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Abstract: The COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare,
leading to the development of several algorithmic models for disease detection. Though these
models are relatively easy to build, their training requires a lot of data, storage, and resources, which
may not be available for use by medical institutions or could be beyond the skillset of the people
who most need these tools. This paper describes a data analysis and machine learning platform
that takes advantage of high-performance computing infrastructure for medical diagnosis support
applications. This platform is validated by re-training a previously published deep learning model
(COVID-Net) on new data, where it is shown that the performance of the model is improved through
large-scale hyperparameter optimisation that uncovered optimal training parameter combinations.
The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using
the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to
parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19:
76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources
increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights
the presence of a cut-off point where the communication overhead begins to affect performance.
The developed platform is intended to provide the medical field with a technical environment for
developing novel portable artificial-intelligence-based tools for diagnosis support.

Keywords: deep learning; COVID-19; high-performance computing; image-based diagnostics;
medical diagnosis support

1. Introduction

As the COVID-19 pandemic threatened to break down medical infrastructure all over
the world, it became evident that effective and efficient methods of diagnosis are necessary
in order to improve outcomes and save the lives of hospital patients [1]. Especially during
the early phase of the pandemic, when antigen-based rapid tests were not yet available,
there was an urgent need for alternative diagnostic procedures. The standard approach us-
ing reverse-transcription polymerase chain-reaction (RT-PCR) required a lot of time, trained
staff, and laboratory capacity and showed, especially at the beginning of the pandemic,
very heterogeneous accuracy [2,3]. Since pulmonary involvement in particular posed a
risk to patients with COVID-19, it was reasonable to examine conventional chest-X-ray
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(CXR) images, which are a rapid and widely available diagnostic tool for COVID-19-specific
changes [4]. Thus, early publications had already reported the presence of specific changes
in thoracic imaging before a laboratory test yielded a positive result [5]. Focusing on read-
ily available and inexpensive diagnostic procedures is especially meaningful as research
predicts that such large-scale contagion events will happen at an increasing rate [6].

However, given the current advancements in high-performance computing (HPC)
technology and the availability of commercial cloud computing (CC) resources to the
general public, as well as large increases in online data storage and sharing capabilities,
an increasing interest in machine learning (ML) and deep learning (DL) applications that
put these resources to use in order to solve common problems can be observed [7–9].
Similarly, these techniques and resources are being employed towards extracting infor-
mation from Big Data repositories that would otherwise require hundreds of researchers
over several thousand hours [10,11]. More recently, the combination of HPC, Big Data,
and ML have made headlines in the scientific community with the publication of two DL
models, AlphaFold from DeepMind and RoseTTAFold from Baek et al., which match or
even outperform existing methods for protein structure prediction [12,13].

It follows that several research groups have developed ML and DL methods for de-
tecting COVID-19 from sonographic [14] and X-ray images of the thorax [15–17], or for
predicting the mortality of COVID-19 patients from medical data [18], with all of the results
highlighting how effective these models might be for quick triaging. In a similar application
field, Rajaraman et al. merged several trained DL models to improve the diagnosis of pneu-
monia from CXR images with a higher success rate than conventional image recognition
models [19]. Other researchers have made use of cutting-edge HPC resources, namely the
Jülich Wizard for European Leadership Science (JUWELS) (https://www.fz-juelich.de/en/
ias/jsc/systems/supercomputers/juwels (accessed on 19 December 2022)) cluster, one of
Europe’s fastest supercomputers to train advanced DL networks on Big Data from different
fields, thus highlighting the need to make use of modular supercomputing architecture
(MSA) to advance the field of artificial intelligence (AI) [20]. Furthermore, advanced auto-
mated hyperparameter tuning methods such as KerasTuner (https://keras.io/keras_tuner/
(accessed on 19 December 2022)) and Ray Tune (https://docs.ray.io/en/latest/tune/index.
html (accessed on 19 December 2022)) have been developed, which simplify the parameter
search process needed to fine-tune the training of neural networks, thus yielding the best
performing model without major interventions from ML researchers [21].

Application of the available HPC resources in the medical field, thus contributing
to the analysis of medical data and a timely and precise diagnosis, has the potential to
reduce the amount of stress that medical personnel are exposed to during their work [22,23].
Similarly, the medical field presents a fertile ground for setting up frameworks that can be
easily loaded, modified, and deployed where needed to help mitigate the effects of future
epidemics and pandemics [24]. In the present paper, these approaches are thus validated in
the application of the COVID-Net developed by Wang et al. on newly obtained CXR images
that were provided by healthcare partner E*HealthLine (EHL) as part of the European
Open Science Cloud (EOSC) Fast-Track grants for COVID-19 research.

The work presented in this article describes the culmination of work performed
towards setting up a platform within which medical data can be stored, cleaned, and
analysed, and easily used to train ML and DL models [25,26]. The platform makes use of
highly specialised hardware and software available at the Jülich Supercomputing Centre
(JSC) to develop and train these models in the most efficient manner. These include firstly
the DEEP and JUWELS supercomputing clusters, and the storage made available through
the related projects. Advanced hyperparameter tuning methods are also used to fine-tune
the models to produce the best results.

The following sections go into the details of (a) training COVID-Net on newly acquired
data, (b) performing large-scale hyperparameter tuning on the model in order to extract the
parameter combinations that produce the best trained models, and (c) re-training the model
to highlight the improvement achieved in per-class accuracy for each of these combinations.

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://keras.io/keras_tuner/
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
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Furthermore, resource scale-up is also performed in order to gauge the speed-up that can
be achieved through the established platform.

Re-training the COVID-Net model in such a way serves as a preliminary proof-of-
concept for the platform. Due to its easy adaptability to new use-cases and its portability
on other academic or commercially available CC resources, this platform can support
researchers in the medical field to create more complex models with better performance
that would otherwise be impossible to develop due to a lack of computational resources and
missing expertise in usage of HPC systems. Additionally, the models built and pre-trained
within the platform rely on open-source data and software, making them easy to deploy on
local machines in hospitals intensive care units (ICUs).

It is worth noting that several groups have applied hyperparameter optimisation to
improve the results of DL-based COVID-19 diagnosis models [27–29]. However, compari-
son with these works cannot easily be undertaken, as the concept and specific innovation
described in the present paper lies within scaling up the data storage, the model training,
and the hyperparameter tuning processes through efficient use of HPC resources in order
to cover more ground.

2. Materials and Methods

This section describes the hardware and software implemented within the developed
data analysis and machine learning platform, as well as the methods and data through
which the COVID-Net model, developed by Wang et al. [15], is re-trained on new data
and its prediction performance is improved through large-scale hyperparameter tuning.
Figure 1 presents a general overview of the re-training process and model improvement
steps performed as part of the platform validation, and highlights how computationally
expensive the hyperparameter tuning step is.

Figure 1. Block diagram representing the experimental process within the data analysis and machine
learning platform. The different schedulers are represented as boxes within the hyperparameter
tuning step. Due to the large amount of computations that it needs to perform, the hyperparameter
tuning step requires significantly more resources than the remaining steps.

2.1. HPC Resources

In their presentation of a novel approach to build and organise HPC resources, Suarez
et al. provide a thorough technical description of the hardware set up at JSC, with an
emphasis on its modular aspects [30]. This is true in terms of the hardware dedicated to
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computation as well as that used for communication and for storage. In essence, the MSA
allows for efficient scale-up as required by HPC researchers according to the tasks at hand.

The hardware is supported by the open-source scheduling software Simple Linux
Utility for Resource Management (SLURM) (https://slurm.schedmd.com/(accessed on
19 December 2022)), which manages the workload over the available resources and lever-
ages the scalability aspect of the modular system, but also reduces wasted computing
time through intelligent prioritisation of tasks. Furthermore, aside from terminal access
through SSH, users can directly access resources through an integrated Jupyter (https:
//jupyter-jsc.fz-juelich.de/ (accessed on 19 December 2022)) development environment,
which can be adapted to the specific needs of the task at hand through pre-packaged data
analytics and ML modules as well as personalised kernels and virtual environments.

2.1.1. DEEP

The DEEP series of projects has been setting up the path towards exascale computing
since 2016, focusing on scaling available HPC resources through boosters [31]. These
projects have received funding granted by the European Commission under the Horizon
2020 program and have so far had three iterations under the titles “DEEP”, “DEEP-Extended
Reach” (DEEP-ER), and “DEEP-Extreme Scale Technologies” (DEEP-EST). A fourth iteration
upcoming as “DEEP-Software for Exascale Architectures” (DEEP-SEA) was launched in
2021 with the aim of delivering a standardised programming environment for exascale
computing for the European HPC systems.

At the hardware level, DEEP-EST introduced the concept of MSA, making the cluster-
booster architecture more attuned for data analytics tasks [32]. Accordingly, the system
itself is divided into several modules, each sporting the necessary hardware for specific
tasks (i.e., numerical data processing, image processing, hyperspectral image processing).
These modules are presented in Table 1.

Table 1. Partitions on the DEEP prototype.

Partition Nodes CPUs/Node GPU

DEEP-Data Analytics
Module 16 96 NVIDIA V100 + Intel Stratix10 FGPA

DEEP-Extreme Scale Booster 75 16 NVIDIA V100
DEEP-Cluster Module 50 48 n/a

2.1.2. JUWELS

The JUWELS supercomputer consists of two main parts: a cluster module and a booster
module, commissioned in 2018 and 2020, respectively. The cluster module is a BullSe-
quana X1000 system (https://atos.net/en/solutions/high-performance-computing-hpc/
bullsequana-x-supercomputers/bullsequana-x1000 (accessed on 19 December 2022)) with
2583 nodes totalling 122,768 CPUs. Furthermore, several nodes are specialised for visualisa-
tion, large-memory, and accelerated computing tasks (https://apps.fz-juelich.de/jsc/hps/
juwels/configuration.html (accessed on 19 December 2022)). The booster module, a Bullse-
quena XH2000 system (https://atos.net/wp-content/uploads/2020/07/BullSequana
XH2000_Features_Atos_supercomputers.pdf (accessed on 19 December 2022)), expands on
the available computing power by adding a total of 940 nodes totalling 3744 GPUs.

In essence, the cluster module is intended for general-purpose computation tasks
while the booster module allows for scalable computing, making large-scale simulation and
visualisation tasks more possible [20]. By making use of the available high-speed network
connections and available storage, the booster module has reached a peak performance
of 73 petaflop per second. Kesselheim et al. validated its performance for large-scale AI
research on several DL network training tasks across different fields. Their results and the
recorded peak performance earned the JUWELS booster the top position on the fastest
supercomputers in Europe in 2021 as well as the 7th spot on the international TOP500 list
and the 3rd spot on the Green500 list.

https://slurm.schedmd.com/
https://jupyter-jsc.fz-juelich.de/
https://jupyter-jsc.fz-juelich.de/
https://atos.net/en/solutions/high-performance-computing-hpc/bullsequana-x-supercomputers/bullsequana-x1000
https://atos.net/en/solutions/high-performance-computing-hpc/bullsequana-x-supercomputers/bullsequana-x1000
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
https://atos.net/wp-content/uploads/2020/07/BullSequanaXH2000_Features_Atos_supercomputers.pdf
https://atos.net/wp-content/uploads/2020/07/BullSequanaXH2000_Features_Atos_supercomputers.pdf
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For the purposes described in this manuscript, the development phase is performed
on the DEEP-EST cluster and the usage of the JUWELS cluster and booster is reserved for
large-scale production applications of the developed models.

2.2. Datasets

To validate the established platform, two separate datasets were used in order to train
a pre-built classification model. The first dataset is the open-source COVIDx dataset (https:
//github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md (accessed on 19
December 2022)), which was compiled by Wang et al. from a collection of open repositories
as listed in Table 2 [15]. At the time of preparing the data, the most current version was
COVIDx V8A. This dataset is subdivided into 3 main classes: Healthy, Non-COVID-19
Pneumonia, and COVID-19.

Table 2. COVIDx V8A dataset sources.

Title URL

Cohen https://github.com/ieee8023/covid-chestxray-dataset
Figure 1 https://github.com/agchung/Figure1-COVID-chestxray-dataset

Actualmed https://github.com/agchung/Actualmed-COVID-chestxray-dataset

Sirm https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/
version/3

RSNA https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

RICORD https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=702302
81

The second dataset was pre-compiled by industry partner EHL and made available
through file transfer protocol (FTP). The dataset is subdivided into training and testing sets,
each of which is further divided into different conditions including Healthy, Pneumonia,
COVID-19, Atelectasis, and Cardiomegaly, among others. Further details about the dataset
constitutions are presented in later sections of this manuscript, though it is worth men-
tioning that there was a considerable difference in the image resolutions between the two
datasets as can be seen in Figure 2. Additionally, Table 3 describes the class distribution of
images within each dataset.

Table 3. Number of images within each dataset.

Dataset Healthy Non-COVID-19
Pneumonia COVID-19

COVIDx 8066 5575 2358
EHL 1898 118 187

Fusion 9964 5693 2542

Finally, in order to increase the robustness of the model to be re-trained, the two
datasets were merged into a Fusion dataset, preserving the split structures shown in
Tables 4 and 5. The Fusion dataset represents the relatively heterogeneous data usually
received from different medical institutions in special circumstances [33]. The applicability
of the platform and its intended use on heterogeneous data represents one of the most
important advantages.

https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/version/3
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/version/3
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70230281
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70230281
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Figure 2. Range of image resolutions of the COVIDx (left) and EHL (right) datasets. A high
concentration of images in the COVIDx dataset is centered around 1000 × 1000 pixels, but the
majority of EHL images is below 480 × 480 pixels.

2.2.1. COVIDx Dataset

The process to obtain the COVIDx dataset is provided in detail as part of the COVID-
Net Github (https://github.com/lindawangg/COVID-Net (accessed on 19 December
2022)) repository as it was compiled by Wang et al. [15]. The dataset was loaded into the
online storage available at JSC and an analysis of the images was performed using the
Open-Source Computer Vision Library (OpenCV) python package in order to verify that
the dataset contains no duplicates or corruptions. The majority of the data provided in
the COVIDx dataset are in the portable network graphics (PNG) image format. Table 4
presents the train-test split of the COVIDx dataset.

Table 4. COVIDx V8A dataset training and testing split.

Set Healthy Non-COVID-19
Pneumonia COVID-19

Training 7966 (98.8%) 5475 (98.2%) 2158 (91.5%)
Testing 100 (1.2%) 100 (1.8%) 200 (8.5%)
Total 8066 5575 2358

2.2.2. EHL Dataset

The EHL dataset was made available through secure FTP and, similarly to the COVIDx
dataset, loaded onto the online storage at JSC. The dataset is subdivided into several pul-
monary and chest-related conditions, though for the purposes described in this manuscript
solely the images within the Healthy, Non-COVID-19 Pneumonia, and COVID-19 direc-
tories were used. The remainder of the data will be used in a future transfer learning
application of the available ML model.

After performing some verification steps on the data using OpenCV, it became evident
that some images were duplicates of those available in the COVIDx dataset, which was
traced back to the fact that one of the participating hospitals had made their data available
as part of the Cohen dataset. These images were removed and the resulting distribution
of data is presented in Table 5. The EHL dataset is made available as part of the Euro-
pean Open Science Cloud fast-track grant project and can be accessed online for research
purposes (https://b2share.fz-juelich.de/records/aef5d3b8aa044485b9620b95b60c47a2 (ac-
cessed on 19 December 2022)). Evaluation of the trained models was performed using only
the EHL dataset in order to verify these models’ ability to predict over the new data.

https://github.com/lindawangg/COVID-Net
https://b2share.fz-juelich.de/records/aef5d3b8aa044485b9620b95b60c47a2
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Table 5. E*HealthLine dataset training and testing split.

Set Healthy Non-COVID-19
Pneumonia COVID-19

Training 198 (10.4%) 21 (17.8%) 189 (65.4%)
Testing 1700 (89.6%) 97 (82.2%) 100 (34.6%)
Total 1898 118 289

2.3. COVID-Net Model

The COVID-Net deep learning model was developed and released by Wang et al. in
May of 2020 in response to the COVID-19 pandemic to screen patients for COVID-19 using
chest radiographs [15]. The model follows the current DL standard for image analysis of
using convolutional neural networks (CNNs) with intermittently varying kernel sizes, but
expands on it by employing the residual architecture that was introduced by He et al. in
their pioneering work on residual networks for object detection in images [34]. COVID-Net
was built using TensorFlow (https://www.tensorflow.org/ (accessed on 19 December
2022)) version 1.13.

The initial approach with COVID-Net within the scope of this project involved running
inference using the pre-trained model on both available datasets in order to highlight their
differences, before moving forward with the re-training attempts, which also served the
purpose of highlighting the potential speed-up that can be achieved using the available MSA.

2.3.1. Model Selection

The Git repository for COVID-Net lists a number of models each with varying input
image sizes and performance markers. At the time of performing this analysis, the best
performing model was labelled “COVIDNet-CXR4-A”, which scales input images to a reso-
lution of 480 × 480 pixels. Two other versions of the model exist that take inputs of lower
resolution (224 × 224 pixels) with the best performing among them being “COVIDNet-CXR
Large”. Both models are available for download from links in the repository.

Selecting the appropriate model for this application required an analysis of the resolu-
tions of the available images, and since the majority of the images within the EHL dataset
are below the threshold of 480 × 480 pixel resolution as can be seen in Figure 2, it became
evident that the “COVIDNet-CXR Large” model would perform best. This decision is fur-
ther supported by the initial inference results that will be presented below in Section 3, but
follows the logic that down-sampling image data produces far less noise than up-sampling,
which is more likely to generate artefacts by magnifying limited visual information.

2.3.2. Model Training

The repository for COVID-Net provides scripts and terminal commands for training
the network. These scripts define the training parameters (learning rate, number of epochs,
batch size, location of the pre-defined network weights) and the location of the datasets for
training and testing. Accordingly, the parameters are adapted to the updated datasets being
used in this application, and a range is defined over which the training will be parallelised.

Additionally, the training script is updated in order to introduce the possibility of
many concurrent parallelised training runs, thus making use of the available HPC resources.
The initial approach for parallelised training was through performing a grid-search of pre-
defined parameters to tune and iteratively populating a job-script that would then be
submitted to the HPC scheduler. Instead, hyperparameter tuning is implemented, as
described in the next subsection, which can streamline the parameter search and potentially
uncover hyperparameter combinations that would otherwise have been missed. Finally,
a set of parameters is selected to train the model with an increasing number of nodes,
using the Horovod (https://horovod.ai/ (accessed on 19 December 2022)) distributed DL
framework, in order to determine the extent to which training can be accelerated as more
resources are made available.

https://www.tensorflow.org/
https://horovod.ai/
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2.4. Hyperparameter Tuning

Hyperparameters are parameters which influence an algorithm’s behaviour. These
values are typically set by the user manually before the training of an algorithm. Choos-
ing an optimal set of hyperparameters can significantly improve the performance of a
model [35]. In order to easily find the best performing combination of parameters for
training the COVID-Net model on the new and the combined datasets, the hyperparameter
tuning library Tune, developed under the Ray framework, was employed [21,36]. This
tuner takes a model and selected tunable parameters as input and performs an optimisation
that highlights the combination of parameters that produces the best results according to a
selected metric. Due to compatibility issues related to the earlier version of TensorFlow
used in constructing COVID-Net, it was necessary to use version 0.6.2 of the Ray module.

The Ray framework employs schedulers that take advantage of parallel computing to
scale up and speed up the task at hand; of these schedulers, population-based training (PBT),
HyperBand, and Asynchronous HyperBand [37–39] are considered and compared to the
default first-in, first-out (FIFO) scheduler. The comparison was performed by running
the hyperparameter tuning process with each of the selected schedulers over the same
parameter search space. The best-performing scheduler was selected based on runtime
and the COVID-Net model’s performance when re-trained using the optimal parameter
combination that the tuning process output.

3. Results
3.1. Pre-Optimisation Analysis

Running inference with COVID-Net on the available images highlighted the differ-
ences between the two datasets. The network performance on COVIDx was in line with
the results published by the original authors. However, the images from EHL were more
likely to be misclassified. In fact, the results presented in Figure 3a highlight a bias towards
predicting COVID-19.

After re-training the network on a combination of the newly acquired images and the
original COVIDx dataset, the results achieved are presented in Figure 3b, where classifi-
cation accuracy is improved. In order to achieve these results, several training runs were
performed in parallel where the class weights (CWs) were adjusted, as well as the learning
rate (LR), the batch size, the COVID-19 percentages (CPs), and the number of training
epochs. Through these training runs the range of these parameters that are tuned on a
larger scale in the next step was narrowed down.

Figure 3. Prediction performance (in %) heatmaps for COVID-Net on the EHL dataset (a) before and
(b) after initial re-training.
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3.2. Hyperparameter Optimisation

The hyperparameter optimisation is performed on the DEEP-Extreme Scale Booster
(ESB) partition, with 20 trials taking up 1 node each (see hardware configuration listed in
Table 1). During these 20 trials the network is trained over 24 epochs, with each trial being
assigned a different combination of the tunable parameters, in this case the COVID-19
percentage, the class weights, and the learning rate. The parameter values are chosen
following a random uniform distribution in the case of the CWs and the CP, and a loga-
rithmic uniform distribution for the LR. The selected schedulers distribute the tasks on
the available nodes and in three of the four cases introduce further perturbations to the
hyperparameters halfway through the training process. The specific experimental setup is
further expanded in the below sections for each of the selected schedulers.

3.2.1. First-In First-Out

The default scheduling algorithm for the Ray library, first-in first-out (FIFO), performs
the basic scheduling task of distributing the trials over the available nodes and does not
update the tunable parameters during the training process. It is employed here as a
benchmark to gauge the performance of the other schedulers.

Running all the trials in parallel took a total of 402 min to complete, after which the best
performing combination of parameters was an LR of 0.00013, CWs of 1 for healthy, 1.38745
for pneumonia, and 6.1508 for COVID-19, and a CP value of 0.289. These parameters were
used to re-train COVID-Net over 50 epochs and the prediction performance of the model
re-trained using these parameters is highlighted in Figure 4a. The trained model in this
case is very capable of detecting COVID-19 infections in CXRs, but pneumonia cases are
almost always diagnosed as healthy.

Figure 4. Prediction performance heatmaps for COVID-Net on the EHL dataset after re-training on
the parameters chosen by (a) FIFO, (b) HyperBand, (c) Asynchronous HyperBand, and (d) PBT.
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3.2.2. HyperBand

The HyperBand scheduler is activated in this case halfway through the training
process, at which point it begins stopping tasks that underperform. The trials required a
total of 421 min to complete, at which point stopped trials were discarded while the best
performing trial was selected based on the overall accuracy, loss, and run time.

Interestingly, several of the trials that presented high accuracy at the end of tuning
did not perform well when trained, showing a complete bias towards predicting one of
the three conditions. The prediction performance of a model trained on the selected best
parameters of LR = 0.0006, CW = [1, 5.0312, 3.4151], and CP = 0.081 is presented as a
heatmap in Figure 4b. The trained model was unable to provide certain predictions when
exposed to the images from the test set even after training for 50 epochs. The highest overall
prediction accuracy is for healthy patients, but that is still at 80%.

3.2.3. Asynchronous HyperBand

Similarly to HyperBand, the Asynchronous HyperBand scheduler also implements
early stopping, but does so while taking advantage of the available parallel processing
power to distribute the tasks more efficiently.

Running the trials required a total of 422 min and the best performing model was
chosen as having LR = 0.00012, CW = [1, 4.0981, 3.0387], and CP = 0.187. The outputs from
the model trained on the best parameter combination from Asynchronous HyperBand are
presented in Figure 4c. In this case, the generated parameters resulted in a trained model
with improved results on the original re-trained COVID-Net presented in Figure 3b.

3.2.4. Population-Based Training

The PBT scheduler introduces perturbations to selected parameters at a set time during
the tuning process. This introduces an extra layer of randomness to the hyperparameter
tuning and potentially uncovers new combinations from the different trials running in
parallel. In this case PBT is tasked to begin perturbing the LR halfway through the total
training time.

The trials ran for a total of 419 min and from the results LR = 0.00024, CW = [1, 9.9599,
9.4996], and CP = 0.346 were selected to be used for re-training COVID-Net, the predictive
performance of which is presented in Figure 4d. Similarly to the results obtained in the
Asynchronous HyperBand trial, this model also presented an improved performance in
detecting pneumonia and COVID-19 cases although the “Healthy” prediction was reduced
to 84%.

Figure 5 compares the prediction performance of the original re-trained COVID-Net
model with that of models retrained using the best performing hyperparameters from the
tuning process with Asynchronous HyperBand and PBT.

Figure 5. Comparison of trained COVID-Net prediction performance before (a) and after hyperpa-
rameter tuning with Asynchronous HyperBand (b) and PBT (c).
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3.3. COVID-Net Re-Training

The Horovod framework was used to re-train the COVID-Net model based on pa-
rameters chosen from the previous results, while the resources available for training were
iteratively increased. The graph presented in Figure 6a shows the change in training
duration as more resources were made available.

Figure 6. Training duration (in minutes) as more GPU nodes are recruited, (a) on a linear scale and
(b) on a logarithmic scale.

The model trained significantly faster as the tasks were distributed among the increas-
ing number of worker nodes. The time required to train over 25 epochs was reduced from
207 min on 1 node, to 54 min on 32 nodes. However, the rate of reduction decreased with
resource increase as can be seen from the decreasing slope of Figure 6b. Ultimately, as the
resources were increased to 64 nodes, the model training became slower and both curves
switched to a positive slope, indicating that the cut-off point for speed-up had been reached.

4. Discussion

Through trial and error a set of parameters was selected to train the COVID-Net model
on the Fusion dataset and the results obtained are shown in Figure 3b. In reality, several
more parameters, including the batch size, the train-test split, the number of epochs, and
freezing or unfreezing some layers from COVID-Net could have been tuned by hand in
order to improve the results, but as the number of these parameters increases, so does the
complexity of the optimisation problem. The results show that the model can be improved
and highlight the fact that more effective tuning approaches are necessary.

Through four straightforward applications of a hyperparameter optimisation frame-
work, it was possible to improve the predictive performance of COVID-Net on new data.
The schedulers used for the optimisation took advantage of the available MSA and effi-
ciently distributed the work over the available resources. In doing so, the framework was
able to cover more ground and test more parameter combinations simultaneously in order
to close in on the parameters with which the model would train more effectively. This
process is not perfect, as can be seen from the results obtained from Hyperband, where the
best-performing parameter combination yielded a model that underperformed, or through
reducing the pneumonia class weights, the best performing parameters from the FIFO
scheduler resulted in a model that was extremely good at finding COVID-19 patients, but
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completely incapable of predicting pneumonia. However, these results give insight into
novel ways the parameters can be tuned and thus the model performance can be improved.

In the case of Asynchronous HyperBand and PBT, both resulting trained models
performed more consistently than the original re-trained COVID-Net, with predictions
trending towards true positives. The results also highlight the possibility of further im-
provement with longer training and further fine-tuning of the hyperparameters, both of
which are made possible through the scale-up of the GPU resources on the compute clusters.

The reduction in training duration observed in Figure 6a is not infinite; in fact, as more
nodes are recruited, the communication overhead between these nodes becomes more
complex and more time-consuming, resulting in the flattening of the curve and ultimately
the upward trend seen in Figure 6b. To counter this issue, it is important to understand the
problem at hand and to recruit the appropriate hardware and software accordingly, while
also performing many trials to pinpoint the cut-off at which training is the most efficient.

The work presented in this manuscript describes the large-scale re-training of COVID-
Net as a use case to validate a modular medical diagnosis support platform built on an
HPC infrastructure and taking advantage of novel and efficient ML algorithms. That is
not to say that this work would not be possible without the specific HPC infrastructure
used. In fact, the platform makes use of open-source software, making it easily portable
onto commercially available cloud computing (CC) solutions. Similarly, the main aim is to
develop the base infrastructure that takes advantage of the HPC resources to simplify the
development of software that is lightweight enough to be easily deployed in most standard
computers available in hospitals, making them a vital tool to support medical personnel.

Given that the medical field is regularly facing time-sensitive problems, this paper
highlights the need for platforms that simplify access to cutting-edge resources for model
training and development, and also for specially trained experts in the field of ML, data
science, and HPC for medical applications, who would advise on applications, assist in
setting up the problem solutions, and take part in the data analysis and the development of
the diagnostic and treatment techniques of the future.

Finally, since the prototype platform described in this manuscript only used open-
access data, there are no privacy risks and thus this issue was not addressed. As the
platform moves towards production, and especially before dealing with restricted real-
world data, its safety from outside threats will need to be assessed. Additionally, this
process is still in its infancy and much work still needs to be done in order to test the
robustness of this platform, and validate its performance in real-world use cases.

5. Conclusions

In the present manuscript, the re-training of a COVID-19 detection model was de-
scribed as a use case through which an HPC-enabled data analysis and ML platform was
validated. The MSA available at JSC, especially the scalable storage and computing re-
sources, made it possible (1) to validate the performance of the COVID-Net model on
the original COVIDx data as well as new data made available through research partners,
(2) to perform large-scale hyperparameter tuning, through which the optimal training
parameters for the model were uncovered, and (3) to re-train the model using the selected
parameters and highlight the improvement that was achieved. Furthermore, the research
also highlights the training speed-up that can be achieved using the platform.

The severity with which the COVID-19 pandemic struck worldwide, and research
showing that such global phenomena may become more frequent, highlight the need for
research platforms such as the one described in the present manuscript. These platforms
would make use of highly efficient computing, communication, and storage technology, as
well as open-source and interoperable software, and should be made available to assist the
healthcare sector in order to simplify and accelerate the development of medical diagnosis
support tools. This does not mean that medical institutions should be required to have
access to HPC resources, which would put hospitals at a severe disadvantage, not only
in developing countries. Rather, the models developed within these platforms ought to
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be more portable and easily implementable, while the communication channels between
research institutions and medical centres ought to be strengthened, paving the way for
effective medical and technological cooperation. Such platforms rely on the availability
of data and the willingness of medical institutions to participate in the research, both of
which are more likely to increase as the developed and validated models show beneficial
effects in the field.
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LR learning rate
ML machine learning
MPI message passing interface
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OpenCV Open-Source Computer Vision Library
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PNG portable network graphics
RT-PCR reverse-transcription polymerase chain-reaction
SLURM Simple Linux Utility for Resource Management
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References
1. French, G.; Hulse, M.; Nguyen, D.; Sobotka, K.; Webster, K.; Corman, J.; Aboagye-Nyame, B.; Dion, M.; Johnson, M.;

Zalinger, B.; et al. Impact of Hospital Strain on Excess Deaths During the COVID-19 Pandemic—United States, July 2020–July
2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1613–1616. [CrossRef] [PubMed]

2. Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn. 2020,
20, 453–454. [CrossRef]

3. Teymouri, M.; Mollazadeh, S.; Mortazavi, H.; Naderi Ghale-noie, Z.; Keyvani, V.; Aghababaei, F.; Hamblin, M.R.; Abbaszadeh-
Goudarzi, G.; Pourghadamyari, H.; Hashemian, S.M.R.; et al. Recent advances and challenges of RT-PCR tests for the diagnosis
of COVID-19. Pathol. Res. Pract. 2021, 221, 153443. [CrossRef]

4. Roshkovan, L.; Chatterjee, N.; Galperin-Aizenberg, M.; Gupta, N.; Shah, R.; Barbosa Jr, E.M.; Simpson, S.; Cook, T.; Nachiappan, A.;
Knollmann, F.; et al. The Role of Imaging in the Management of Suspected or Known COVID-19 Pneumonia. A Multidisciplinary
Perspective. Ann. Am. Thorac. Soc. 2020, 17, 1358–1365. [CrossRef]

5. Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing in
coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020, 296, E32–E40. [CrossRef]

6. Marani, M.; Katul, G.G.; Pan, W.K.; Parolari, A.J. Intensity and frequency of extreme novel epidemics. Proc. Natl. Acad. Sci. USA
2021, 118, e2105482118. [CrossRef]

7. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

8. Huddar, V.; Desiraju, B.K.; Rajan, V.; Bhattacharya, S.; Roy, S.; Reddy, C.K. Predicting Complications in Critical Care Using
Heterogeneous Clinical Data. IEEE Access 2016, 4, 7988–8001. [CrossRef]

9. Erlingsson, E.; Cavallaro, G.; Galonska, A.; Riedel, M.; Neukirchen, H. Modular supercomputing design supporting machine
learning applications. In Proceedings of the 2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0159–0163. [CrossRef]

10. Sun, H.; Liu, Z.; Wang, G.; Lian, W.; Ma, J. Intelligent Analysis of Medical Big Data Based on Deep Learning. IEEE Access 2019,
7, 142022–142037. [CrossRef]

11. Sedona, R.; Cavallaro, G.; Jitsev, J.; Strube, A.; Riedel, M.; Benediktsson, J. Remote Sensing Big Data Classification with High
Performance Distributed Deep Learning. Remote. Sens. 2019, 11, 3056. [CrossRef]

12. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

13. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al.
Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876.
[CrossRef] [PubMed]

14. Lugarà, M.; Tamburrini, S.; Coppola, M.G.; Oliva, G.; Fiorini, V.; Catalano, M.; Carbone, R.; Saturnino, P.P.; Rosano, N.;
Pesce, A.; et al. The Role of Lung Ultrasound in SARS-CoV-19 Pneumonia Management. Diagnostics 2022, 12, 1856. [CrossRef]
[PubMed]

15. Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases
from chest X-ray images. Sci. Rep. 2020, 10, 19549. [CrossRef]

16. Lee, C.P.; Lim, K.M. COVID-19 Diagnosis on Chest Radiographs with Enhanced Deep Neural Networks. Diagnostics 2022,
12, 1828. [CrossRef] [PubMed]

17. Song, Y.; Liu, J.; Liu, X.; Tang, J. COVID-19 Infection Segmentation and Severity Assessment Using a Self-Supervised Learning
Approach. Diagnostics 2022, 12, 1805. [CrossRef] [PubMed]

18. Elshennawy, N.M.; Ibrahim, D.M.; Sarhan, A.M.; Arafa, M. Deep-Risk: Deep Learning-Based Mortality Risk Predictive Models
for COVID-19. Diagnostics 2022, 12, 1847. [CrossRef] [PubMed]

19. Rajaraman, S.; Guo, P.; Xue, Z.; Antani, S.K. A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest
X-rays. Diagnostics 2022, 12, 1442. [CrossRef]

http://doi.org/10.15585/mmwr.mm7046a5
http://www.ncbi.nlm.nih.gov/pubmed/34793414
http://dx.doi.org/10.1080/14737159.2020.1757437
http://dx.doi.org/10.1016/j.prp.2021.153443
http://dx.doi.org/10.1513/AnnalsATS.202006-600FR
http://dx.doi.org/10.1148/radiol.2020200642
http://dx.doi.org/10.1073/pnas.2105482118
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/ACCESS.2016.2618775
http://dx.doi.org/10.23919/MIPRO.2018.8400031
http://dx.doi.org/10.1109/ACCESS.2019.2942937
http://dx.doi.org/10.3390/rs11243056
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1126/science.abj8754
http://www.ncbi.nlm.nih.gov/pubmed/34282049
http://dx.doi.org/10.3390/diagnostics12081856
http://www.ncbi.nlm.nih.gov/pubmed/36010207
http://dx.doi.org/10.1038/s41598-020-76550-z
http://dx.doi.org/10.3390/diagnostics12081828
http://www.ncbi.nlm.nih.gov/pubmed/36010179
http://dx.doi.org/10.3390/diagnostics12081805
http://www.ncbi.nlm.nih.gov/pubmed/35892518
http://dx.doi.org/10.3390/diagnostics12081847
http://www.ncbi.nlm.nih.gov/pubmed/36010198
http://dx.doi.org/10.3390/diagnostics12061442


Diagnostics 2023, 13, 391 15 of 15

20. Kesselheim, S.; Herten, A.; Krajsek, K.; Ebert, J.; Jitsev, J.; Cherti, M.; Langguth, M.; Gong, B.; Stadtler, S.; Mozaffari, A.; et al.
JUWELS Booster—A Supercomputer for Large-Scale AI Research. In Proceedings of the High Performance Computing; Jagode, H.,
Anzt, H., Ltaief, H., Luszczek, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 453–468.

21. Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M.I.; et al. Ray: A
Distributed Framework for Emerging AI Applications. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018; USENIX Association: Carlsbad, CA, USA, 2018;
pp. 561–577.

22. Nijor, S.; Rallis, G.; Lad, N.; Gokcen, E. Patient safety issues from information overload in electronic medical records. J. Patient
Saf. 2022, 18, e999–e1003. [CrossRef]

23. Manor-Shulman, O.; Beyene, J.; Frndova, H.; Parshuram, C.S. Quantifying the volume of documented clinical information in
critical illness. J. Crit. Care 2008, 23, 245–250. [CrossRef]

24. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019,
29, 102–127. [CrossRef]

25. Barakat, C.; Fritsch, S.; Riedel, M.; Brynjólfsson, S. An HPC-Driven Data Science Platform to Speed-up Time Series Data
Analysis of Patients with the Acute Respiratory Distress Syndrome. In Proceedings of the 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 24–28 May 2021; pp. 311–316. [CrossRef]

26. Barakat, C.; Fritsch, S.; Sharafutdinov, K.; Ingólfsson, G.; Schuppert, A.; Brynjólfsson, S.; Riedel, M. Lessons learned on using
High-Performance Computing and Data Science Methods towards understanding the Acute Respiratory Distress Syndrome
(ARDS). In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and Electronic
Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 368–373. [CrossRef]

27. Farag, H.H.; Said, L.A.A.; Rizk, M.R.M.; Ahmed, M.A.E. Hyperparameters optimization for ResNet and Xception in the purpose
of diagnosing COVID-19. J. Intell. Fuzzy Syst. 2021, 41, 3555–3571. [CrossRef]

28. Adedigba, A.P.; Adeshina, S.A.; Aina, O.E.; Aibinu, A.M. Optimal hyperparameter selection of deep learning models for
COVID-19 chest X-ray classification. Intell.-Based Med. 2021, 5, 100034. [CrossRef] [PubMed]

29. Arman, S.E.; Rahman, S.; Deowan, S.A. COVIDXception-Net: A Bayesian Optimization-Based Deep Learning Approach to
Diagnose COVID-19 from X-Ray Images. SN Comput. Sci. 2021, 3, 115. [CrossRef] [PubMed]

30. Suarez, E.; Eickert, N.; Lippert, T. Modular Supercomputing architecture: From idea to production. In Contemporary High
Performance Computing: From Petascale toward Exascale, 1st ed.; Vetter, J., Ed.; CRC Press: Boca Raton, FL, USA, 2019; Volume 3,
pp. 223–251.

31. Eicker, N.; Lippert, T.; Moschny, T.; Suarez, E.; The DEEP Project. The DEEP Project An alternative approach to heterogeneous
cluster-computing in the many-core era. Concurr. Comput. Pract. Exp. 2016, 28, 2394–2411. .: 10.1002/cpe.3562. [CrossRef]

32. Suarez, E.; Kreuzer, A.; Eicker, N.; Lippert, T. The DEEP-EST project. In Porting Applications to a Modular Supercomputer-
Experiences from the DEEP-EST Project; Schriften des Forschungszentrums Jülich IAS Series; Forschungszentrum Jülich GmbH
Zentralbibliothek, Verlag: Jülich, Germany, 2021; Volume 48, pp. 9–25.

33. Sharafutdinov, K.; Bhat, J.S.; Fritsch, S.J.; Nikulina, K.; Samadi, M.E.; Polzin, R.; Mayer, H.; Marx, G.; Bickenbach, J.; Schuppert, A.
Application of convex hull analysis for the evaluation of data heterogeneity between patient populations of different origin and
implications of hospital bias in downstream machine-learning-based data processing: A comparison of 4 critical-care patient
datasets. Front. Big Data 2022, 5, 603429. [CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
35. Luo, G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model.

Anal. Health Inform. Bioinform. 2016, 5, 1–16. [CrossRef]
36. Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J.E.; Stoica, I. Tune: A Research Platform for Distributed Model Selection

and Training. arXiv 2018, arXiv:1807.05118.
37. Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.;

Simonyan, K.; et al. Population Based Training of Neural Networks. arXiv 2017, arXiv:1711.09846. [CrossRef]
38. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparame-

ter Optimization. J. Mach. Learn. Res. 2018, 18, 1–52.
39. Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. A System for Massively Parallel

Hyperparameter Tuning. arXiv 2018, arXiv:1810.05934. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1097/PTS.0000000000001002
http://dx.doi.org/10.1016/j.jcrc.2007.06.003
http://dx.doi.org/10.1016/j.zemedi.2018.11.002
http://dx.doi.org/10.23919/MIPRO52101.2021.9596840
http://dx.doi.org/10.23919/MIPRO55190.2022.9803320
http://dx.doi.org/10.3233/JIFS-210925
http://dx.doi.org/10.1016/j.ibmed.2021.100034
http://www.ncbi.nlm.nih.gov/pubmed/33899036
http://dx.doi.org/10.1007/s42979-021-00980-3
http://www.ncbi.nlm.nih.gov/pubmed/34981040
http://dx.doi.org/10.1002/cpe.3562
http://dx.doi.org/10.3389/fdata.2022.603429
http://dx.doi.org/10.1007/s13721-016-0125-6
https://doi.org/10.48550/ARXIV.1711.09846
https://doi.org/10.48550/ARXIV.1810.05934

	Introduction
	Materials and Methods
	HPC Resources
	DEEP
	JUWELS

	Datasets
	COVIDx Dataset
	EHL Dataset

	COVID-Net Model
	Model Selection
	Model Training

	Hyperparameter Tuning

	Results
	Pre-Optimisation Analysis
	Hyperparameter Optimisation
	First-In First-Out
	HyperBand
	Asynchronous HyperBand
	Population-Based Training

	COVID-Net Re-Training

	Discussion
	Conclusions
	References

