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Abstract: Compressed sensing accelerates magnetic resonance imaging (MRI) acquisition by un-
dersampling of the k-space. Yet, excessive undersampling impairs image quality when using con-
ventional reconstruction techniques. Deep-learning-based reconstruction methods might allow for
stronger undersampling and thus faster MRI scans without loss of crucial image quality. We com-
pared imaging approaches using parallel imaging (SENSE), a combination of parallel imaging and
compressed sensing (COMPRESSED SENSE, CS), and a combination of CS and a deep-learning-
based reconstruction (CS AI) on raw k-space data acquired at different undersampling factors.
3D T2-weighted images of the lumbar spine were obtained from 20 volunteers, including a 3D se-
quence (standard SENSE), as provided by the manufacturer, as well as accelerated 3D sequences
(undersampling factors 4.5, 8, and 11) reconstructed with CS and CS AI. Subjective rating was per-
formed using a 5-point Likert scale to evaluate anatomical structures and overall image impression.
Objective rating was performed using apparent signal-to-noise and contrast-to-noise ratio (aSNR
and aCNR) as well as root mean square error (RMSE) and structural-similarity index (SSIM). The
CS AI 4.5 sequence was subjectively rated better than the standard in several categories and deep-
learning-based reconstructions were subjectively rated better than conventional reconstructions in
several categories for acceleration factors 8 and 11. In the objective rating, only aSNR of the bone
showed a significant tendency towards better results of the deep-learning-based reconstructions. We
conclude that CS in combination with deep-learning-based image reconstruction allows for stronger
undersampling of k-space data without loss of image quality, and thus has potential for further scan
time reduction.

Keywords: magnetic resonance imaging; artificial intelligence; image processing; computer-assisted

1. Introduction

The growing and aging world population has an ever-increasing demand for magnetic
resonance imaging (MRI) [1]. To meet this demand, recent technical developments aim
to speed up MRI examinations, which increases imaging capacities [2–4]. One clinically
established MRI acceleration technique is compressed sensing [5,6]. Compressed sensing
achieves shorter MRI scanning times by undersampling data from the k-space during
acquisition [5,6]. The k-space holds the MRI raw data before reconstruction into visually
perceivable images [7]. Compressed sensing has already enabled a significant reduction
of scan time in multiple settings, especially when working with 3D sequences [8–12].
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Another established approach to achieving shorter MRI scanning times is parallel imag-
ing, which exploits redundancy of spatial information to reduce the amount of sampled
k-space data [13].

Recently, the combination of both compressed sensing and parallel imaging (Com-
pressed SENSE, CS, Philips, the Netherlands), was shown to allow for higher acceleration
of acquisition times while preserving the image quality [3,14,15]. Higher acceleration
factors during image acquisition results in less sampling of k-space data, which, however,
might impair image quality in cases of excessive undersampling. Artificial intelligence
(AI)-based image reconstruction techniques were shown by Pezzotti et al. to be able to
interpolate non-acquired data from acquired k-space data; therefore these techniques might
allow for further improvement in image quality of accelerated data or further acceler-
ation by compensating for image quality trade-offs [16–18]. The underlying algorithm
architecture Adaptive-CS-Net comprises a convolutional neural network, which won the in-
ternational fast MRI Facebook challenge in 2019 in the category “8x undersampling” [17,19].
This neural network was further developed by the manufacturer to include more than
740,000 undersampled MRI imagings of several contrasts, anatomies, and acceleration
factors in the training data [20]. It was provided as a prototype by the MRI system manufac-
turer and its applicability on the lumbar spine was investigate in this study. The prototype
AI-reconstruction algorithm was later adopted to a clinically approved software suite by
the manufacturer without major changes [15].

MRI of the lumbar spine is considered one of the most frequently performed examina-
tions and it therefore holds great potential for time saving. Important areas of use include,
e.g., the work-up of lower back pain with neurological deficits or suspected underlying
disease and the planning of surgical management in cases of radiculopathy and spinal
stenosis as well as postoperative imaging [21,22]. Nevertheless, it is important to main-
tain diagnostic quality to provide certainty, especially in diagnosing cord or nerve-root
compression syndromes. The purpose of this study was to compare deep-learning-based
MRI reconstructions with conventional reconstructions of a 3D T2 sequence of the lumbar
spine in terms of subjective and objective image quality. Specifically, we aimed to deter-
mine whether deep-learning-based reconstructions offer further opportunities to accelerate
image acquisition by offsetting image quality trade-offs.

2. Materials and Methods
2.1. Study Population

This prospective single-center study was approved by the institutional review board
and registered in the national Clinical Trials Register (DRKS00024156). Written informed
consent was obtained from all participants included in the study. Inclusion criteria for
the volunteers was age >18 years. Exclusion criteria were pregnancy, implanted MRI
conditional or unsafe devices, previous surgery or known diseases of the spine, and lower
back pain within the last 6 months. Imaging data were acquired from April 2021 to
May 2021.

2.2. MRI Protocol

MRI examination was performed in a whole-body 3T MRI system (Ingenia 3.0 T,
Philips Healthcare) using the 12-channel in-built table coil array for signal reception. The
position of the volunteers was supine, head-first on the table.

First, a reference 3D T2 turbo spin echo (TSE) sequence, as provided by the manufac-
turer (including parallel imaging acceleration of 2.5), was acquired, referred to as standard
SENSE. This was followed by 3D T2 TSE sequences using CS acceleration with acceleration
factors of 4.5, 8, and 11, based on previous experiences of Bratke et al. [3]. As introduced
above, CS exploits a combination of compressed sensing and parallel imaging for accel-
eration of MRI acquisition [23]. The three sets of undersampled k-space data were then
reconstructed to visually perceivable images using 1) a conventional approach (CS) and 2)
a novel AI-driven prototype (CS AI). The AI-prototype was based on the convolutional



Diagnostics 2023, 13, 418 3 of 13

neural network “Adaptive-CS-Net”, which processes undersampled k-space data in an
iterative, learning-based reconstruction scheme. In this way, the conventional wavelet trans-
formation to process undersampled k-space data was replaced by a neural network. The
algorithm uses a learning-based sparsifying approach with consistency checks to the raw
k-space data in each block, to pursue maximum image authenticity [15,17]. In the following,
the conventional and AI-driven reconstruction methods are referred to as CS and CS AI,
respectively. Figure 1 illustrates the workflow of our study. Please see Supplementary
Materials for in-detail information about the MRI protocol.
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Figure 1. Data acquisition and reconstruction workflow. For each participating individual, we first
obtained a survey and standard clinical 3D T2 sequence, which was accelerated by default using
parallel imaging (top box, SENSE). Secondly, three sets of 3D k-space raw data were acquired using a
combination of parallel imaging and compressed sensing with the acceleration factors 4.5, 8, and 11
(middle box, Compressed SENSE). After that, data acquisition was completed. For subsequent image
reconstruction, conventional and deep-learning-based algorithms were used (bottom left and right
boxes, respectively). In total, four 3D T2 data sets were acquired, resulting in seven image sets per
individual reconstructed for further analysis. Since the conventional and deep-learning images were
reconstructed from the identical raw data, a possible bias due to motion artifacts or physiological
alterations was precluded from the comparative analysis.

2.3. Image Analysis

Image analysis was performed using both an objective and subjective approach.
In the objective approach, the analysis performed was region of interest (ROI)-based
and pixel-based.

2.4. Objective Image Analysis: ROI-Based

Since the iterative reconstruction of Compressed SENSE leads to an artificial noise
reduction in the image that affects the background noise, classical ROI-based parameters
such as the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) are relevantly
affected (depending on the weighting between data consistency and noise reduction during
iterative reconstruction). The informative value of these parameters therefore appears to
be restricted. Similar to the previously published studies by Bratke et al., we therefore
decided to quantify potential differences by the apparent SNR (aSNR) and apparent CNR
(aCNR) [3,14]. The aSNR was calculated by dividing the signal intensity by the standard
deviation (SD) of the same ROI, while aCNR was calculated by subtracting the signal
intensity of the different tissues divided by the SD [3,14]. The applied calculations to
yield aCNR and aSNR are reported in a standard format as Equations (1) and (2). ROIs
were drawn in the central slice of each sequence in the vertebral body of L1 with an area
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of 150 mm2, in the spinal cord in segment TH 11/12 with an area of 20 mm2 and in the
cerebrospinal fluid (CSF) within the spinal canal in segment L3 with an area of 25 mm2.
From these data, the aSNR of bone, spinal cord and CSF as well as the aCNR of bone/CSF
and spinal cord/CSF were calculated as follows:

aSNRtissue =
µtissue
σtissue

(1)

aCNRtissue1−tissue2 =

∣∣∣∣∣ (µtissue1 − µtissue2)√
(σtissue1

2 + σtissue2
2)

∣∣∣∣∣ (2)

where µ is signal intensity and σ is standard deviation.

2.5. Objective Image Analysis: Pixel-Based

In addition to these ROI-based parameters, the pixel-based parameters root mean
square error (RMSE) and structural similarity index (SSIM) were calculated. For this
purpose, the Digital Imaging and Communications in Medicine (DICOM) images were
loaded into an in-house tool that was developed in Python (Python Software Foundation)
using the scikit-image toolbox, to perform an automated pixel-wise analysis of the central
slice [3,14,24]. The RMSE represents the difference or error of the accelerated sequence
compared to the baseline scan (in this case the “standard” 3D sequence), resulting in 0 if
the images are identical and higher values for a larger deviation. The RMSE leads to
disproportionally large effects if there are differences in signal scaling between compared
images. The SSIM provides a percentual deviation for each sequence from the baseline scan
with higher values representing greater similarity to the reference image [3,14].

2.6. Subjective Image Analysis

Subjective evaluation was independently performed by two board-certified radiologist
with 5 years of experience and subspecialization in musculoskeletal imaging (AI, PR). The
sequence descriptions were anonymized in our PACS (Picture Archiving and Communica-
tion System) and presented to the readers in a random order to avoid any structural effect of
consecutive presented scans. Randomization was performed using an online true random
integer generator [25]. Delineation and clarity of the following anatomical structures were
scored on a 5-point Likert scale: bone marrow, intervertebral disc, spinal cord, CSF, nerve
roots and neuroforamina, as well as facet joints (1: not visible/distinguishable, 2: barely
visible, 3: adequately visible, 4: good visibility, 5: excellent visibility). Also, the overall
image impression was scored on a 5-point Likert scale (1: not acceptable/no diagnostic
value, 2: very limited diagnostic value, 3: acceptable for most diagnoses, 4: good for
majority of diagnoses, 5: optimal). In addition, the readers were asked to rate ‘yes’ or ‘no’
whether the sequence assessed would be sufficient for clinical use.

2.7. Statistical Analysis

Objective and subjective ratings are presented as mean ± SD. Each parameter was
tested for normal distribution using the Shapiro–Wilk test. In the case of normal distribu-
tion, a repeated measures ANOVA with Geisser–Greenhouse correction and Tukey test
for multiple comparisons was performed. In the case of non-parametric without normal
distribution, the Friedman test with Dunn’s test for multiple comparisons was performed.
A p-value of < 0.05 was considered statistically significant. Inter-rater agreement was
rated with weighted Cohen’s Kappa (κ). Referring to Landis and Koch [26], the follow-
ing scale was applied: κ < 0: no agreement, κ between 0.00 and 0.20: slight agreement,
κ between 0.21 and 0.40: fair agreement, κ between 0.41 and 0.60: moderate agreement,
κ between 0.61 and 0.80: substantial agreement, κ between 0.81 and 1.00: almost perfect
agreement [26].

Statistical analyses were performed with GraphPad Prism Version 9.2.0 (GraphPad
Software Inc., San Diego, CA, USA) and in cases of the calculation of Cohen’s Kappa
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with the GraphPad QuickCalcs Website (https://www.graphpad.com/quickcalcs/kappa1/
(accessed on 28 November 2022)). [27].

3. Results
3.1. Study Population

The study population consisted of 7 female and 13 male volunteers with a mean age of
27 ± 7.16 years (range: 20–52 years) and a mean weight of 74.2 ± 12.70 kg (range: 48–92 kg).

3.2. Image Analysis

Examples of the standard-sequence, conventional, and deep-learning-based image
reconstructions of undersampled k-data can be found in Figures 2 and 3. The scan duration
for the 3D sequences could be reduced with increasing the acceleration factor, as shown in
Table 1, along with the further acquisition and reconstruction parameters.
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Figure 2. Comparison of the “standard” 3D sequence (without compressed sensing acceleration)
and conventional image reconstructions after Compressed SENSE acceleration with factors of 4.5,
8, and 11. Abbreviations: CS, conventional reconstructions of Compressed SENSE images; CS AI,
deep-learning-based reconstructions of Compressed SENSE images.

3.3. Objective Image Analysis

The results of the objective analysis are summarized in Table 2. For the ROI-based
image analysis, aSNR of the bone, spinal cord, and CSF were analysed. When comparing
the sequences, a significant main effect could only be demonstrated for aSNR of the bone
(p = 0.0042), without statistical differences for aSNR of the spinal cord and aSNR of CSF.
Further analysis of aSNR of the bone revealed no significant difference when comparing
the accelerated sequences with the standard sequence. However, there were statistically
significant differences in the comparison of the accelerated sequences with higher aSNR
for lower acceleration factors (CS 4.5 vs. CS 11: p = 0.0109, CS AI 4.5 vs. CS 11: p = 0.0129,
CS 8 AI vs. CS 11: p = 0.0164) as well as a higher aSNR of the deep-learning-based
reconstructions compared to their conventional equivalents (CS 8 vs. CS AI 8: p = 0.0030),
CS 11 vs. CS AI 11: p = 0.0137). Regarding the analysis of aCNR of bone/CSF and spinal
cord/CSF, only the aCNR of bone/CSF showed a significant main effect (p = 0.0413),
however, without significant differences in further comparisons of the sequences.

https://www.graphpad.com/quickcalcs/kappa1/
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Table 1. Imaging acquisition and reconstruction parameters. Abbreviations: CS, conventional recon-
structions of Compressed SENSE images; CS AI, deep-learning-based reconstructions of Compressed
SENSE images.

Sequence Standard 3D CS 4.5/CS-AI 4.5 CS 8/CS-AI 8 CS 11/CS-AI 11

Echo time (ms) 168 168 168 168
Repetition time (ms) 3261 3261 3261 3261

Flip angle (deg.) 90 90 90 90
Field of view (mm) 180 × 300 × 90 180 × 300 × 90 180 × 300 × 90 180 × 300 × 90

Gap (mm) 0 0 0 0
Acquisition voxel size

(mm) 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1

Reconstruction voxel
size (mm) 0.47 × 0.47 × 0.5 0.47 × 0.47 × 0.5 0.47 × 0.47 × 0.5 0.47 × 0.47 × 0.5

Turbo factor/ echo train
length 64 64 64 64

CS factor SENSE 2.5 CS 4.5 CS 8 CS 11
Scan time (s) 427 261 149 109

Saved scan time (s) 0 166 278 228
Scan time reduction (%) 0 38.88 65.11 74.47

In the pixel-based comparison, RMSE showed a significant main effect (p < 0.0001),
as well as significantly lower values when comparing CS 4.5 and CS AI 4.5 with higher
acceleration factors (CS 4.5 vs. CS 8: p = 0.0002, CS 4.5 vs. CS AI 8, CS 11 and CS AI 11:
each p < 0.0001, CS AI 4.5 vs. CS 8: p = 0.0265, CS AI 4.5 vs. CS AI 8: p = 0.0004, CS AI 4.5 vs.
CS 11, CS AI 11: each p < 0.0001). There were no significant differences between the con-
ventional reconstructions and their deep-learning-based equivalents. Results are depicted
in Figure 4. The evaluation of SSIM also showed a significant main effect (p < 0.0001), as
well as significantly higher values for CS 4.5 and CS AI 4.5 in comparison to sequences of
higher acceleration factors (main effect p < 0.0001, multiple comparisons: CS 4.5 vs. CS 8:
p = 0.0002, CS 4.5 vs. CS AI 8: p = 0.0006, CS 4.5 vs. CS 11, CS AI 11: each p < 0.0001, CS AI
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4.5 vs. CS 8: p = 0.0042, CS AI 4.5 vs. CS AI 8: p = 0.0093, CS AI 4.5 vs. CS 11, CS AI 11: each
p < 0.00001). Again, there were no significant differences when comparing conventional
with deep-learning-based reconstructions. Results are depicted in Figure 5.

Table 2. Results of objective rating. Abbreviations: CS = conventional reconstructions of Compressed
SENSE images, CS AI = deep-learning-based reconstructions of Compressed SENSE images.

Standard CS 4.5 CS AI 4.5 CS 8 CS AI 8 CS 11 CS AI 11

RMSE - 79.80 ± 37.03 80.53 ± 36.77 90.66 ± 41.37 91.08 ± 40.26 94.87 ± 44.07 94.79 ± 43.49
SSIM - 0.86 ± 0.04 0.86 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.83 ± 0.04 0.83 ± 0.04

aSNR bone 6.00 ± 1.69 6.51 ± 1.79 6.60 ± 1.97 5.60 ± 1.38 6.18 ± 1.64 5.05 ± 1.21 5.72 ± 1.70
aSNR spinal cord 11.36 ± 4.18 10.39 ± 3.65 10.19 ± 3.79 10.56 ± 3.71 10.64 ± 3.61 10.40 ± 3.36 10.22 ± 3.59

aSNR CSF 26.26 ± 14.05 28.17 ± 13.53 28.58 ± 13.58 26.89 ± 13.17 27.01 ± 13.06 26.42 ± 12.91 27.69 ± 13.79
aCNR bone/CSF 17.41 ± 7.88 19.70 ± 7.70 19.79 ± 7.72 18.46 ± 7.24 18.83 ± 7.25 17.63 ± 6.48 18.57 ± 6.60

aCNR spinal
cord/CSF 21.72 ± 11.39 23.18 ± 9.90 23.36 ± 9.89 22.26 ± 9.79 22.27 ± 9.79 21.92 ± 9.58 22.63 ± 9.43
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3.4. Subjective Image Analysis

Interrater agreement was rated with the help of Cohen’s κ, as demonstrated in Table 3,
resulting in substantial (κ = 0.61–0.80) or almost perfect (κ = 0.81–1.00) agreement in 94%
of cases. Interrater agreement for the use in clinical context yielded a Cohen’s K of 0.743
(substantial agreement). Subjective image analysis is summarized in Table 3.
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Table 3. Cohen’s Kappa of subjective reading. Abbreviations: CS = conventional reconstructions of
Compressed SENSE images, CS AI = deep-learning-based reconstructions of Compressed SENSE
images, CSF = cerebrospinal fluid.
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Further analysis of the results of the subjective reading, as shown in Tables 4 and 5,
revealed significant differences of the sequences regarding the rating of all assessed
anatomical structures (bone marrow, intervertebral disc, spinal cord, CSF, nerve roots,
and neuroforamina) as well as in the overall image impression (main effect in each case
p < 0.001). The significance levels of the individual comparisons are listed in Supplementary
Scheme S1a–g.
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Table 4. Results of subjective reading. Standard refers to the 3D T2 sequence with settings
as provided by the manufacturer. Abbreviations: CS = conventional reconstructions of Com-
pressed SENSE images, CS AI = deep-learning-based reconstructions of Compressed SENSE images,
CSF = cerebrospinal fluid.

Standard CS 4.5 CS AI 4.5 CS 8 CS AI 8 CS 11 CS AI 11

Bone marrow 3.10 ± 0.81 3.68 ± 0.80 4.03 ± 0.80 2.98 ± 0.66 3.68 ± 0.76 2.45 ± 0.71 3.23 ± 0.73
Intervertebral discs 3.00 ± 0.64 3.28 ± 0.68 3.90 ± 0.74 2.78 ± 0.58 3.63 ± 0.81 2.48 ± 0.60 3.10 ± 0.74

Spinal cord 3.08 ± 0.73 3.48 ± 0.72 3.85 ± 0.77 2.88 ± 0.82 3.70 ± 0.79 2.83 ± 0.75 3.00 ± 0.68
CSF 3.43 ± 0.75 3.70 ± 0.65 3.83 ± 0.87 3.20 ± 0.79 3.78 ± 0.62 3.05 ± 0.75 3.45 ± 0.75

Nerve roots 3.72 ± 0.88 3.58 ± 0.75 3.75 ± 0.87 3.38 ± 0.70 3.70 ± 0.85 2.98 ± 0.77 3.28 ± 0.75
Neuroforamina 3.45 ± 0.96 3.65 ± 0.86 3.73 ± 0.88 3.05 ± 0.90 3.68 ± 0.76 2.80 ± 0.79 3.28 ± 0.78

Overall impression 3.28 ± 0.68 3.68 ± 0.66 3.90 ± 0.81 3.10 ± 0.67 3.68 ± 0.76 2.68 ± 0.69 3.13 ± 0.76

Table 5. Results of subjective reading regarding the usability of sequences in a clinical context.
Abbreviations: CS = conventional reconstructions of Compressed SENSE images, CS AI = deep-
learning-based reconstructions of Compressed SENSE images.

Standard CS 4.5 CS AI 4.5 CS 8 CS AI 8 CS 11 CS AI 11

Acceptable for use
in a clinical context 92.50% 97.50% 97.50% 75.00% 95.00% 32.50% 70.00%

As shown in Table 4, the best ratings were obtained for the sequence CS AI 4.5, which
was generally rated better than the standard sequence, with significant differences in the
categories “bone marrow”, “intervertebral disc”, and “spinal cord”. The second- and
third-best rated sequences were CS 4.5 and CS AI 8, which were rated better than the
standard sequence in most cases (except for the category “nerve roots”), although only the
comparison of CS 4.5 and standard for the category “bone marrow” reached significance.
The other sequences were mostly rated worse than the standard sequence (except for
the categories “bone marrow”; intervertebral disc”, and “CSF” in the comparison CS AI
11 vs. standard). The results are depicted using the example of “overall image impression”
in Figure 6.
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Overall, there was a tendency for better results in the subjective analysis for the AI
reconstructions compared with conventional reconstructions at the same acceleration factor,
with significant differences when comparing reconstructions with an acceleration factor of
8 (categories “bone marrow”, “spinal cord”, and “CSF”) and 11 (category “bone marrow”).

In general, there were poorer results at higher acceleration factors. While over 90%
of images were classified as sufficient for clinical use at an acceleration factor of 4.5
(CS 4.5: 97.50%, CS AI 4.5: 97.50%), the percentage dropped to 75% at a factor of 8 in
the case of conventional reconstructions (CS 8: 75.00%, CS AI 8: 95.00%), and was only
32.50% at an acceleration factor of 11 in the conventional reconstruction (CS 11: 32.50%,
CS AI 11: 70.00%).

4. Discussion

The purpose of this study was to compare deep-learning-based reconstructions with
conventional reconstructions of a Compressed SENSE accelerated 3D T2 sequence of the
lumbar spine. In the objective rating, we found a significantly higher aSNR of the bone
of the deep-learning-based reconstructions compared to their conventional equivalents
for acceleration factors 8 and 11. In the subjective rating, the best results were obtained
for CS AI 4.5, CS 4.5, and CS AI 8 sequences. In most cases, these sequences were rated
better than the standard sequence, reaching significance in the comparison of the CS
AI 4.5 sequence with the standard sequence in three categories and the comparison of
the CS 4.5 sequence with the standard sequence in one category. In a direct subjective
comparison of deep-learning-based reconstructions with their conventional equivalents,
the deep-learning-based reconstructions were rated significantly better in three categories
for acceleration factor 8 and in one category for acceleration factor 11.

In summary, the newly developed AI algorithm was non-inferior to the conventional
algorithm in all categories and significantly superior in some categories for medium and
higher acceleration factors. Translating the subjective results into scan-time reduction, a
scan-time reduction to approximately one third is achievable when replacing the stan-
dard sequence with the CS AI 8 sequence (149 s vs. 427 s)—a scan time close to that of a
conventional 2D T2 sequence (approximately 132 s referring to the clinical standard 2D
T2 sequence in our hospital). A substitution of the standard sequence with the CS AI 4.5 se-
quence already leads to a reduction of the scan time to two thirds (261 s vs. 427 s). Further
our data suggest that such substitution increases subjectively perceived image quality at
constant objective quality. The corresponding reduction in scan time allows for acquisition
of more images per unit time, increases patient comfort, and minimizes the likelihood of
motion artifacts. With shorter scanning times, 3D T2 sequences might replace the frequently
acquired sagittal 2D sequences of the lumbar spine. High-resolution MRI sequences have
proven particularly useful to assess neuroforaminal stenosis of the lumbar spine, which
manifest in a parasagittal orientation [28]. In a clinical context, the accurate grading of
neuroforaminal stenosis is highly desirable to consistently evaluate the therapeutic concept.
Similarly, Foreman et al. found that CS AI high-resolution reconstructions are particularly
beneficial for imaging of parasagittally orientated structures, such as the ankle tendons [20].

Regarding the direct comparison of the deep-learning-based reconstructions with their
conventional equivalents, data of the objective as well as the subjective rating suggest a
better image quality of the deep-learning-based reconstructions. Similarly, the only two
recent studies using the identical AI-prototype to that used in our research suggest a
significant increase of image quality when examining the ankle and prostate compared to
standard 3D T2 and CS sequences [20,29]. The quantitative analysis of undersampled ankle
and prostate CS AI imagings partially yielded a more than 100% boost of aSNR and aCNR,
when compared to standard or CS sequences [20,29]. Within our data, CS AI reconstruction
was moderately beneficial for objective image quality, with a maximum of about 10%
increase of aSNR and aCNR. In our study, the benefits of AI-driven reconstruction were
most obvious in the subjective evaluation of the sequences. While CS AI reconstruction
was beneficial in all three available datasets; the objective increase of image quality was
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more efficient for the anatomy of the ankle and prostate. In addition to different anatomy,
another reason for the more extensive effect of CS AI in ankle and prostate imaging might
be the resolution of the acquired sequences—previous studies did not assess the objective
comparison on high-resolution 3D images but used thicker slices, which is inherently
favorable for aSNR and aCNR [20,29].

Our study has several limitations. As we only worked with healthy volunteers,
no diagnostic validity of the deep-learning-based reconstructions in terms of pathology
detection and assessment can be derived from our study. In addition, we did not work
with the default denoising setting but with a strong noise reduction to achieve the best
subjective results and to get the best results for the deep-learning-based reconstructions. In
return, however, this means that our results may not be fully transferable to other denoising
settings. As another minor limitation, this study only evaluated T2-weighted sequences;
follow-up studies are needed to assess the possible benefit of this novel technique on further
sequences. Following standard practice in recent literature, and since we did not expect
major variation of standardized ROI-based measurements of aSNR and aCNR, we refrained
from performing an additional inter-reader assessment of the objective analysis.

5. Conclusions

The tested deep-learning-based prototype algorithm offers additional potential for
scan time reduction in 3D T2 imaging of the lumbar spine using CS AI. It allows for
moderate improvement of image quality while significantly reducing scan time compared
to the standard SENSE accelerated sequence. Regarding direct comparison of the CS
and CS AI approaches, findings of the objective as well as the subjective rating suggest
better image quality of the deep-learning-based reconstructions, especially for medium
and higher acceleration factors. The development and implementation of deep-learning-
based reconstruction algorithms has become more and more important in recent years
and might become clinical standard in the future. Therefore, thorough evaluation of their
clinical performance needs to be performed for different fields of application. With this
study, we provide a first clinical evaluation of a promising prototype that has since been
adapted as a clinical product. Future studies might show its applicability in other anatomies
and contrasts. Subsequent validation studies are warranted to assess the benefits of this
promising reconstruction technology, including clinical and intra-operative correlation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13030418/s1, Scheme S1. a. Results of subjective reading:
level of significance in the comparison of the delimitability of the bone marrow. Scheme S1. b. Results
of subjective reading: level of significance in the comparison of the delimitability of the interver-
tebral disc. Scheme S1. c. Results of subjective reading: level of significance in the comparison of
the delimitability of the spinal cord. Scheme S1. d. Results of subjective reading: level of signif-
icance in the comparison of the delimitability of the cerebrospinal fluid. Scheme S1. e. Results of
subjective reading: level of significance in the comparison of the delimitability of the nerve roots.
Scheme S1. f. Results of subjective reading: level of significance in the comparison of the delimitabil-
ity of the neuroforamina. Scheme S1. g. Results of subjective reading: level of significance in the
comparison of overall impression.
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