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Abstract: Histopathologic grade of hepatocellular carcinoma (HCC) is an important predictor of early
recurrence and poor prognosis after curative treatments. This study aims to develop a radiomics
model based on preoperative gadoxetic acid-enhanced MRI for predicting HCC histopathologic
grade and to validate its predictive performance in an independent external cohort. Clinical and
imaging data of 403 consecutive HCC patients were retrospectively collected from two hospitals (265
and 138, respectively). Patients were categorized into poorly differentiated HCC and non-poorly
differentiated HCC groups. A total of 851 radiomics features were extracted from the segmented
tumor at the hepatobiliary phase images. Three classifiers, logistic regression (LR), support vector
machine, and Adaboost were adopted for modeling. The areas under the curve of the three models
were 0.70, 0.67, and 0.61, respectively, in the external test cohort. Alpha-fetoprotein (AFP) was the
only significant clinicopathological variable associated with HCC grading (odds ratio: 2.75). When
combining AFP, the LR+AFP model showed the best performance, with an AUC of 0.71 (95%CI:
0.59–0.82) in the external test cohort. A radiomics model based on gadoxetic acid-enhanced MRI
was constructed in this study to discriminate HCC with different histopathologic grades. Its good
performance indicates a promise in the preoperative prediction of HCC differentiation levels.

Keywords: radiomics; magnetic resonance imaging; pathologic grade; gadoxetic acid; hepatocellular
carcinoma; machine learning

1. Introduction

Hepatocellular carcinoma (HCC) ranks the sixth most common cancer and the third
leading cause of cancer-related mortality worldwide [1]. Although significant advances
have been achieved in surgical resection, radiofrequency ablation, and liver transplantation
in recent years, high recurrence after these curative treatments remains a big challenge for
the long-term survival of HCC patients [2]. The reported recurrence rate reaches as high as
70% at 5 years [2]. Histopathologic grade of HCC, which reflects the tumor’s biological
behavior, is one of the key predictors of the prognosis [3]. Compared with moderately or
well-differentiated HCC, poorly differentiated HCC is indicative of an early recurrence
and lower overall survival [3]. Therefore, for HCC patients with poor differentiation, an
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expanded resection margin of the tumor during the operation or adjuvant treatments (such
as interventional therapy) may be needed to reduce the risk of early recurrence and to
improve the outcomes [4–6]. In addition, frequent surveillance after the treatments for
patients with poorly differentiated HCC is also recommended [6]. Previous research did
not recommend liver transplantation in patients with poorly differentiated HCC > 3 cm [4].

To date, the only approach to obtain the tumor grading information preoperatively
is via biopsy. However, this approach is invasive, which leaves the patients at risk of
post-procedural complications, such as bleeding, tumor seeding, and pain, with a rate of
around 6% [7]. In addition, false negative results may occur due to sampling errors in the
biopsy [8]. Moreover, the limited sample obtained by biopsy may not thoroughly reflect
the intra-tumoral heterogeneity. Preoperative HCC differentiation information is an unmet
clinical requirement for clinicians.

Gadoxetic acid-enhanced magnetic resonance imaging (MRI) has been increasingly
used in clinical practice for the detection, diagnosis, and characterization of focal and
diffuse hepatic disease [9]. Gadoxetic acid is a liver-specific contrast media, indicating that
it not only distributes into the extracellular space after intravenous injection but also can
be actively taken up by the hepatocytes via the organic anion transporting polypeptides
(OATPs) [10]. Up to 50% of administrated gadoxetic acid will be excreted into the bile
duct via multidrug resistance protein 2 [10]. The uptake of gadoxetic acid reaches a
peak at 10–40 min after injection, forming a specific hepatobiliary phase [11]. Normal
liver parenchyma usually enhances over time due to hepatocyte uptake of gadoxetic
acid, but HCC typically appears as hypointense nodules [9]. Due to the better tissue
contrast provided by the hepatobiliary phase, gadoxetic acid-enhanced MRI improves the
detection rate and diagnostic accuracy of HCC [10]. In recent years, studies have shown
that radiological features at gadoxetic acid-enhanced MRI, such as intratumoral vessels, and
peritumoral hypointensity, are associated with HCC histopathologic grading results [12,13].
However, these semantic features are limited by subjectivity and low accuracy.

Radiomics is a novel technique that enables quantitative analysis of medical images
beyond visual inspection by extracting high-throughput textual features and converting
them into mineable data [14,15]. Taking advantage of machine learning approaches, the
radiomics model can be developed to improve the accuracy of diagnosis and prediction
of treatment response and prognosis, carrying the potential to assist clinical decision-
making [16]. In the field of liver oncology, several radiomics models have been constructed
using gadoxetic acid-enhanced MRI for HCC histopathologic grading prediction, and
they showed excellent discriminative ability [17–19]. However, the generalizability of the
developed model remains unclear as these models were based on limited sample size
and lacked external validation. In this study, we aimed to develop a radiomics model for
preoperatively predicting the HCC histopathologic grade using gadoxetic acid-enhanced
MRI and to validate it in an independent external cohort.

2. Patients and Methods

The ethical review boards of Southwest Hospital, Army Medical University, Chongqing
(Center 1), and Zhujiang Hospital, South Medical University, Guangzhou (Center 2) ap-
proved the protocol of this bi-institutional research [No. (B)KY2022183 and 2022-KY-200-01,
respectively]. The written informed consent was waived from the patients due to the retro-
spective nature of this study. The patient and imaging data were analyzed anonymously.

Consecutive patients who underwent liver resection between January 2017 and March
2019 at Center 1, and between February 2015 and December 2020 at Center 2 were included
in this study if they satisfied the following inclusion criteria: 1. Solitary HCC was confirmed
by postoperative pathology exam; 2. Gadoxetic acid-enhanced MRI exam was performed
within 2 weeks before surgery; 3. HCC histopathologic grade information was available.
Exclusion criteria: 1. Other anti-cancer treatments before surgery, such as radiofrequency
ablation, transarterial chemoembolization, and hepatectomy; 2. Incomplete information on
clinicopathological variables and pathology report; 3. Other concurrent cancer; 4. Imaging
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quality insufficient for analysis, such as motion artifact. The process of patient selection is
described in Figure 1.

Figure 1. Process of patient selection at the two participating centers.

Center 1 was used for model construction (i.e “model development cohort”) and
Center 2 served as an external cohort (i.e., “test cohort”) for validating the predictive
performance of the developed radiomics model. The test cohort was independent of the
model development process. Center 1 or the development cohort, and Center 2 or the test
cohort will be interchangeably used in this paper. Figure 2 illustrates the study pipeline of
radiomics model development.

Figure 2. Workflow of the radiomics model development. A typical pipeline of the radiomics model
development consists of six steps: imaging acquisition, tumor segmentation, feature extraction,
feature selection, radiomics model development, and evaluation of the model.

2.1. Clinicopathological Variables

The following preoperative clinicopathological variables were collected from the
hospital electronic health records: age (≤55 or >55 years), gender (male/female), hepatitis
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B virus infection (yes/no), cirrhosis (yes/no), alanine aminotransferase (ALT) (≤42 or
>42 IU/L), aspartate transaminase (AST) (≤42 or >42 IU/L), platelet count (≤125 or
>125 × 109/L), Albumin-Bilirubin (ALBI) grade (a compound parameter derived from
serum albumin and bilirubin levels) (Grade A or B/C) [20], the model for end-stage liver
disease (MELD) score (≤9 or >9), tumor size (defined as the maximal diameter at the
gadoxetic acid-enhanced MRI) (≤5 or >5 cm) and the alpha-fetoprotein (AFP) level (<400
or ≥400 ng/mL).

HCC histopathologic grade was defined at the resected specimens by using the World
Health Organization criteria, which categorize HCC into three grades: poor, moderate,
and well differentiation [21]. In this study, we merged the latter two and grouped patients
into two groups: the poorly differentiated HCC group and the non-poorly differentiated
HCC group.

2.2. Gadoxetic Acid-Enhanced MRI Exam

All patients underwent the gadoxetic acid-enhanced MRI exam at a 3.0 T scanner
(Magnetom Trio, Siemens Healthcare, Erlangen, Germany at Center 1, and Ingenia, Philips
Healthcare, Best, The Netherlands at Center 2). Dynamic contrast-enhanced images were
acquired before and at the time of aorta enhancement (18–20 s), 45–60 s, 180 s, and 15 min
(20 min at Center 2) after administration of the contrast media, which were corresponding
to arterial phase, portal venous phase, delayed phase, and hepatobiliary phases. Gadoxetic
acid (Primovist ®, Bayer Pharma, Berlin, Germany) at a concentration of 0.25 mmol/mL
was injected by 0.1 mL/kg body weight through an antecubital vein followed by a flush
of saline. Detailed scanning parameters at the two participant centers are provided in
Supplementary Table S1. Due to its superb tissue contrast, hepatobiliary phase images
were selected to develop the radiomics model in this study.

2.3. Tumor Segmentation and Inter-Observer Agreement Assessment

Tumor segmentation was performed manually by two researchers (C.L, 3 years of
abdominal imaging research experience, confirmed by P.C, a senior radiologist with 20 years
of experience) at the hepatobiliary phase images using the software ITK-SNAP (version
3.8.0, http://www.itksnap.org/, access on 8 August 2022). The delineated volume of
interest (VOI) was used to extract the radiomics features. To evaluate the reproducibility of
the extracted radiomics features, the interclass coefficient (ICC) was calculated using 30
randomly selected sets of images at Center 1 which were delineated independently by two
researchers (C.L and P.C) without the knowledge of the histopathologic results. Radiomics
features with ICC ≥ 0.75 were regarded as reproducible and selected for next-step analysis.

2.4. Feature Extraction

To combat the “center effect” of the radiomics features between the two participating
hospitals which was potentially derived from the different vendors, scanning parameters,
and phase timing used, three strategies were adopted: first, the images were resampled
into isometric voxel of 1 × 1 × 1 mm3 by using B-spline interpolation, and the intensity
histogram was discretized into a fixed bin width of 25. Second, radiomics features were
extracted from the cropped cuboid VOIs which covered the tumor. Third, the radiomics
features were scaled by using z-score normalization.

The following radiomics features were then extracted by using the package “pyra-
diomics” (version 3.0.1, https://github.com/AIM-Harvard/pyradiomics, access on
17 November 2022): (1) 2D and 3D shape features (n = 14), (2) first-order statistics (n = 18),
(3) gray level co-occurrence matrix-derived features (n = 24), (4) gray level run length matrix-
derived features (n = 16), (5) gray level size zone-derived features (n = 16), (6) gray level
dependence matrix-derived features (n = 14), (7) neighboring gray tone difference matrix
features (n = 5), (8) features transformed by the wavelet on categories of (2)–(7) (n = 744). In
total, 851 radiomics features were extracted. The terminology of the radiomics features is in
line with the Image Biomarker Standardization Initiative [22] and the detailed definition of
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each feature can be found at https://pyradiomics.readthedocs.io/en/latest/features.html
(access on 17 November 2022).

2.5. Feature Selection, Model Development, and External Validation

To reduce the redundancy of the radiomics features, Spearman’s rank correlation
analysis was adopted to evaluate their associations, with one feature randomly removed in
the correlation pair with correlation coefficients >0.99. Random forest was then adopted to
select the top 30 important features according to the Gini index (Figure 3). These 30 features
were further fed into three classifiers, logistic regression (LR), support vector machine
(SVM), and Adaboost to construct the radiomics models for predicting HCC histopathologic
grades. When developing the prediction model, synthetic minority oversampling technique
(SMOTE) was applied to overcome the unbalanced classification of the HCC histopathologic
grades. To determine the hyper-parameter (the optimal number of features) of the model,
a 10-fold cross-validation was performed in the development cohort. The developed
models were then applied to Center 2 cohort to test their predictive performance. Above
processes were achieved by open-source software with the build-in library scikit-learn
0.19 (https://scikit-learn.org) available at https://github.com/salan668/FAE (access date:
28 November 2022).

Figure 3. Top 30 radiomics features with importance evaluated by the Gini index in the random
forest algorithm based on the development cohort. Gini Index is an effective measure of the impurity
in the values of a dataset. In general, the higher the Gini index, the more important the feature is.

2.6. Statistical Analysis

The categorical variables were expressed as counts with percentages and compared by
the chi-squared test or Fisher’s exact test as appropriate. Univariate regression analysis
was applied to Center 1 cohort to detect the clinicopathological variable associated with
the poorly differentiated HCC. The performance of the model was assessed by area under
the receiver operating characteristic (AUC). The optimal cut-off value was determined
by the Youden’s index. Sensitivity, specificity, accuracy, positive predictive value (PPV),
and negative predictive value (NPV) at the optimal cut-off value were also calculated.
The calibration ability of the model was visualized by the calibration plot, which intu-
itively compared the consistency between the model’s predicted probability and the actual
probability. A Delong test was applied to evaluate the difference between the AUCs of

https://pyradiomics.readthedocs.io/en/latest/features.html
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different models. All statistical analyses were performed using R software (version 4.1.3, R
Foundation for Statistical Computing, Vienna, Austria). A two-tailed p-value < 0.05 was
regarded as statistically significant.

3. Results
3.1. Basic Characteristics of Patient in the Two Cohorts

At Center 1, 265 eligible patients were included for model development, among which
86.0% were males and most patients were ≤55 years (70.2%). More than half (53.6%) of
patients had a background of cirrhosis. There were 53.2% of patients with a tumor larger
than 5 cm. AFP <400 ng/mL was seen in 58.5% of patients. The independent test cohort
(Center 2) consisted of 138 patients, where 87.7% were males. Patients aged ≤55 years were
observed in 56.5% of the test cohort. There were 47.1% of patients with a tumor larger than
5 cm. Around half (42.0%) of patients developed HCC on the basis of cirrhosis. A majority
of patients (72.5%) had AFP < 400 ng/mL (Table 1).

Table 1. Basic characteristics of the patients in the development and test cohorts.

Center 1 Center 2

Overall
(n = 265)

Poorly
Differentiated
HCC (n = 40)

Non-Poorly
Differentiated
HCC (n = 225)

p Value Overall
(n = 138)

Poorly
Differentiated
HCC (n = 22)

Non-Poorly
Differentiated
HCC (n = 116)

p Value

Gender: 0.343 1.000
Female 37 (14.0%) 8 (20.0%) 29 (12.9%) 17 (12.3%) 2 (9.09%) 15 (12.9%)
Male 228 (86.0%) 32 (80.0%) 196 (87.1%) 121 (87.7%) 20 (90.9%) 101 (87.1%)

Age (years): 0.334 0.617
≤55 186 (70.2%) 25 (62.5%) 161 (71.6%) 78 (56.5%) 14 (63.6%) 64 (55.2%)
>55 79 (29.8%) 15 (37.5%) 64 (28.4%) 60 (43.5%) 8 (36.4%) 52 (44.8%)

Etiology: 0.64 1.000
HBV 203 (76.6%) 29 (72.5%) 174 (77.3%) 112 (81.2%) 18 (81.8%) 94 (81.0%)
Non HBV 62 (23.4%) 11 (27.5%) 51 (22.7%) 26 (18.8%) 4 (18.2%) 22 (19.0%)

Cirrhosis: 1.000 0.725
Cirrhosis 142 (53.6%) 21 (52.5%) 121 (53.8%) 58 (42.0%) 8 (36.4%) 50 (43.1%)
Non cirrhosis 123 (46.4%) 19 (47.5%) 104 (46.2%) 80 (58.0%) 14 (63.6%) 66 (56.9%)

ALT (IU/L): 0.663 0.678
≤42 154 (58.1%) 25 (62.5%) 129 (57.3%) 105 (76.1%) 18 (81.8%) 87 (75.0%)
>42 111 (41.9%) 15 (37.5%) 96 (42.7%) 33 (23.9%) 4 (18.2%) 29 (25.0%)

AST (IU/L): 0.836 0.441
≤42 153 (57.7%) 22 (55.0%) 131 (58.2%) 106 (76.8%) 15 (68.2%) 91 (78.4%)
>42 112 (42.3%) 18 (45.0%) 94 (41.8%) 32 (23.2%) 7 (31.8%) 25 (21.6%)

Platelet (×109/L): 0.153 1.000
≤125 89 (33.6%) 9 (22.5%) 80 (35.6%) 29 (21.0%) 4 (18.2%) 25 (21.6%)
>125 176 (66.4%) 31 (77.5%) 145 (64.4%) 109 (79.0%) 18 (81.8%) 91 (78.4%)

ALBI grade: 0.213 0.738
Grade 1 120 (45.3%) 14 (35.0%) 106 (47.1%) 49 (35.5%) 9 (40.9%) 40 (34.5%)
Grade 2 145 (54.7%) 26 (65.0%) 119 (52.9%) 89 (64.5%) 13 (59.1%) 76 (65.5%)

MELD score: 0.629 0.589
≤9 256 (96.6%) 38 (95.0%) 218 (96.9%) 132 (95.7%) 22 (100%) 110 (94.8%)
>9 9 (3.40%) 2 (5.00%) 7 (3.11%) 6 (4.35%) 0 (0.00%) 6 (5.17%)

Tumor size (cm): 0.446 0.596
≤5 124 (46.8%) 16 (40.0%) 108 (48.0%) 73 (52.9%) 10 (45.5%) 63 (54.3%)
>5 141 (53.2%) 24 (60.0%) 117 (52.0%) 65 (47.1%) 12 (54.5%) 53 (45.7%)

AFP (ng/mL): 0.006 * 0.204
<400 155 (58.5%) 15 (37.5%) 140 (62.2%) 100 (72.5%) 13 (59.1%) 87 (75.0%)
≥400 110 (41.5%) 25 (62.5%) 85 (37.8%) 38 (27.5%) 9 (40.9%) 29 (25.0%)

Note: * p < 0.05. AFP—alpha fetoprotein; ALBI grade—albumin-bilirubin grade; ALT—alanine aminotransferase;
AST—aspartate transaminase; HBV—hepatitis B virus; HCC—hepatocellular carcinoma; MELD score—model for
end-stage liver disease score.

The incidence of poorly differentiated HCC was 15.1% and 15.9% at Center 1 and 2,
respectively. Except for AFP at the Center 1 cohort, there were not significant differences
in the other clinicopathological variables between poorly differentiated and non-poorly
differentiated HCC groups in both cohorts. The basic characteristics of the patients at
Center 1 and 2 are summarized in Table 1.

3.2. Independent Clinical Predictor for Histopathological Grading

Univariable regression analysis of the association between the clinicopathological
variables and the histopathologic grade of HCC in the development cohort only detected
AFP to be significant, with an odds ratio of 2.75 (p < 0.05). Multivariable regression analysis
was waived as only one significant clinicopathological variable was detected in univariate
regression analysis (Table 2).
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Table 2. Univariable regression analysis of the clinicopathological variables associating with
histopathologic grading of HCC in the development cohort.

Clinicopathological Variable OR 95%CI p Value

Gender (Female vs. male) 0.59 0.25–1.41 0.24
Age (≤55 vs. >55 years) 1.51 0.75–3.05 0.25
Etiology (Non HBV vs. HBV) 0.77 0.36–1.65 0.51
Cirrhosis (Non cirrhosis vs. cirrhosis) 0.95 0.48–1.86 0.88
ALT (≤42 vs. >42 IU/L) 0.81 0.40–1.61 0.54
AST (≤42 vs. >42 IU/L) 1.14 0.58–2.24 0.70
Platelet (≤125 vs. >125 × 109/L) 1.90 0.86–4.19 0.11
ALBI grade (Grade 1 vs. 2) 1.65 0.82–3.33 0.16
MELD score (≤9 vs. >9) 1.64 0.33–8.19 0.55
Tumor size (≤5 vs. >5 cm) 1.38 0.70–2.75 0.35
AFP (<400 vs. ≥400 ng/mL) 2.75 1.37–5.50 <0.001 *

Note: * p < 0.05. AFP—alpha fetoprotein; ALBI grade—albumin-bilirubin grade; ALT—alanine aminotransferase;
AST—aspartate transaminase; CI—confidence interval; HBV—hepatitis B virus; HCC—hepatocellular carcinoma;
MELD score—model for end-stage liver disease score; OR—odds ratio.

3.3. Feature Selection and Model Development

Among the 851 extracted features, 502 features indicated good reproducibility (ICC ≥ 0.75).
After the further removal of 137 redundant features (Spearman correlation coefficient > 0.99),
365 features were subjected to the random forest algorithm. After that, the top 30 important
radiomics features evaluated by random forest were selected to develop three prediction
models. The final features included in the models were determined by the learning curve,
with 22, 22, and 10 in the LR, SVM, and Adaboost models, respectively (Supplementary
Table S2). The key parameters in the model development are provided in Supplementary
Table S3.

3.4. Prediction Performance of the Radiomics Model

The three radiomics models (LR, SVM, and Adaboost) yielded an AUC of 0.75 (95%CI:
0.68–0.83), 0.75 (95%CI: 0.68–0.83), and 0.93 (95%CI: 0.89–0.97), respectively, at the devel-
opment cohort and of 0.70 (95%CI: 0.58–0.81), 0.67 (95%CI: 0.56–0.79), and 0.61 (95%CI:
0.47–0.74) at the test cohort. When incorporating AFP, the only significant clinicopatho-
logical variable, into these models, the AUCs of the combined models increased to 0.78
(95%CI:0.70–0.86), 0.78 (95%CI:0.70–0.85), and 0.94 (95%CI: 0.90–0.98), respectively, in the
development cohort and to 0.71 (95%CI: 0.59–0.82), 0.69 (95%CI: 0.57–0.81), and 0.58 (95%CI:
0.45–0.72), respectively, in the test cohort, although the difference between the AUCs was
not statistically significant (all p > 0.05). The LR+AFP model was therefore selected due
to its best performance in the test cohort, which represents a promising model for HCC
differentiation level prediction (the formula is provided in Supplementary Table S4). The
ROCs of the combined LR+AFP model in both development and test cohorts are presented
in Figure 4A. The calibration curve showed that the LR+AFP model had a good agreement
between its predicted probability and the actual probability (Figure 4B,C). Detailed predic-
tive performance in other dimensions, including accuracy, sensitivity, specificity, PPV, and
NPV of these models at the development and test cohorts is summarized in Table 3.
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Figure 4. Predictive performance of the logistic regression radiomics model combined with alpha-
fetoprotein (AFP) model at the model development cohort and the test cohort. (A) The combined
model yielded an Area Under the Receiver Operating Characteristic curve of 0.78 in the development
cohort and 0.71 in the test cohort. The calibration curve showed a good agreement between the
combined model predicted probability and the actual probability in the development cohort (B) and
the test cohort (C).

Table 3. Summary of the model performance in the development and test cohorts.

Model AUC (95%CI) Cut-Off Value Accuracy Sensitivity Specificity PPV NPV

D
evelopm

ent
cohort

LR 0.75 (0.68–0.83) 0.56 0.61 0.56 0.85 0.95 0.26
SVM 0.75 (0.68–0.83) 0.41 0.81 0.85 0.58 0.92 0.40

Adaboost 0.93 (0.89–0.97) 0.50 0.85 0.85 0.88 0.97 0.51
LR+AFP 0.78 (0.70–0.86) 0.83 0.75 0.76 0.68 0.93 0.33

SVM+AFP 0.78 (0.70–0.85) 0.84 0.73 0.73 0.73 0.94 0.33
Adaboost+AFP 0.94 (0.90–0.98) 0.73 0.91 0.92 0.85 0.97 0.67

Test
cohort

LR 0.70 (0.58–0.81) - 0.72 0.72 0.68 0.92 0.32
SVM 0.67 (0.56–0.79) - 0.68 0.68 0.68 0.92 0.29

Adaboost 0.61 (0.47–0.74) - 0.75 0.80 0.45 0.89 0.30
LR+AFP 0.71 (0.59–0.82) - 0.64 0.62 0.72 0.92 0.27

SVM+AFP 0.69 (0.57–0.81) - 0.80 0.86 0.45 0.89 0.38
Adaboost+AFP 0.58 (0.45–0.72) - 0.77 0.83 0.45 0.89 0.33

Note: AFP—alpha fetoprotein; AUC—area under the receiver operating characteristic curve; CI—confidence
interval; LR—logistic regression; NPV—negative predictive value; PPV—positive predictive value; SVM—support
vector machine.

4. Discussion

This study developed three radiomics models based on preoperative gadoxetic acid-
enhanced MRI images for predicting the histopathologic grade of HCC in 265 patients. The
predictive performance of the model using the logistic regression classifier outperformed
the other two, having an AUC of 0.70 in an independent test cohort, and the AUC further
increases to 0.71 when the model was combined with AFP.

Radiomics has proven to be a powerful tool in the prediction of tumor differentiation,
for instance, glioma, soft tissue sarcoma, and prostate cancer [23–25]. In the hepatobiliary
field, several studies have explored the role of gadoxetic acid-enhanced MRI-based ra-
diomics in the prediction of the HCC histopathologic grading [17–19]. A study constructed
a radiomics model based on hepatobiliary phase images of gadoxetic acid-enhanced MRI
using the logistic regression classifier yielded an AUC of 0.82 in the internal validation
cohort [17]. In an early study, researchers conducted the textual analysis on the gadoxetic
acid-enhanced MR images for predicting the HCC histopathologic grade, and the entropy
showed the highest AUC (0.78) [18]. However, these studies were limited by the small
sample size (<200) and the lack of an external validation cohort. Until now, only one study
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validated their radiomics model based on the hepatobiliary phase images in an independent
test cohort [19]. That model showed the highest AUC of 0.70 in the test cohort—a result
similar to ours. Yet, the external test cohort in that study consisted of only 28 cases [19].

The good performance of the gadoxetic acid-enhanced MRI-based model for histopatho-
logic grading of HCC might be due to the underlying link between radiomics features and
the biological behaviors of HCC. With the progression of HCC, the expression of OATPs
decreases while the MRP2 remains consistent or increases, which results in a decreased
absorption of gadoxetic acid [10]. Through quantifying the tumor uptake of gadoxetic acid,
traditional studies have demonstrated a close association between HCC histopathologic
grading and the alterations of the signal intensity or T1 relaxation time [26,27]. Radiomics
features, the substantial imaging patterns extracted from the MR images, can better reflect
the dedicated alterations of the image and would be also closely correlated with the tumor
differentiation degrees. In addition, when tumors differentiate poorly and exhibit aggres-
sive behaviors, the tumor’s internal environment may become more heterogeneous [18]. By
capturing these heterogeneous textural patterns, radiomics features can well discriminate
the histopathologic grades of HCC. Specifically, a majority of radiomics features included
in the models in this study were wavelet related. The wavelet filter is a robust tool for
obtaining a comprehensive spatial and frequency distribution to analyze specific imaging
regions by combining low- and high-frequency signals [28].

Three classifiers were applied in this study, which resulted in the LR, SVM, and
Adaboost-based radiomics models. LR is a traditional approach for modeling and is widely
used in the biomedical field with good interpretability. SVM, as one of the most popular
supervised machine learning techniques, is a powerful algorithm in the task of classification
by detecting a line or a hyperplane to separate the samples into different classes [29]. By
combining multiple weak learning classifiers via an iterative approach, Adaboost creates
an ensemble stronger classifier and has an advantage in the accuracy improvement of the
prediction [30]. Interestingly, the best performance was achieved by the LR model in our
study, rather than by the two machine learning algorithms. A possible explanation might
be that the performance of different classifiers was determined by the characteristics of the
data. To put it in another way, only a classifier that fits the pattern of the data may show
excellent predictive power. Under this context, a strategy of applying several classifiers
for modeling may be useful to develop an accurate prediction model in the radiomics
research field [31]. It is of note to point out that not always machine learning algorithms
are superior to conventional classifiers in predicting clinical events. A recent systematic
review compared the predictive performance between logistic regression and other machine
learning algorithms based on 71 original studies [32]. The results showed that machine
learning-based models do not outperform the logistic regression-based models [32].

As a well-established tumor biomarker, AFP has a high specificity in the early de-
tection of HCC and is widely used for the diagnosis and surveillance of HCC [33]. In
this study, AFP was the only significant clinicopathological variable associated with HCC
differentiation levels. This finding was in line with previous reports [34,35]. Compared
with AFP < 400 ng/mL, the odds ratio was 2.75 for AFP ≥ 400 ng/mL correlated with
poorly differentiated HCC in this study. Recent evidence showed that a high level of AFP at
baseline is also significantly associated with early tumor recurrence and poor prognosis of
HCC in different clinical settings, such as after liver resection or liver transplantation [36,37].
These findings suggested the aggressive biological behavior of HCC with a higher AFP
level [38,39].

For model development, a common strategy to improve predictive power is to incorpo-
rate risk factors from different dimensions [40]. In this study, when AFP was combined with
the radiomics model, the AUC improved in both development and test cohorts, although
the increment was not significant. In this multi-omics era, it is reasonable to integrate
clinicopathological variables, radiomics, genomics, transcriptomics proteomics, and micro-
biomics variables to accurately predict the histopathologic grading of HCC and to achieve
individualized treatment [41,42]. Ding et al. developed a model by combining clinicopatho-
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logical variables, radiomics signature, and deep learning signature based on preoperative
computed tomography images for predicting HCC differentiation levels [43]. The fused
model had an AUC of 0.80 in an independent external cohort, which was significantly
higher than models derived from each modality alone [43].

There are some limitations in this study. First, the data were retrospectively collected,
and selection bias might be inevitable. In addition, the sample size of the test cohort was
limited and only one test cohort was included. Additional external cohorts are required to
further test the overfitting risk and generalizability of our model. Second, the difference
in the predictive performance between radiological features or quantitative parameters
based on signal intensity and the radiomics model was not compared in this study. There
are strengths and weaknesses in these approaches in terms of subjectivity, complexity,
and accuracy [27]. The comparison between them is interesting and clinically meaningful.
Future studies can be designed to achieve this aim. Third, based on previous studies which
demonstrated that the radiomics models based on the hepatobiliary phase outperformed
other phases and sequences, only features derived from the hepatobiliary phase were
employed in this study. Lastly, the number of the radiomics features included in the models
was still partly subjectively determined as they were from the top 30 important features
ranked by the random forest algorithm. The risk of overfitting might exist in our models
(for example, the AUC difference of the Adaboost-based model between the development
and test cohorts was big), although our feature selection strategy followed a “standard
workflow” in a radiomics study. To date, there is not a well-established principle to define
an ideal number of features for modeling, especially for different classifiers. Future studies
are required to establish such a principle.

5. Conclusions

In conclusion, a radiomics model based on hepatobiliary phase images of preoperative
gadoxetic acid-enhanced MRI was developed for predicting the histopathologic grade of
HCC. Its good performance in the independent cohort indicates a promise in the preopera-
tive prediction of HCC differentiation levels and in assistance of treatment management of
HCC patients.
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