 35 belonged to
each class label: primary breast cancer and normal breast.

3.5. Training Classification Algorithms

The seven typically used supervised classification algorithms used for the training of
the seven different classification models are discussed below:

3.5.1. Logistic Regression

Logistic regression is a supervised learning classification algorithm. The LR classifies
discrete target variables based on a sigmoid function, where the independent variable’s
values lie between +∞ to −∞, and the output is a probabilistic value of a target variable
that ranges between 0 to 1 [63,64]. The mathematical equation of the LR is shown below:

y =
e(b0+b1X)

1 + e(b0+bX)
(15)

Here, x = input value; y = predicted output; b0 = bias or intercept term; b1 = coe f f icient
f or input variable (x)

3.5.2. XGBoost

Extreme Gradient Boosting, abbreviated as XGBoost, is an accurate implementation of
distributed gradient-boosted decision tree (GBDT). The XGBoost algorithm implements a
parallel boosting tree and is the most popular method for solving classification, ranking,
and regression problems [65]. XGBoost uses an ensemble of K-classification DTs. Each of
the DTs has KiE|i ∈1 . . . K nodes. The final classification score is the sum of the prediction
score of each DT and is shown below using the following equation:

ŷi = φ(Xi) =
K

∑
k=1

fk(Xi), f k ∈ F (16)

Here, Xi refer to instances of the training dataset and yi represent the target-dependent
variable labels, fk denotes the leaf score for the kth DT, and F represents the set of each K
score for the whole classification DTs. The result of the model is improved using regulariza-
tion and is shown below using the following equation:

L(ϕ) = ∑i l(ŷi, yi) + ∑k Ω ( f k) (17)
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Here, the first part of the equation measures the difference between the target and
the predicted n ŷi using the differentiable loss function represented. The second part of
the equation “Ω” prevents over-fitting by penalizing the complexity of the model and is
depicted using the following equation:

Ω( f ) = γT +
1
2

λ‖w‖2 (18)

Here, the quantity of leaves in the tree is denoted by T, the weight of each leaf is
represented by w, and the constants regulating the degree of regularization are represented
by γ, and λ, respectively.

3.5.3. Gaussian Naïve Bayes

The GNB is a modified version of NB. Gaussian distributions [66,67] are a typical
method to describe the likelihoods of the continuous variable conditioned on the target
variable in the NB classification. Therefore, each independent variable in the GNB algorithm
is specified by a gaussian Probability Density Function (PDF) and is represented by the
following equation:

Xi ∼ N
(

µ, σ2
)

(19)

The Gaussian PDF takes the form of a bell and can be represented by the following
equation:

N(µ, σ2)(x) =
1√

2Πσ2
e−

(x−µ)2

2σ2 (20)

Here, µ represents the mean, and σ2 is the variance. In GNB, we must define a normal
or Gaussian distribution for each continuous variable. The parameters of such normal
distributions can be obtained using the following formulae:

µXi|C = c =
1

Nc

Nc

∑
i=1

xi (21)

µXi|C = c =
1

Nc

Nc

∑
i=1

xi
2 − µ2 (22)

Here, Nc is the number of instances where C = c and N represents the total number of
training instances. Calculating P (C = c) for the target variable is performed by applying
relative frequencies by using the following equation shown below:

P(C = c) =
Nc

N
(23)

3.5.4. Decision Trees

DT is a nonparametric supervised machine learning algorithm that generates a clas-
sification model that classifies the target variable by evaluating a tree of true/false or
if-then-else independent variable questions. The DT algorithm estimates the least number
of variable questions needed to reach the decision point (leaf node). The DT algorithm can
be used as a regressor to predict a continuous numeric value of a target variable or as a
classifier to classify a categorical target variable [68]. Our study uses the DT algorithm to
classify the normal breast sample encoded as 0 from the primary breast cancer encoded as 1.
In our study, we have employed the Gini Impurity [69], a classification metric, to measure
the quality of a split and how the internal and leaf nodes will be generated using the DT
classification algorithm. The formula for calculating the Gini index is shown below:

Gini = 1−∑n
i=1 (pi)

2 (24)
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pi is the probability of an instance being classified by the DT algorithm to a particular
class label.

3.5.5. K-Nearest Neighbor

The classic KNN algorithm is a nonparametric supervised classification technique
applied to solve classification problems [70]. The algorithm has a variable parameter known
as “k”, which tells us about the number of “nearest neighbors” or data points from the
training data. The nearest neighbors are found based on the nearest distances from the
query data point. Euclidean Distance (ED) techniques calculate the distance between the
two data points. After finding the k closest data points or neighbors, the algorithm executes
a majority voting rule to find the target variable with maximum appearances (hits). The
class label with maximum appearances is declared to be the final classification class label
for the query. The equation for the calculation of the distance function (Euclidean distance)
is shown below:

Euclidean

√√√√ k

∑
i=1

(xi − yi)
2 (25)

The ED is calculated as the square root of the sum of the squared differences between
a new data point (x) and an existing data point (y).

3.5.6. Support Vector Machine

The SVM is another nonparametric machine learning algorithm that can categorize an
unlabeled data point by obtaining a suitable hyperplane in an n-dimensional feature space.
However, the SVM output is not nonlinearly separable. Thus, when employing SVM in
data analysis, selecting appropriate parameters and kernels is vital to prevail over such
problems [71]. In addition, the SVM algorithm helps classify class labels for small-size data
where the number of instances is comparatively lesser than the number of independent
variables in the training dataset.

3.5.7. Random Forest

An ensemble learning RF algorithm is widely employed for classification and regression-
supervised learning tasks. The Random Forest classification technique uses an ensemble of
DTs to predict a sample (query) class label. The training set of the original data is divided
into smaller groups, and each subgroup builds an individual decision tree in an RF. Each
DT generates an outcome [72]. The class label with the maximum votes from each DT turns
into the final chosen class label by the RF algorithm. The RF algorithm utilizes bagging and
randomness attributes during the creation of each DT for developing a noncorrelated forest
of DTs. Here, the classification by the forest is significantly more accurate than any single
DT. Additionally, the RF algorithm demonstrates better prediction accuracy for small-size
data.

Suppose, for a nominal splitting feature, Xi and Xi denoted possible levels as to Lj.
Therefore, the Gini index for the feature Xi is computed using the following equation:

G(Xi) =
j

∑
j=1

Pr(Xi = Lj)(1− Pr(Xi = Lj)) = 1−
j

∑
j=1

Pr(Xi = Lj)
2 (26)

3.6. Machine Learning Algorithms Parameter Setting

The final parameter settings used to construct each ML model are shown in Table 4.
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Table 4. Machine Learning models parameter setting.

Machine Learning Models Parameter Value

Logistic Regression

Solver lbfgs
Penalty L2

Regularization strength (C) 1
tolerance for stopping criteria 0.0001

Dual False
Maximum iteration 100

Intercept scaling 1

XGBoost

Maximum depth 4
Learning rate 0.2

L2 regularization term on weights (re_lambda) 1
number of boosting rounds (n_estimators) 150

subsample ratio of the training instance (subsample ratio) 0.9
subsample ratio of columns when constructing a tree

(colsample_bytree) 0.9

Random number seed (random_state) 1

Gaussian Naïve Bayes The prior probability of classes None
var_smoothing 1 × 10−9

Decision Tree

Criterion Gini
splitter best

maximum depth 4
min_samples_split 2
min_samples_leaf 1

min_weight_fraction_leaf 0.0
max_features None
random_state None

max_leaf_nodes None
min_impurity_decrease 0.0

class_weight None
ccp_alpha 0.0

K-Nearest Neighbor

N_neighbors 5
weights uniform

Algorithm auto
leaf_size 30

p (power parameter for the Minkowski metric) Minkowski

Support Vector Machine

Penalty L2
Loss function squared_hinge

tolerance for stopping criteria (tol) 0.0001
C (regularization parameter) 1

fit_intercept True
intercept_scaling 1

Random Forest

Criterion Gini
n_estimators 100

Maximum depth 4
min_samples_split 2
Min_sample_leafs 1
Maximum features auto

Maximum leaf nodes none
min_impurity_decrease 0.0

bootstrap True
Number of trees 90

oob_score False

3.7. Classification Model Performance Metrics

The classifying capability of the supervised classification models was evaluated using
the following classification model performance metrics:
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3.7.1. Accuracy and Confusion Matrix

Accuracy plays a vital role in assessing classification models in a scenario where
the samples of each class are equal in number. In our study, the test dataset is balanced.
Therefore, accuracy offers a better insight into the model’s capability to classify the target
class. The accuracy value ranges from 0 to 1, where the model with an accuracy value of
1.0 is considered the best-performing model. On the contrary, the model with a value ‘of
0.0’ is considered the worst-performing model. Mathematically, the accuracy is determined
using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(27)

In Equation (23), true positive, true negative, false negative, and false positive are
abbreviated as TP, TN, FN, and FP, respectively. Moreover, a confusion matrix defines
the classification model’s performance on testing data for which the actual values are
well-known. The related terminologies from the confusion matrix are defined as follows:

• Positive class (in the present study, the normal breast).
• Negative class (in the present study, the primary breast cancer).
• True positive is a classification outcome where the classification model correctly classi-

fies an actual positive instance (primary breast cancer) as a positive class sample.
• A true negative is a classification outcome where the classification model correctly

classifies an actual negative instance (normal breast) as a negative class sample.
• A false positive is a classification outcome where the classification model incorrectly

predicts a positive class sample as a negative class.
• A false negative is a classification outcome in which the model incorrectly predicts an

actual positive class instance as a negative one.

Furthermore, a confusion matrix explains the classification models’ error types (type
I and II) [73]. The present study aims to develop a primary breast cancer classification
model that categorizes primary breast cancer (positive class) from normal breast samples.
Therefore, other performance matrices, namely the F1-Score and AUC values, could provide
greater insight into the classification model’s capability to classify a target class than
accuracy alone [74].

3.7.2. F1-Score as a Model Performance Evaluator

The F1-Score is defined as the harmonic mean of precision and recall and is calculated
using the following mathematical formula:

F1 score =
2× Precision× Recall

Precision+ Recall
(28)

3.7.3. The Area under the Receiver Operating Characteristic Curve (ROC-AUC)

The Receiver Operator Characteristic (ROC) curve is a metric typically used to evaluate
a binary classification problem. The ROC is a probability curve that plots a two-dimensional
graph between the True Positive Rate (TPR) and the False Positive Rate (FPR) at decision
threshold values (ranging from 0 to 1) and essentially separates the ‘noise’ from the ‘signal’.
The TPR and FPR are calculated using Equations (25) and (26), respectively.

TPR =
TP

TP + FN
(29)

and
FPR =

FP
FP + TN

(30)

The AUC is an estimation of the capability of a classification model to distinguish
between the two classes and is used to summarize the ROC curve. The AUC value
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determines the complete two-dimensional area under the ROC curve, starting from the
coordinates (0, 0) and finishing at (1, 1), thereby allowing an accurate measurement of
the model’s ability to differentiate the two class labels in the gene microarray dataset.
The higher the AUC value, the better the implementation of the classification model to
distinguish the positive and negative classes in a two-class classification problem. For
example, a classification model with an AUC value of 1.0 can accurately differentiate
between the two-class labels in a dataset. If, however, the AUC value is zero, then the
classifier predicts all actual positive samples as negative and all true negative samples
as positive.

3.8. Histogram Frequency Curve Plot

The histogram frequency curve plot describes the frequency distribution of continuous
attributes belonging to the corresponding two class labels. In our study, the plot represents
the frequency distribution of genes (continuous variables) between the two class labels
population in the Breast_GSE22820 dataset. Additionally, the histogram frequency curve
represents the difference in the population mean of the continuous attributes (genes)
between the two class labels (primary breast cancer and normal breast samples).

3.9. One-Tailed Unpaired t-Test

We performed a one-tailed unpaired t-test [51] to evaluate the performance of our
XGBoost-based classification model built using a subset of gene biomarkers obtained using
a novel framework of the Hybrid FS method with the recently published machine learning
models built using different gene biomarkers for an earlier prediction BC.

3.10. Web Application

Render is a cloud-based platform used to host our XGBoost-based classification appli-
cation. The output of our application is a probabilistic score.

4. Results
4.1. Screening of Novel Set of Potential Gene Biomarkers

Despite the recent development in imaging technologies, the earlier detection of BC
remains a challenge for 21st-century researchers. In the current setting, screening potential
genes involved in the pathophysiology of BC will provide researchers and clinicians with
a precise method to detect BC in the earlier stages of its existence in the human system.
In this context, screening potential gene biomarkers using various FS techniques from
the gene expression microarray data of BC patients has been proven helpful in recent
times in understanding the molecular aspects of BC. Therefore, in this regard, screening
potential gene biomarkers for accurately classifying primary breast cancer patients will
enable less but more reliable testing, resulting in faster and more effective diagnostics and
prognostic procedures in managing BC patients. In the present context, in our study, a
hybrid FS technique was executed to screen potential gene biomarkers to classify primary
breast cancer samples from the gene microarray data. A novel hybrid FS framework of a
multivariate filter-based method, a Student’s t-test, and five state-of-the-art nature-inspired
meta-heuristic methods, namely EO, BBA, CSA, RDA, and GA, was employed to screen a
potential set of gene biomarkers for the earlier detection of primary breast cancer.

4.1.1. The mRMR Feature Importance

The mRMR method selects a subset of features with minimum redundancy and
maximum relevance with the target variables. The FCQ scoring variant of mRMR was used
to calculate the correlation between continuous variables (genes) and the relevance of the
variables to the target variable of the Breast_GSE22820 gene expression dataset. The top
twenty features obtained using the FCQ scoring variant of the mRMR have been tabulated
in Table 5.
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Table 5. List of the top twenty gene biomarkers from the Breast_GSE22820 gene expression microarray
dataset using the FCQ variant of the mRMR FS method.

Sl.no. Gene Biomarkers

1 NM_152426
2 BC001335
3 BC016934
4 THC2326033
5 A_24_P556328
6 NM_014015
7 BC043603
8 NM_138957
9 A_24_P268474
10 AK027315
11 XM_927487
12 NM_001009185
13 AB033060
14 NM_152426
15 THC2350023
16 THC2438685
17 NM_001008493
18 NM_014674
19 CR606969
20 NM_006579

4.1.2. FS Based on Two-Tailed Unpaired t-Test

The two-tailed unpaired t-test at a 5% significance level was executed to screen fea-
tures obtained from the mRMR algorithm, demonstrating a significant difference between
the mean value of each twenty features between the two classes’ sample populations.
The results of the two-tailed unpaired t-test of the mRMR selected the top twenty gene
biomarkers evaluated at a p-value < 0.05 and is shown in Table 6.

Table 6. A listing of the twenty features (Gene biomarkers) attained using mRMR and the resultant
mean difference of each twenty features between two classes of the sample population (primary
breast cancer and normal breast) at a significance level of 5%.

Sl.no. Gene Biomarkers

Average and Standard Deviation of Gene Biomarkers
between Two Classes of Population (Primary Breast Cancer

and Normal Breast)
Unpaired Two-Tailed t-Test p-Value of the Mean
Difference of the Gene Biomarkers between the

Two Classes of the Sample Population
Primary Breast Cancer Normal Breast

1 NM_152426 6.8492 ± 1.274 5.9011 ± 0.458 p < 0.0001
2 BC001335 6.243 ± 0.568 6.8965 ± 0.256 0.5601
3 BC016934 6.134 ± 0.832 6.383 ± 0.444 p < 0.0001
4 THC2326033 7.633 ± 0.590 7.356 ± 0.310 0.0684
5 A_24_P556328 5.795 ± 0.776 6.078 ± 0.669 0.0518
6 NM_014015 11.227 ± 0.422 11.318 ± 0.107 0.0184
7 BC043603 6.006 ± 0.649 5.865 ± 0.455 0.2540
8 NM_138957 7.882 ± 0.572 7.139 ± 0.137 p < 0.0001
9 A_24_P268474 6.192 ± 0.554 6.254 ± 0.314 0.2627
10 AK027315 8.121 ± 0.644 7.834 ± 0.644 0.2404
11 XM_927487 5.662 ± 0.389 6.005 ± 0.389 0.1518
12 NM_001009185 5.121 ± 0.960 4.834 ± 0.226 0.3012
13 AB033060 5.410 ± 0.623 4.910 ± 0.284 0.1424
14 NM_004630 12.220 ± 0.353 12.458± 0.125 0.4210
15 THC2350023 6.668 ± 0.918 6.873 ± 0.663 0.3601
16 THC2438685 4.930 ± 0.396 5.386 ± 0.240 0.3684
17 NM_001008493 6.854 ± 0.731 7.064 ± 0.229 0.0010
18 NM_014674 9.236 ± 0.484 9.213 ± 0.263 0.6274
19 CR606969 9.010 ± 0.805 8.997 ± 0.243 0.8556
20 NM_006579 12.413 ± 0.535 11.781 ± 0.227 p < 0.0001

The Gene Biomarkers (features) whose frequency distribution mean was significantly
different (at a 5% significance level) between the two classes of labels that were selected are
shown in Supplementary Figure S1. Therefore, a subset of five features, namely NM_152426,
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BC016934, NM_138957, NM_001008493, and NM_006579, with a significant mean difference
between the class population verified using unpaired t-tests, were selected and further
screened using five state-of-the-art metaheuristic algorithms to obtain an optimal subset of
features capable of discriminating the target variables with higher performance.

4.1.3. Screening of Optimal Feature Subsets Using Metaheuristic Algorithms

The present study comprehensively analyzes the five nature-inspired global opti-
mization algorithms for optimal FS. The present study implements five state-of-the-art
optimization algorithms to find the five optimal feature subsets out of the entire search
space (i.e., six features). The EO metaheuristic method yielded an optimal subset with three
features: ‘NM_138957’, ‘NM_152426’, and ‘NM_001008493’. The BBA-based metaheuris-
tic identified an optimal subset of two features, namely ‘NM_152426’ and ‘NM_138957’.
Similarly, using the CSA algorithm, we obtained an optimal subset of two features, such as
BC016934 and ‘NM_006579’.

Using the RDA metaheuristic method, we obtained an optimal feature subset with one
feature, namely BC016934. Lastly, an optimal subset with one feature, such as NM_152426,
was obtained using the GA algorithm. The five optimal subsets screened using the five
global optimization algorithms are listed in Table 7.

Table 7. The five state-of-the-art metaheuristic algorithms obtained a listing of five optimal global
subsets of feature(s).

Metaheuristic Algorithms Global Optimal Feature(s) Subset

EO ‘NM_138957’, ‘NM_152426’,’NM_001008493’
BBA NM_152426’, ‘NM_138957’
CSA BC016934,’NM_006579’
RDA BC016934
GA NM_152426

4.2. Screening of the Best Classification Model

Each of the five optimal subsets of feature(s) obtained using five metaheuristic al-
gorithms were trained and tested on seven supervised classification algorithms, namely
DT, NB, SVM, XGBoost, LR, KNN, and RF, using the five data subsets prepared using
the five optimal subsets of features obtained from the post-metaheuristic-based FS. In
addition, stratified five-fold cross-validation was applied to train and test classification
models in each training and independent test dataset. The present study aims to screen
the best-performing classification model in distinguishing the target variable labels built
using the most optimal subset of the gene biomarker to facilitate the earlier detection of
BC patients. Figure 5a–c represents the accuracy, F1-Score, and AUC values of the seven
classification models developed using the features obtained by applying the five different
metaheuristic algorithms.

We can observe from the comparative performance evaluation of the seven clas-
sification models that the XGBoost-based model developed using the optimal feature
subset obtained from the EO algorithm is the best classification model with accuracy
(0.976 ± 0.027), F1-Score (0.974 ± 0.030), and AUC (0.987 ± 0.025) shown in Figure 5a–c
and tabulated in Table 8, respectively. In addition, a confusion matrix summarizing the
performance of the XGBoost-based classification model evaluated on independent test data
is depicted in Figure 6, where primary breast cancer is a positive class, and the normal
breast sample is considered the negative class.
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Table 8. Tabulated results representing the comparative performance evaluation of the seven classifi-
cation models developed using the five optimal subsets of feature(s) screened using five metaheuristic
techniques, namely EO, BBA, CSA, RDA, and GA, respectively.

Accuracy

RF SVM XGBoost NB DT LR KNN

EO 0.884 ± 0.038 0.840 ± 0.045 0.976 ± 0.027 0.952 ± 0.026 0.966 ± 0.025 0.879 ± 0.040 0.947 ± 0.018
BBA 0.831 ± 0.056 0.797 ± 0.066 0.893 ± 0.048 0.879 ± 0.045 0.918 ± 0.033 0.850 ± 0.040 0.922 ± 0.024
CSA 0.860 ± 0.075 0.835 ± 0.042 0.889 ± 0.074 0.879 ± 0.085 0.932 ± 0.052 0.865 ± 0.081 0.893 ± 0.039
RDA 0.946 ± 0.039 0.797 ± 0.066 0.893 ± 0.048 0.879 ± 0.045 0.918 ± 0.033 0.850 ± 0.040 0.922 ± 0.024
GA 0.734 ± 0.073 0.719 ± 0.079 0.748 ± 0.067 0.767 ± 0.071 0.738 ± 0.062 0.734 ± 0.085 0.767 ± 0.048

Baseline 0.77 ± 0.062 0.84 ± 0.058 0.83 ± 0.040 0.82 ± 0.027 0.79 ± 0.047 0.75 ± 0.025 0.78 ± 0.075

F1 Score
RF SVM XGBoost NB DT LR KNN

EO 0.974 ± 0.030 0.807 ± 0.059 0.974 ± 0.030 0.953 ± 0.023 0.964 ± 0.028 0.872 ± 0.047 0.943 ± 0.020
BBA 0.943 ± 0.042 0.754 ± 0.094 0.888 ± 0.053 0.873 ± 0.049 0.918 ± 0.031 0.841 ± 0.040 0.919 ± 0.020
CSA 0.855 ± 0.079 0.801 ± 0.071 0.886 ± 0.075 0.874 ± 0.092 0.907 ± 0.038 0.860 ± 0.085 0.880 ± 0.053
RDA 0.838 ± 0.088 0.821 ± 0.075 0.782 ± 0.079 0.827 ± 0.093 0.830 ± 0.098 0.821 ± 0.100 0.821 ± 0.075
GA 0.712 ± 0.077 0.745 ± 0.062 0.738 ± 0.076 0.729 ± 0.087 0.729 ± 0.068 0.715 ± 0.087 0.745 ± 0.062

Baseline 0.80 ± 0.034 0.83 ± 0.052 0.78 ± 0.036 0.73 ± 0.062 0.77 ± 0.035 0.82 ± 0.027 0.734 ± 0.073

AUC Value
RF SVM XGBoost NB DT LR KNN

EO 0.881 ± 0.038 0.985 ± 0.020 0.987 ± 0.025 0.991 ± 0.017 0.975 ± 0.016 0.951 ± 0.035 0.985 ± 0.020
BBA 0.881 ± 0.040 0.962 ± 0.026 0.968 ±0.022 0.966 ± 0.022 0.926 ± 0.026 0.890 ± 0.035 0.962 ± 0.026
CSA 0.926 ± 0.062 0.937 ± 0.049 0.926 ± 0.055 0.944 ± 0.048 0.923 ± 0.056 0.927 ± 0.060 0.937 ± 0.049
RDA 0.896 ± 0.066 0.873 ± 0.055 0.852 ± 0.071 0.893 ± 0.062 0.871 ± 0.056 0.821 ± 0.100 0.873 ± 0.055
GA 0.745 ± 0.085 0.800 ± 0.062 0.813 ± 0.075 0.827 ± 0.101 0.778 ± 0.050 0.745 ± 0.085 0.800 ± 0.062

Baseline 0.75 ± 0.025 0.82 ± 0.027 0.81 ± 0.027 0.79 ± 0.047 0.82 ± 0.027 0.80 ± 0.026 0.78 ± 0.075
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Figure 6. Confusion matrix-based visualization and summarization of the XGBoost-based classifica-
tion model performance tested on the 20% independent test data generated using the three features
obtained from the EO metaheuristic algorithm.

A summary of the baseline model performance of the eight models built using all of
the features in the COVID-19 dataset is listed in Table 8. The XGBoost-based classification
model performance estimated using matrices, namely, accuracy, F1 score, and AUC, was
better than the baseline models built using a subset of five features obtained post unpaired
two-tailed t-test and base classifiers, namely SVM, NB, DT, LR, KNN, RF, and XGBoost,
as represented in Figure 5a–c and Table 8, respectively. Therefore, as per the results, it
can be deduced that the subset of gene biomarkers, namely, ‘NM_138957’, ‘NM_152426’,
and ‘NM_001008493’ discovered is the best-performing combination of features to accu-
rately classify the primary breast tumor from the normal breast samples. Furthermore, the
XGBoost-based model built using the optimal feature subset attained using the EO algo-
rithm was identified as the best-performing model, thereby facilitating an earlier detection
of BC by accurately classifying the primary breast tumor from normal breast samples.

Moreover, using a histogram plot, the mean difference in the frequency distribution of the
best-performing gene biomarkers (screened using the EO algorithm) between the two classes
(normal breast and primary breast tumor samples) is represented in Figure 7a–c. In addition, the
mean distribution of the selected gene biomarkers in the patient group’s two population classes,
namely the primary breast tumor and the normal breast samples, is statistically significant at
p < 0.001, as shown in Table 3. Therefore, we can propose that the selected gene biomarkers
can be used as prognostic gene biomarkers to enable the earlier detection of BC.
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4.3. Comparative Performance of Our Model with Other Relevant Models

Our proposed XGBoost-based classification model performance was compared with
the performances of the classification models built using different hybrid feature selection
approaches involving filter, wrapper, and other FS methods, as tabulated in Table 6. The
relative accuracy and AUC-based performance evaluation of our proposed model and the
DNN-based models are tabulated in Table 6. We observe that the gene biomarkers selected
using our proposed hybrid FS approach, which involves mRMR, a minimal-optimal filter-
based FS algorithm, an unpaired t-test, a statistical method, and metaheuristics algorithms
achieved the highest accuracy (0.976 ± 0.027) and AUC value (0.987 ± 0.025) as compared
to classification models built using other gene biomarker-based classification models, as
shown in Table 9.

Table 9. Comparative accuracy and AUC value evaluation between models built using features (gene
biomarkers) obtained using our proposed hybrid FS method.

Sl.no. Author Machine Learning
Model Hybrid FS Method Gene Biomarker

(Features) Accuracy (%) AUC Value

1 [24] RF MRMD + PCA
25 (miRNA)

971 (CpGs)-MRMD
573 (CpGs)-PCA

91.3 -

2 [14] SVM Gene Rank + iBGSA 73 genes 84.5 -
3 [15] C5.0 Decision Tree Fisher Score + ACO 5 genes 95.44 0.96
4 [27] FLNN IG + GA 49 genes 85.63 -
5 [28] SVM IG + GWO 70 genes 94.87 -
6 [29] NB CFS + iBPSO 32 genes 92.75 -
7 [30] ELM CMIM + AGA 6 genes 94.29 -
8 [31] ELM MIM + AGA 216 genes 95.21 -

9 [32] KRR MCSO + Max-min
scaling/normalization 50 genes 97.0 -

10 [33] IB1 SU + HS 25 genes 83.39 -

11
Our Proposed
Classification

model
XGBoost mRMR + Unpaired

t-test + EO
MAPK1, APOBEC3B,

and ENAH 0.976 ± 0.027 0.987 ± 0.025

4.4. Web Application

The XGBoost-based classification model was implemented as a web application and
hosted at https://appbcgene.onrender.com/, accessed on 1 December 2022. In the real-time
online primary breast tumor detector, the users can classify primary breast tumor samples
from normal breast samples using the gene expression values of the genes, namely MAPK-1,
APOBEC3B, and ENAH actin regulator (ENAH). Therefore, clinicians can use our online
breast tumor predictor to detect BC in its earlier stages.

5. Discussion

Screening robust gene biomarkers from gene microarray data for earlier detection of BC
has long been a challenging problem due to the low sample size and multi-dimensionality
properties of gene microarray data. We used hybrid learning in our FS framework to
screen robust gene biomarkers. We systematically evaluated five hybrid FS approaches by
introducing a sequential FS pipeline comprising a filter-based method (mRMR) followed by
a statistical method (a two-tailed unpaired t-test). Finally, the subset of statistically significant
features (gene) obtained using the two-tailed unpaired t-test was processed) using the five
state-of-the-art metaheuristic algorithms (EO, BBA, CSA, RDA, and GA). Various super-
vised classification algorithms, namely SVM, NB, DT, LR, KNN, RF, and XGBoost, were
used to screen the final most optimal feature subset of predictors for classifying primary
breast tumors from normal breast gene expression microarray data. The current approach
is a comprehensive analysis of a hybrid approach involving a sequential application of
a filter-based method, statistical, and metaheuristics for gene FS for earlier detection of
primary breast tumors. Compared to other hybrid FS methods and ML models, as tabu-

https://appbcgene.onrender.com/


Diagnostics 2023, 13, 708 25 of 31

lated in Table 1, our proposed hybrid-based FS approach and XGBoost classification model
resulted in the most significant enhancement in overall accuracy and AUC value.

In this study, the hybrid-based FS pipeline screened an optimal subset that includes
three gene biomarkers, namely MAPK1, APOBEC3B, and ENAH, for earlier detection of
primary breast tumors. In recent years, clinical studies have shown that these screened
gene biomarkers, namely MAPK 1 [75–80], APOBEC3B [81–84], and ENAH [85–88], are
known to be related to the pathophysiology of BC. Therefore, in addition to an un-
paired t-test that characteristically focuses on each gene’s differential expression between
two classes of samples, we also focused on the differences in their ontology. We performed
an ontology analysis [89,90] of the three genes screened using our hybrid method to explore
the pathways of the three genes and their role in breast cancer pathogenesis. The ontology
studies show that the MAPK1 gene plays a vital role in MAPK, an intracellular signaling
pathway. Among various intracellular signaling pathways, the MAPK pathway is more im-
portant in promoting cell proliferation, cell differentiation, angiogenesis, cell survival, and
tumor metastasis than other pathways in the tumorigenesis of BC. Four major MAP kinase
signal transduction pathways exist in human cells. However, the ones concerning ERK-1
and ERK-2 of the ERK/MAPK signaling pathway are most relevant in tumor formation
in BC [75]. In addition, recent studies have demonstrated elevated ERK expression in an
increased proportion of cells in human tumors, such as breast cancer [76,77].

Moreover, the MAPK signaling pathway plays a pivotal role in the pathogenesis of
TNBC [78]. MAPKs also participate significantly in the expression of PR, HER-2, and ER
and are strongly associated with the infiltration and metastasis of TNBC [79]. Furthermore,
in TNBC, the MAPK and EGFR act synergistically to promote TNBC progression, and their
higher expression levels in TNBC patients (compared with paratumor tissues) are strongly
correlated with lymph node advanced clinical stage, metastasis, recurrence metastasis, and
poor prognosis [80].

DNA cytosine deaminase APOBEC3B was recognized recently as a cause of DNA
mutagenesis and DNA damage in head/neck, breast, lung, cervix, bladder, and ovary
cancer [81]. The APOBEC3B enzyme is usually an effector protein in the primary immune
reaction to viruses. However, upregulation of APOBEC3B in the head/neck, breast, lung,
cervix, bladder, and ovary cancer results in raised levels of Cytosine-to-Uracil deami-
nation cases. These events mainly manifest as transitions of Cytosine-to-Thymine and
transversions of Cytosine-to-Guanine within a specific DNA trinucleotide pattern (favor-
ably 5′-TCG and 5′-TCA). The APOBEC3B catalyzed genomic deamination events leading
to the transition of Cytosine-to-Uracil within the trinucleotide pattern (5′-TCG and 5′-TCA)
also precede kataegis (cytosine mutation groups), leading to visible possible chromosomal
abnormalities, namely translocations.

Furthermore, clinical investigations show that the higher expression of APOBEC3B is
associated with a poorer survival rate for estrogen receptor-positive breast cancer patients,
which includes brief periods of disease-free survival and, in particular, survival post-
surgery [82]. Therefore, APOBEC3B can be considered a potential diagnostic and prognostic
biomarker in BC. In addition, APOBEC3B can also be considered a potential target for
therapeutic intervention since the inhibition of APOBEC3B catalytic activity has shown a
decrease in the rate of tumor mutation and thereby diminishes the chances of unwanted
mutation-related consequences, namely metastasis, recurrence, and the occurrence of
therapy resistive cancer types [83,84].

The ENAH gene encodes a member of the enabled (Ena)/vasodilator-stimulated
phosphoprotein (VASP) family of proteins. It assembles actin filaments for cell motility
and adhesion [85]. Recent studies have shown the upregulated expression of ENAH
in many human cancer types, namely breast cancer [86–88], melanoma [91], pancreatic
cancer [92], and gastric cancer [93]. The overexpression of ENAH increases the chances of
transformation and tumorigenesis in BC, consequently offering an innovative method of
clinical evaluation of BC [94]. The relative expression of hMenaINV and hMena11a splice
isoforms of ENAF are valuable biomarkers in the development and progression of human
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breast carcinoma [95]. In a recent study, the exosomal level of ENAH was significantly
higher in BC patients compared to healthy controls [96], thus providing a novel approach
for early breast cancer screening.

These concepts elucidate the role of three gene biomarkers, namely MAPK 1, APOBEC3B,
and ENAH, in tumorigenesis and potential use as diagnostic and prognostic gene biomark-
ers of BC. Moreover, these elucidations will significantly influence the therapeutic ap-
proaches to managing BC. Thus, our hybrid FS method successfully selected genes that
have biological insight and that are potentially druggable targets [94–96]

The three best gene biomarker-based ML models were built and tested, and their
classification abilities were measured using various statistical metrics. The trained clas-
sification models were tested on the independent test data with a balanced distribution
of instances in the two classes (the normal and primary breast tumor instances). The
XGBoost-based classification model accuracy, F1-score, and AUC value were better than the
other classification models, as shown in Table 6. For example, the XGBoost-based model
could classify the normal breast samples from the primary breast tumor samples with an
accuracy of 0.976 ± 0.027, an F1-Score of 0.974 ± 0.030, and an AUC value of 0.961 ± 0.035
when assessed on an independent test dataset.

The comparative study signifies that the three gene biomarkers obtained using our
novel hybrid FS pipeline are highly relevant in classifying primary breast tumors with
greater accuracy, thereby enabling the use of the current biomarker-based XGBoost model
in the earlier detection of breast cancer. Furthermore, our proposed XGBoost-based web
application for classifying primary breast tumors from normal breast gene expression
data has been successfully implemented. The web application is available on Render at
https://appbcgene.onrender.com/, accessed on 1 December 2022.

6. Conclusions and Future Scope

Using novel FS and ML approaches to identify potential gene biomarkers could help
classify primary breast tumors. Furthermore, the early detection of BC will help slow
down BC’s progression and potentially improve the survival rate through therapeutic
interventions at a precise time. To conclude, we propose that, using a robust hybrid FS
method, the present study identified a robust and optimal set of three gene biomarkers
(MAPK 1, APOBEC3B, and ENAH) for detecting the primary breast tumors of BC patients.
Furthermore, the ontology studies show that the gene biomarkers screened using the hybrid
approach have biological insight and play an essential role in breast tumorigenesis. Thus,
it could be used as BC’s diagnostic and prognostic marker.

Moreover, in the future, applying a different pipeline of hybrid FS approaches and
having access to a large sample size gene expression dataset from different institutions
(multi-center study) and screening key features from various relevant data sources could
be used to develop an enhanced model to classify primary breast tumors from normal
breast samples.

However, the proposed hybrid feature selection framework achieved state-of-the-art
accuracy in classifying primary breast tumors from the gene expression data. However,
there are still some limitations in the present study. First, the dataset used in the present
study is a binary class data, and the current approach may not give the same response as
a multiclass dataset. In addition, the proposed framework was applied to a smaller size
of training data. Therefore, we need to apply the novel hybrid FS framework to a larger
training sample size to evaluate the robustness of the hybrid FS framework in screening
the best optimal solution from a given feature space.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13040708/s1. Supplementary Figure S1: The
frequency distribution histogram plot depicting the mean frequency distribution of five blood
biomarkers between the two class populations screened using mRMR.
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