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Abstract: Predicting adverse outcomes is essential for pregnant women with systemic lupus erythe-
matosus (SLE) to minimize risks. Applying statistical analysis may be limited for the small sample
size of childbearing patients, while the informative medical records could be provided. This study
aimed to develop predictive models applying machine learning (ML) techniques to explore more
information. We performed a retrospective analysis of 51 pregnant women exhibiting SLE, including
288 variables. After correlation analysis and feature selection, six ML models were applied to the
filtered dataset. The efficiency of these overall models was evaluated by the Receiver Operating
Characteristic Curve. Meanwhile, real-time models with different timespans based on gestation
were also explored. Eighteen variables demonstrated statistical differences between the two groups;
more than forty variables were screened out by ML variable selection strategies as contributing
predictors, while the overlap of variables were the influential indicators testified by the two selection
strategies. The Random Forest (RF) algorithm demonstrated the best discrimination ability under the
current dataset for overall predictive models regardless of the data missing rate, while Multi-Layer
Perceptron models ranked second. Meanwhile, RF achieved best performance when assessing the
real-time predictive accuracy of models. ML models could compensate the limitation of statistical
methods when the small sample size problem happens along with numerous variables acquired,
while RF classifier performed relatively best when applied to such structured medical records.

Keywords: prediction; machine learning; systemic lupus erythematosus; SLE; pregnancy; gestation;
random forest

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease
with multi-organ involvement and preferentially affects women of childbearing age [1].
Pregnancy outcomes of SLE patients have been improving owing to advances in medicine;
however, lupus pregnancies are still associated with more maternal and fetal complications
compared with healthy women. The frequency of lupus flares during pregnancy ranges
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from 12.7% to 69%; lupus does not spare pregnancy which increases the rate of fetal loss,
preterm birth, and small-for-gestational-age (SGA) neonates [2]. Both rheumatologic and
obstetric teams need to be alert to adverse pregnancy outcomes.

Early prediction is necessary to improve maternal and neonatal outcomes. The tra-
ditional statistical approach to predict categorical disease outcomes involves the use of
logistic regression (LR) models. The sample size used for this prediction models is relative
to the number of variables, and the ratio between research subjects and variables is widely
used as 10 to 1. This minimal sample size criterion has generally been accepted as a method-
ological quality item in appraising prediction modeling studies; small sample size has
frequently been associated with poor predictive performance upon validation [3]. However,
considering the very low incidence rate of lupus [4] and even lower rate of childbearing
patients with detailed medical records, the small sample size is inevitable and may results
in amended or abandoned research [5].

Machine learning (ML) and traditional statistics originate in two different communities
but share many similarities, and the former can be considered as a generalization of the
latter. Meanwhile, ML shows its own advantages for data analysis. Firstly, there is no strict
assumption about the data distribution of variables, which needs extensive data preprocess-
ing. Secondly, although less noise is preferred always, ML can handle noisy data and large
variances within the dataset comparatively well. Thirdly, specialized types of ML can be
trained on small datasets, especially when the number of features considerably outnumbers
the number of observations. Finally, complex ML models can identify complicated, multi-
faceted, and non-linear patterns of data efficiently [6]. In recent years, significant progress
has been made in applying ML for disease prediction.

In this study, the primary objective was to develop various ML models to predict
adverse pregnancy outcomes utilizing a small size dataset with nearly three hundred
variables collected before, during, and after gestations and to evaluate the discrimination
ability of these models. The second objective was to evaluate the real-time predictive
performance of these models, developing the models mentioned above with variables
merely from pre-pregnancy care or from pre-pregnancy care associated with prenatal care
in different trimesters, in a chronological order, to assess the real-time discriminative ability
(the flow chart of this study can be seen in Figure 1).
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Figure 1. The flow chart of this study design. AUC, area under the curve; ROC, receiver operating
characteristic.
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2. Materials and Methods
2.1. Study Population

A single-center, retrospective study was conducted. Pregnancy-relevant medical records
were reviewed, and eligible women who were diagnosed with SLE before pregnancy
with singleton pregnancies were enrolled at Second Affiliated Hospital of Dalian Medical
University, from January 2013 to December 2021. All the selected women belong to the
Chinese Han population. Participant exclusion criteria: (1) miscarriage or elective abortion;
(2) the pregnancy outcomes were unknown, as planned discharged or required transfer;
(3) the missing data rate on the analyzed variables was more than 60% [7].

The reason why we excluded patients whose pregnancies ended before 14 weeks was
based on the difficulty of identifying the real cause of miscarriage or elective abortion, as
the high frequency of miscarriage was contributed to by chromosome errors or endometrial
defects [8] instead of SLE, which was impossible to identify in our study; additionally, the
real causes of elective abortion are untraceable, for instance an unwanted pregnancy due to
drug exposure or the severity of the disease progression.

Upon admission, both clinical and laboratory records were collected, and the records
were identified mainly in six different periods, which also varied according to the ac-
tual situation. (1) Pre-pregnancy: within six months before pregnancy; (2) first trimester:
≤13 weeks 6 days of gestation; (3) second trimester: ≥14 weeks and ≤27 weeks 6 days
of gestation; (4) third trimester: ≥28 weeks of gestation. (5) Before delivery: within 24 h
after admission for delivery; (6) after delivery: within three months after delivery. All the
specimens were tested at the clinical laboratory of this tertiary care hospital.

Though the new 2019 European League Against Rheumatism (EULAR)/American
College of Rheumatology (ACR) SLE classification criteria performed well [9], in this ret-
rospective study, there were no women diagnosed with SLE after the new classification
criteria published, and the review of medical records generated before the available date in
our hospital or the records from other hospitals is inapplicable because the shared electronic
medical record system network is not authorized temporally and spatially. Therefore, SLE
was still diagnosed by rheumatologists based on the 1997 ACR criteria for the classification
of SLE [10].

Gestational ages were confirmed by ultrasonic examinations before 14 gestational
weeks.

2.2. Grouping

In order to evaluate the predictive performance of ML models about adverse pregnancy
outcomes, we grouped the women as following: (1) Adverse Group (n = 22): individuals
associated with adverse pregnancy outcomes; (2) Positive Group (n = 29): individuals
associated with satisfactory pregnancy outcomes (having no adverse outcomes).

Adverse pregnancy outcomes including one or more of the following: (1) fetal death
after 13 weeks’ gestation excluded chromosomal abnormalities, anatomical malformation,
or congenital infection [11]; (2) early neonatal death (death before 8 days of age) due to
complications of prematurity and/or placental insufficiency [12]; (3) preterm delivery at less
than 37 weeks due to gestational hypertension, preeclampsia, HELLP syndrome, placental
insufficiency, placenta abruption or premature rupture of membranes [12]; (4) SGA neonate
(<10th percentile) [12]; (5) fetal distress which was certified by pathological type observed
in the cardiotocography [13]; (6) the SLE pregnancy disease activity index (SLEPDAI) was
more than 4 [14].

2.3. Predictive Variables

Predictive variables include medical history and clinical and laboratory examina-
tions collected before, during, and after pregnancy. The medical records of deliveries and
neonates were also collected and assessed. The ultimately enrolled 288 variables were
divided into six domains: clinical domain (66 variables), hematologic domain (57 variables),
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renal domain (56 variables), hepatic domain (30 variables), immunologic domain (75 vari-
ables), and thyroid domain (4 variables), listed in Table S1.

Random missing data were an inevitable reality in our retrospective study, which may
unnecessarily threaten the validation of results. Therefore, a pre-processing stage is usually
required to deal with missing values before any subsequent analysis. K-nearest neighbor
intelligent imputation technique can investigate the relationships between attributes and
predict both numerical and categorical missing data, so it is an appropriate choice when
we have no prior knowledge about the distribution of data. This method is based on the
principle that an attribute can be approximated by the values of the “k” attributes that are
closest to it [7,15]. After data imputation, a complete dataset was obtained, and the missing
data rate was calculated (seen in Table S1).

2.4. Statistical Analysis

Descriptive statistics were performed for all variables. Continuous data were pre-
sented as medians and interquartile ranges; categorical data were reported in frequencies
and percentage. Statistical analyses were performed with the Mann–Whitney U test for
continuous or ordinal data and with the chi-squared test or Fisher’s exact test for categorical
data between the two groups to determine the differences. p value < 0.05 was considered
statistically significant.

2.5. Correlation Clustering

Correlation of variables were assessed by Spearman’s rank correlation, which is a
method of nonparametric statistics. Correlation coefficient ranges from 1 to −1; the closer
it is to 1 or −1, then the stronger the correlation between the two variables is. To determine
the relationships between all variables, construction of “heat maps” can be led. The display
of heat maps solves the problems of pairwise graphic mapping of variables simultaneously
and is an illustrative way to assess the presence of dependence [16]. The independent
variables screened by correlation analysis would be obtained for following exploration.

2.6. Feature Selection

Feature selection is an important data preprocessing step before ML methods are
applied to increase prediction accuracy and to decrease computation time consumption.
To identify how each variable contributes towards the classification, Decision Tree (DT),
an ML method, which would be introduced in detail below, was proposed as the feature
selection algorithm. Using each variable to train the DT model, Area Under the Receiver
Operator Characteristic Curve (ROC-AUC) was applied to evaluate the predictive accuracy
of all the trained DTs; the area under the curve (AUC) was calculated and ranked to reflect
the importance of each variables to the prediction task [17,18]. Targeted variables with
AUC values more than 0.5 were filtered for subsequent performance.

2.7. Model Development

As the purpose of this study was to develop predictive models based on ML algorithms,
both the overall models and the real-time models were constructed.

Overall models refer to the models that are constructed by all the variables collected
before, during, and after pregnancy, and the predictive ability for adverse outcomes were
evaluated. Considering the bias may be produced by the data imputation process, the
development of overall models was split into two parts: (1) 288 collected variables were
used to construct the overall models regardless of the data missing rate; (2) 170 variables
with a missing rate less than 30% were accumulated to develop the overall models. Then,
predictive ability of different ML strategies in the two parts were compared, respectively,
to comprehend the superior algorithm for modeling and the influence of imputation
on modeling.

In addition, real-time models were also developed in order to describe how much
time in advance the algorithmic models can achieve the most satisfying discriminative
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performance for adverse outcomes. We created real-time predictive models as follow:
(1) pre-pregnancy models: as the outcomes of 51 participants were known, the variables
collected at pre-pregnancy periods were accumulated and utilized to construct the first
real-time models, and then the predictive performance for adverse outcomes of these
early period models could be figured out based on the AUC values quantitatively; (2) pre-
pregnancy + first trimester models: in these models, the modeling variables were collected
from pre-pregnancy period to first trimester, as the second real-time models, and the
predictive ability of these models were also evaluated; (3) pre-pregnancy + first trimester +
second trimester models: with the timespan from pre-pregnancy to the second trimester, the
acquired variables were applied to construct the third real-time models; (4) pre-pregnancy
+ first trimester + second trimester + third trimester models: variables were collected in
timespan mentioned above to develop the fourth real-time models.

Data standardization was essential to weaken or even eliminate the disturbance factors
of variables with different features and was utilized to solve the problems of comparability
between different variables, improving the accuracy of prediction. All the original data
were normalized to the same order of magnitude and standardized from 0 to 1 [19]. The
description of different ML models is listed below.

Support Vector Machine (SVM), the maximization of separating margin, is a binary lin-
ear classifier for classification or regression analysis, creating a decision boundary between
two classes that enables the prediction from one or more feature vectors. The model trans-
forms training data into a high-dimensional feature space, separating the decision boundary,
known as the hyperplane, with the smallest distance between the hyperplane points and
the largest margin between the classes, providing a linear optimal solution [20–22].

K-Nearest Neighbor (KNN) is one of the oldest, simplest, and most accurate algorithms
for patterns classification and regression models. The core of this classifier depends mainly
on measuring the distance or similarity between the tested examples and the training exam-
ples. This nonparametric algorithm indicates that there is no fixed number of parameters
irrespective of data size and no assumptions about the underlying data distribution. This
model could be the best choice for any classification study that involves a little or no prior
knowledge about the distribution of the data [23].

The Decision Tree (DT) classifier is a single base classifier consisting of nodes and
edges. The building process starts from the root node which is also known as the first
split point. This split decides the divisions of the entire dataset on the basis of calculation,
and the process continues from top to bottom until partitioning is no longer required. The
leaves present at the end of the decision tree represent the last partitions. So far, this system
applies to various classification and regression tasks [24].

To overcome the drawbacks of a single base prediction model, the researcher proposed
the ensemble learning method, Random Forest (RF), to achieve higher accuracy. The
ensemble is composed of multiple decision trees corresponding to various sub-datasets
which belong to the same datasets. The algorithm becomes trained with a different subset
of features rather than selecting best feature present in the dataset, and this randomness
leads to achieve good accuracy. The random forest performs well even though the size of
the dataset is very low [24].

The Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural networks
with a high degree of connectivity determined by synaptic weights of the network, con-
sisting of three layers: input, hidden, and output layer. In the hidden layer, each artificial
neuron contains a nonlinear activation function. Employing the backpropagation algorithm,
the training process can be divided into two phases. In forward phase, the synaptic weights
are fixed as the signal propagated, while in the backward phase, the error signal propagates
backward until it reaches synaptic weight and is adjusted [25].

Linear Discriminant Analysis (LDA) is a multivariate classification technique. Maxi-
mizing the ratio of the between-group sum of squares to the within-group sum of squares,
this model seeks a linear combination to discriminate multiple measures into two different
groups [26]. The decision boundary obtained from the testing sample plays a crucial role
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in the correct recognition, and linear transformation is performed on data from a higher
dimensional space to a lower dimensional space, where the final decision is taken [27].

For all ML models, a ten-fold cross-validation technique was optimized to select the
best bias-corrected discriminant model. In this process, the data are divided into ten equal
parts. For each iteration, seven parts are used for training, and three parts are used for
testing. Ten iterations are performed; each part is used as a testing data in a rotatory manner,
and the final performance of models is calculated as the average of all the iterations [28].

2.8. Model Testing

As mentioned above, discrimination performance is often visualized using an ROC
curve. AUC was assessed to illustrate the classification performance of the models, as well
as the sensitivity, specificity, and positive and negative predictive values [29].

All analyses were performed by Python language version 3.6.9, SPSS version 26 (IBM
Corp., Armonk, NY, USA), and GraphPad Prism 6.01 (GraphPad Software, San Diego,
CA, USA).

2.9. Ethics Statement

The requirement for informed consent was waived for this retrospective and obser-
vational study. The study protocol was approved by the Ethics Committee of Second
Affiliated Hospital of Dalian Medical University (2022-068) and Dalian University of Tech-
nology (DUTSCE220416_01). All procedures performed in this study adhered to the ethical
standards with the principles of the Declaration of Helsinki. The personal information was
shielded before any analysis.

3. Results
3.1. Characteristics of Pregnant Women with SLE

Fifty-one pregnant women with SLE were included in this retrospective study. The
statistical depiction of 288 variables collected before, during, and after pregnancies are
listed in Table S1, as well as the calculated missing data rate, and there were 170 variables
whose missing rate was less than 30%.

Among the 170 variables, the statistical comparison of medical history and clinical
and laboratory examinations between the two groups were conducted, and the variables
demonstrating statistical differences were listed in Table 1. There was no statistical differ-
ence in age, gravidity, parity, duration of illness, and history of adverse pregnancy between
the two groups. Compared with the Positive Group, eighteen variables demonstrated
statistical differences in the Adverse Group, and ANA titer collected before delivery indi-
cated significant difference (p < 0.001). The gestational age at delivery and birthweight of
neonates were significantly different between the two groups as well; meanwhile, there
was no difference in the gender of neonates and delivery mode.

3.2. Variable Selection Based on Machine Learning Method

The first step of data preprocessing before applying ML for prediction models was
screening independent variables. As the overall models were constructed in two parts con-
sidering the data missing rate, both Figure 2a (288 variables) and Figure 2d (170 variables)
show the generated heat maps according to nonparametric Spearman’s rank correlation
analysis. The sequence of variables along both X and Y axes are identical to the sequence
of variables in Table S1, drawing the illustrative graphs showing correlation relationship
between variables.

After removing variables which presented pairwise dependencies, the second step
was feature selection relying on the DT classifier. All remaining variables were ranked
based on ROC-AUC values, which were listed in Table S2, and the variables with AUC
values more than 0.5 would be the targets led to consequent predictive ML models.
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As shown in Table 2, among 288 variables, 45 variables with AUC values more than
0.75 were listed, demonstrating their distinctive influence on pregnancy outcomes. Among
the 170 variables whose missing rate was less than 30%, the number of selected contributing
variables was 41, and the list of variables can be seen in Table 3 and Figure 2b.

Table 1. Comparison of clinical and laboratory variables between the two groups.

Variables Adverse Group
(n = 22)

Positive Group
(n = 29) p Value

Age (years) 30.5 (28.8–33.3) 31.0 (29.0–32.5) 0.738
Gravidity 2 (1–2) 2 (1–2) 0.894
Parity 0 (0–0) 0 (0–1) 0.132
Disease duration (years) 8.5 (3–10.3) 8 (4–13.5) 0.696
History of adverse pregnancy Yes 5 (22.7) 5 (17.2) 0.894
Delivery gestational age 36.9 (34.1–37.9) 39.0 (38.1–39.3) <0.001
Delivery mode, n (%) Cesarean section 18 (81.8) 19 (65.5) 0.196

Vaginal delivery 4 (18.2) 10 (34.5)
Birth weight of neonates 2475 (2065–2907) 3130 (2975–3355) <0.001
Gender of neonates, n (%) Male 9 (40.9) 18 (62.1) 0.134
Hospitalization after delivery Yes 4 (18.2) 4 (13.8) 0.970
Doses of hydroxychloroquine
(g/day) ≤13 weeks + 6 0.4 (0.2–0.4) 0.2 (0.1–0.4) 0.040

Platelet (×10(9)/L) 14 weeks–27 weeks + 6 168.0 (121.0–202.5) 214.0 (172.0–236.5) 0.005
28 weeks–31 weeks + 6 154.5 (107.0–192.0) 205.0 (163.0–222.0) 0.025
Before delivery 148.5 (108.3–219.5) 186.0 (148.5–228.5) 0.047
After delivery 189.5 (111.0–237.3) 233.0 (206.0–261.0) 0.012

TT (s) Before delivery 16.4 (15.8–16.9) 15.4 (15.2–16.1) 0.020
Urine casts (/uL) 14 weeks–27 weeks + 6 0.0 (0.0–0.0) 0.1 (0.0–0.3) 0.003
Urine hyaline casts 14 weeks–27 weeks + 6 0.0 (0.0–0.3) 0.3 (0.0–0.5) 0.029
Urine crystals(/uL) Pre-pregnancy 0.0 (0.0–0.5) 0.1 (0.1–0.7) 0.019
AST (U/L) 14 weeks–27 weeks + 6 22.5 (17.7–24.1) 18.1 (15.0–22.0) 0.026
ALT (U/L) 14 weeks–27 weeks + 6 19.6 (15.6–32.0) 12.7 (9.9–20.1) 0.012
GGT (U/L) Before delivery 16.5 (11.6–25.7) 11.0 (6.1–16.8) 0.032

After delivery 17.1 (14.5–40.1) 12.0 (8.6–16.0) 0.004
Complement C4 (g/L) 14 weeks–27 weeks + 6 0.2 (0.2–0.3) 0.2 (0.1–0.2) 0.021
Complement C3 (g/L) Before delivery 0.9 (0.7–1.0) 1.0 (1.0–1.1) 0.024
ANA titer n (%) Before delivery 1:100 0 (0) 5 (17.2) <0.001

1:320 4 (18.2) 15 (51.7)
1:1000 13 (59.1) 9 (31.0)
1:3200 5 (22.7) 0 (0)

Data are presented as median value (interquartile range) or number of patients (percentage). Background color of
the table distinguished clinical and laboratory variables. TT: Thrombin time; AST: Aspartate Aminotransferase;
ALT: Alanine Aminotransferase; GGT: Gamma-Glutamyltransferase; ANA: Anti-nuclear antibody.
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Figure 2. (a,d) Heat map is an illustrative way of correlation matrix. x and y axes are variable arrays,
and the color of each square corresponds to the calculated correlation coefficients of Spearman
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correlation test. As the legend on the right indicates, the color of blue indicates a positive correlation,
while red indicates a negative correlation. (a) 288 variables regardless of missing rate. (d) 170 variables
with missing rate less than 30%; (b) Forty-one variables were selected from 170 variables as important
predictors through the AUC values more than 0.65 calculated by DT classifier. The x-axis consists of
variables, and the y-axis represents the AUC values; (c,e) The ROC-AUC values of six ML predictive
models, and logistic regression models were listed as reference. The RF models show the highest
AUC values regardless of the missing data rate. (c) Predictive models constructed by 288 variables.
(e) Models developed by 170 variables with low missing rate. SVC, support vector machine.

Table 2. Feature selection of variables with ROC-AUC ≥ 0.75 assessed by DT classifier.

Variables AUC Variables AUC
Delivery Gestational Age 0.817 (14 weeks–27 weeks + 6)

(Pre-pregnancy) Cystatin C 0.783
Anti-ds-DNA antibodies 1.000 Lymphocyte 0.767
Creatinine 0.950 (≥28 weeks)
TSH 0.867 Platelet (28 weeks–32 weeks) 1.000
Complement C3 0.850 Platelet (32 weeks–36 weeks) 1.000
Urea 0.833 ALP (≥28 weeks) 0.950
fT4 0.783 Cystatin C (≥28 weeks) 0.917
GGT 0.783 Leukocyte (≥36 weeks) 0.900
ALP 0.758 IgG (≥28 weeks) 0.900
Urine crystals 0.750 Platelet (≥36 weeks) 0.900

(≤13 weeks + 6) Complement C4 (≥37 weeks) 0.867
IgG ACA 0.933 Urine SEC (≥28 weeks) 0.808
IgE 0.917 Leukocyte (28 weeks–32 weeks) 0.800
Creatinine 0.900 Uric Acid (≥28 weeks) 0.800
IgA ACA 0.900 GGT (≥28 weeks) 0.783
IgG anti-B2GP1 antibodies 0.850 Urea(≥28 weeks) 0.767
Anti-ds-DNA antibodies 0.850 Urine bacteria(≥28 weeks) 0.750
CRP 0.817 (Before delivery)
Urea 0.783 Titer of ANA 0.800

(14 weeks–27 weeks + 6) Cystatin C 0.783
CRP 0.950 (After delivery)
Urea 0.917 Urea 0.950
ESR 0.908 Uric Acid 0.850
Creatinine 0.867 CRP 0.808
Hemoglobin 0.800 ALP 0.750

The variables underlined are also the variables with statistical significance listed in Table 1. TSH: Thyroid-
stimulating hormone; fT4: free thyroxine; ALP: alkaline phosphatase; Ig: Immunoglobulin; ACA: anti-cardiolipin
antibodies; CRP: C-reactive protein; ESR: Erythrocyte Sedimentation Rate; SEC: squamous epithelial cells.

However, the obtained variables are quite different from the variables in Table 1 with
statistical significance, which indicates the diverse dimensions depicted by two data analysis
methods. The overlapped variables in Tables 2 and 3 with statistical significance were all
underlined, and their unique performance recognized by both data analysis methods was
determined. Referring to Table 3, ALT collected from the second trimester demonstrated
highest level of AUC value, indicating its tight relation with adverse outcome, which
presented statistical significance as well. Other variables are Delivery Gestational Age, GGT,
Titer of ANA, TT, and Platelet, revealing the importance of hepatic function, autoimmune
status, and coagulation function on adverse pregnancy outcomes.
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Table 3. Feature selection of variables with ROC-AUC ≥ 0.65 assessed by DT classifier (only variables
with missing rate ≤ 30% were included).

Variables AUC Variables AUC
Delivery Gestational Age 0.823 (14 weeks–27 weeks + 6)
Disease Duration 0.792 ALP 0.708
Parity 0.708 LDH 0.667

(Pre-pregnancy) (≥28 weeks)
Complement C4 0.833 Erythrocyte (28 weeks–32 weeks) 0.875
Complement C3 0.792 Complement C3 (28 weeks–36 weeks + 6) 0.667
Dosage of HCQ 0.667 Lymphocyte (28 weeks–32 weeks) 0.667
Urine SEC 0.656 Complement C4 (28 weeks–36 weeks + 6) 0.667

(≤13 weeks + 6) (Before delivery)
Complement C4 0.833 LDH 0.833
AST 0.792 GGT 0.813
Lymphocyte 0.792 Titer of ANA 0.771
Complement C3 0.781 APTT 0.750
Hemoglobin 0.750 IgA 0.750
Erythrocyte 0.708 PT 0.729
Leukocyte 0.708 fT4 0.708
ALP 0.708 Cystatin C 0.708
ALT 0.698 TT 0.708
GGT 0.677 Fluorescent pattern of ANA 0.708
Platelet 0.667 ALT 0.698

(14 weeks–27 weeks + 6) (After delivery)
ALT 0.958 ALP 0.792
Erythrocyte 0.917 Erythrocyte 0.667
Hemoglobin 0.792 Platelet 0.667

The variables underlined are also the variables with statistical significance listed in Table 1. HCQ: hydroxychloro-
quine; LDH: Lactate dehydrogenase; APTT: activated partial thromboplastin time; PT: Prothrombin Time; TT:
thrombin time.

3.3. Comparison of Different Machine Learning Models for Overall Prediction

With the expectation of the development of binary classification models for adverse
outcome, six ML algorithms were applied to the overall models in two parts, regarding the
missing rate, and the ROC graph is shown in Figure 2c,e. Though it is confirmed that the
predictive performance of LR can be poor when the prediction model is developed from a
dataset with inadequate sample size, the AUC value of LR was still included as reference
to witness the predictive accuracy of ML models.

Referring to the models regardless of missing rate, RF classifier performed best and
the AUC of it was 1.000. As shown in Figure 3a, the confusion matrixes of the six classifiers
reflect the reliability of decision-making. Noting that 70% of samples were used as training
data and that 30% were testing data, the number of samples in confusion matrixes was
thirty-five. The RF model demonstrated a sensitivity value of 81.3%, specificity of 89.5%,
positive predictive value of 86.7%, and negative predictive value of 85.0%, as shown in
Table 4. MLP ranked second with an AUC value of 0.817. KNN (AUC = 0.617) did not
show its predictive ability under the current model.
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Figure 3. (a) The confusion matrixes of six ML models. The results of true positive, true negative, false
positive, and false negative of each model are presented in each matrix, and the accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value can be calculated based on them;
(b–e) Real-time predictive performance of six ML models and logistic regression in four different
timespans testified by ROC-AUC. (b) The first timespan is pre-pregnancy period; (c) the second
timespan is from pre-pregnancy to the first trimester; (d) the third timespan is from pre-pregnancy to
the second trimester; (e) the fourth timespan is from pre-pregnancy to the third trimester.
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Table 4. Ranking of different predictive models based on AUC values.

Ranking All Variables SEN SPE PPV NPV

1 RF (AUC = 1.000) 0.813 0.895 0.867 0.850
2 MLP (AUC = 0.817) 0.938 0.842 0.833 0.941
3 SVM (AUC = 0.767) 0.813 0.789 0.765 0.833
4 DT (AUC = 0.767) 0.938 0.789 0.789 0.938
5 LDA (AUC = 0.717) 0.813 0.579 0.619 0.786
6 KNN (AUC = 0.617) 0.667 0.895 0.833 0.773
7 LR (AUC = 0.733) 0.688 0.789 0.733 0.750

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value.

As to the models constructed only by variables with a missing rate less than 30%,
which can be seen in Table 5, the RF model was also the superior one, with an AUC value
of 0.917, while MLP model ranked second, and the AUC was 0.854. The DT algorithm did
not achieve an advantage (AUC = 0.667). It can be determined that removing variables
with high missing rate or not, did not tremendously affect the performance ranking of each
of the ML strategies.

Table 5. Ranking of different predictive models based on AUC values (only variables with missing
rate ≤ 30% were included).

Ranking All Variables SEN SPE PPV NPV

1 RF (AUC = 0.917) 0.889 0.941 0.941 0.889
2 MLP (AUC = 0.854) 0.722 0.588 0.650 0.667
3 SVM (AUC = 0.708) 0.813 0.733 0.765 0.786
4 LDA (AUC = 0.708) 0.500 0.529 0.529 0.500
5 KNN (AUC = 0.688) 0.500 0.471 0.500 0.471
6 DT (AUC = 0.667) 0.611 0.706 0.688 0.632
7 LR (AUC = 0.854) 0.722 0.647 0.684 0.688

3.4. Comparison of Different Machine Learning Models for Real-Time Prediction

Pregnancy is a complex and dynamic process. To evaluate how much time in advance
the six ML models can achieve the most satisfying discriminative performance for adverse
outcomes, four different timespans were extracted from the timeline of gestation, and
the real-time predictive models applying to current medical records were constructed.
As mentioned in the flow chart (Figure 1), we applied six ML models to the screened
variables from four timespans and assessed models based on ROC-AUC values. After
correlation analysis (four generated heat maps can be seen in Figure S1) and feature
selection, contributing variables were ranked in Table S2. The discriminative capability
of these real-time models demonstrated by AUC values was illustrated in Table 6 and
Figure 3b–e, and LR classification models were utilized as reference once again.

Table 6. Ranking of real-time predictive models in different timespan based on AUC values.

Ranking Pre-Pregnancy Pre-Pregnancy +
1st Trimester

Pre-Pregnancy + 1st +
2nd Trimesters

Pre-Pregnancy +
Three Trimesters

1 RF (AUC = 0.917) RF (AUC = 0.883) RF (AUC = 0.982) MLP (AUC = 1.000)
2 KNN (AUC = 0.800) MLP (AUC = 0.867) MLP (AUC = 0.909) SVM (AUC = 1.000)
3 LDA (AUC = 0.775) SVM (AUC = 0.867) SVM (AUC = 0.855) KNN (AUC = 0.992)
4 DT (AUC = 0.717) KNN (AUC = 0.850) LDA (AUC = 0.764) RF (AUC = 0.983)
5 SVM (AUC = 0.700) DT (AUC = 0.717) DT (AUC = 0.764) DT (AUC = 0.817)
6 MLP (AUC = 0.650) LDA (AUC = 0.575) KNN (AUC = 0.755) LDA (AUC = 0.600)
7 LR (AUC = 0.700) LR (AUC = 0.933) LR (AUC = 0.891) LR (AUC = 0.967)

According to the ranking of AUC values in each timespan, the predictive reliability of
Random Forest models was testified to identify the advantage of RF algorithm managing the
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problem of small sample size, in coordination with the superior performance of aforesaid
RF model for overall prediction. The ensemble nature of RF classifier helps to outperform
individual DT classifier which applies simpler and more straightforward algorithm.

As to the predictive performance of superior RF algorithm, the AUC values demon-
strated an interesting variation tendency. Despite the AUC values claimed above, the AUC
value of the RF predictive model constructed by variables merely from the first trimester
was identified as 0.542; the AUC value from the second trimester was 0.867, and the AUC
value from the third trimester was 0.578 (Figure 4a). As shown in Figure 4b, for the current
dataset, the predictive ability of adverse outcomes only based on the variables collected
before pregnancy was not the strongest (AUC = 0.917), and from the point of clinical view,
the risk assessment only implemented before pregnancy is far from adequate; instead of
that, close monitoring should be persisted at least until the second trimester. Neither re-
dundant variables accumulated throughout the whole gestation, nor the variables collected
from any single trimester will develop the best performed model.

Figure 4. (a) AUC values of the RF predictive models constructed by variables merely from first,
second, and third trimesters, respectively; (b) The AUC values of RF models developed in different
gestational trimesters or timespans.
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4. Discussion

Even if the conception occurs after the period of quiescence, the risk of SLE flare and
pregnancy complications can only be minimized and cannot be eliminated. A satisfactory
pregnancy management includes the maintenance of low disease activity by rheumatolo-
gists, as well as the maternal and fetal monitoring by obstetricians in the whole process of
the pregnancy–childbirth–puerperium period. Strengthening the exactness of risk predic-
tion will definitely improve the quality of this cooperative clinical practices and achieve the
patient-centered benefits.

Nevertheless, the reality is that the attainable SLE dataset, including the complete
tracking records of clinical and laboratory variables during the whole gestation process,
might usually come across the problem of insufficient sample size, which means researchers
are dealing with a “wide dataset”, where the number of variables exceeds the number of
individuals, in contrast to a “long dataset”, where the number of individuals is greater
than that of variables. While the classical statistical modeling was designed for the “long
dataset”, in the situation of a “wide dataset”, classical statistical inferences become less
precise [30]. However, ML prediction models make data-driven classification, which
perform the algorithms depends on the pattern of the dataset [6]. After applying six
different ML techniques in the current dataset, the first main finding of our study shows
that the RF algorithm was testified as a superior model for both overall and real-time
adverse outcome predictions, confirmed by ROC-AUC values, a well-established model
for discriminative ability of prediction. This technique benefits from the splitting strategy.
In the process of creating every decision tree, random variable selection is applied, which
makes each decision tree possible to be different from others, improves the diversity of
the constructed RF, and guarantees the prediction accuracy [31]. With the advantage of
ensemble power, RF can be applicable even in the dataset with highly correlated variables
and can achieve good performance in this structural medical dataset stably.

It should be noted that the fundamental purpose of our study is not the competitive
comparison between conventional logistic regression analysis and machine learning al-
gorithms for this attempt of binary classification [32,33]; instead, we want to provide ML
models as an alternative approach when confronting a dataset with variables outnumbering
sample size significantly, such as with rare diseases or genomics data. Clinical practitioners
may be more familiar with the thinking of statistical inference and the predicted continuous
outcome scores by regression models, while sometimes ML may be helpful to operate the
“wide data” problem by finding the generalizable classification patterns automatically.

The second main finding is that the procedure of feature selection is proposed to
identify informative variables which may be neglected by traditional statistical analysis.
Based on the calculated statistical significance, there are eighteen indicators acquired from
different stages of gestation demonstrating statistical differences between the two groups
(Table 1); as to the variables selected by feature selection process, even the number of high
influential variables with AUC values more than 0.65 is forty-one (Table 3). Compared
with the statistical significance based on the assumption that samples are independently
and identically distributed, feature selection concentrates on the knowledge of exact dis-
tributions of the variables. More and more evidence [34–36] has been accumulated that
significant variables may not lead to good prediction of outcomes, as more feature selection
strategies are applied into variable filtering. Similar to the thinking that ML methods can
be alternative approaches for prediction, if prediction is the ultimate goal, we could employ
feature selection strategies as alternative approaches for exploring predictive variables and
lay aside significance as the only selection criterion. Moreover, ALT collected from the
second trimester and GGT, Titer of ANA, TT, and Platelet acquired from different periods
of gestation are the predictive variables identified by both the statistical significance and
feature selection, indicating the contributing influence of hepatic function, autoimmune
status, and coagulation function on adverse pregnancy outcomes.

The third and the last main finding is that risk assessment for adverse pregnancy out-
comes neither should be limited to the pre-pregnancy period, nor be delayed until the third
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trimester, and serious evaluations are suggested to be conducted until the second trimester.
The reasons for this emphasis are, as to rheumatologists, the previous studies mainly focus
on the importance of disease remission before conception, while as to obstetricians, the
former experience may prompt greater focus on the third trimester and delivery which
are highly correlated with adverse outcomes. As to the models with AUC values equaling
1, the values do not mean the perfect predictive ability but the over-fitting of the models
under current small sample size. Considering this unreliability, the real-time model in the
timespan from pre-pregnancy to the second trimester may be the most preferential period to
predict adverse outcomes most accurately. Accumulating sufficient but not too redundant
information to support clinical decision, this finding may benefit clinical practices but still
needs more evidence from similarly designed studies designed.

There are also two limitations in this study. The first limitation is that the missing
data rate is relatively high for our retrospective clinical study. There are two main reasons
for this. Firstly, in order to reflect what happens in clinical practice, we split the dataset
into six different periods instead of taking the whole gestation as the only observation
period and designed the four real-time predictive models; hence, the missing date rate
in each period was increased inevitably. Secondly, as so far, there is no study providing
an evidence-based set of protocols for the frequency of monitoring pregnancies involving
SLE [37]. The international or regional consensus on routine maternal and fetal surveillance
with practical uniformity and clinical effects is still lacking. Though we employed the KNN
imputation method for the missing data, which was testified as the most efficient method
in our previous study [38], the results of overall models in two parts testified that removing
variables, regardless of their missing rate, did not tremendously affect the ranking of
predictive models; while any missing data imputation method is not an ideal circumstance,
the development of standard management instructions benefitted the medical work team.
Undertaking this task, unified study design concerning different trimesters of gestation
with data sharing among multiple centers is quite essential.

In addition, another limitation relates to the preferential strategy of feature selection.
Feature selection is the data-fitting pre-processing procedure for ML modeling, aiming for
selecting a subset of variables from original dataset based on certain a criterion to develop an
efficient classifier with reduced computation consuming. As a diversity of feature selection
strategies has been established, different strategies depending on different algorithms and
criteria can generate different subsets of variables; therefore, the collections of predictors
selected by different strategies for certain predictive model may not overlap completely
and may lead model development into uncertainty. Considering the main objectives of this
study, we applied DT as the feature selection method, while in the subsequent study, we
focus on the performance of different feature selection methods, and the results indicate that
the main contributing variables for prediction can be filtered by different selection strategies
simultaneously, while the explanation of the selected subsets can only be interpreted by the
algorithms themselves, not by clinical knowledge or judgement.

The utilization of ML techniques demonstrated promising potential for exploration of
information from “wide data”, where traditional statistics are not applicable. Referring to
the long-term tracing medical datasets with small sample sizes and numerous variables,
ML can be applied for classification tasks, such as disease diagnosis, evaluation of compli-
cation involvement, assessment of adverse outcomes, and prediction of prognosis and late
sequelae automatically and efficiently. If so, the real-time classifiers can be embedded in
electronic medical record system, and the given alert thresholds will flag the target events in
time, triggering the instant surveillance or interventions. However, challenges that match
the actual clinical situation, evaluate the actual benefits, and solve the actual problems still
need to be concentrated on. Multidisciplinary cooperation from a panel including machine
learning experts, traditional statisticians, rheumatologist, and obstetricians in this case
manifests the positive energy.
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5. Conclusions

The machine learning algorithms can be alternatives when the traditional statistical
analysis is not applicable, and the utilization of ML models to predict outcomes of pregnan-
cies involving SLE should be encouraged for providing another point of view, as well as a
methodology to select influential variables. ALT, GGT, Titer of ANA, TT, and Platelet are the
significant predictive variables for adverse outcomes identified by both statistical analysis
and feature selection process; The superior discriminative ability of the Random Forest
classifier was testified by the results of ROC-AUC when applied to the current dataset
regardless of missing rate; the surveillance of pregnancy outcomes should not be limited
to the pre-pregnancy period; instead of that, both the rheumatologists and obstetricians
should persist the risk assessment based on the accumulated information at least until the
second trimester. The future work will focus on the real-time prediction models embedded
in the electronic medical records system to alarm the adverse events in real time, which
will hopefully benefit SLE women who are pregnant.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics13040612/s1. Table S1: Statistical description and missing
data rate of 288 variables; Table S2: ROC-AUC calculated by DT for feature selection in overall and
real-time periods; Figure S1: Heat maps generated from four timespans.
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