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Abstract: White blood cells (WBCs) constitute an essential part of the human immune system. The
correct identification of WBC subtypes is critical in the diagnosis of leukemia, a kind of blood cancer
defined by the aberrant proliferation of malignant leukocytes in the bone marrow. The traditional
approach of classifying WBCs, which involves the visual analysis of blood smear images, is labor-
intensive and error-prone. Modern approaches based on deep convolutional neural networks provide
significant results for this type of image categorization, but have high processing and implementation
costs owing to very large feature sets. This paper presents an improved hybrid approach for efficient
WBC subtype classification. First, optimum deep features are extracted from enhanced and segmented
WBC images using transfer learning on pre-trained deep neural networks, i.e., DenseNet201 and
Darknet53. The serially fused feature vector is then filtered using an entropy-controlled marine
predator algorithm (ECMPA). This nature-inspired meta-heuristic optimization algorithm selects the
most dominant features while discarding the weak ones. The reduced feature vector is classified with
multiple baseline classifiers with various kernel settings. The proposed methodology is validated on
a public dataset of 5000 synthetic images that correspond to five different subtypes of WBCs. The
system achieves an overall average accuracy of 99.9% with more than 95% reduction in the size of the
feature vector. The feature selection algorithm also demonstrates better convergence performance
as compared to classical meta-heuristic algorithms. The proposed method also demonstrates a
comparable performance with several existing works on WBC classification.

Keywords: deep learning; nature-inspired feature selection; leukemia; CNN; white blood cell;
classification; medical imaging

1. Introduction

Blood is a crucial fluid in the human body that is essential for life. Human blood is
made up of plasma and blood cells. Plasma is the yellowish liquid component of blood
that is largely water and accounts for 55% of blood volume [1]. The blood also includes
proteins, carbohydrates, minerals, hormones, carbon dioxide, and blood cells. Red blood
cells (RBCs), white blood cells (WBCs), and platelets (thrombocytes) are the three different
types of cellular components found in the blood, each distinguished by their color, texture,
and appearance. RBCs, also known as erythrocytes, carry hemoglobin, an iron-containing
protein that aids in the delivery of oxygen from the lungs to the tissues. WBCs, also known
as leukocytes, are an essential component of the human immune system, assisting the
body in fighting infectious diseases and foreign substances [2,3]. Figure 1 demonstrates a
classification of WBCs on the basis of their structure. WBCs are primarily of two types, i.e.,
granulocytes and agranulocytes. The granulocytes have their origin in the bone marrow
and are present within the cytoplasm in the form of granules of protein. There are three
types of granulocyte cells, namely basophils, eosinophils, and neutrophils. Agranulocytes,
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which are defined as cells without granules in their cytoplasm, are further divided into
two types, i.e., lymphocytes and monocytes [4]. Each type of cell has a unique role in the
immune system of the body. For example, neutrophils act as scavengers that surround
and destroy bacteria and fungi present in the body. Eosinophils play a role in the general
immune and inflammatory responses of the body. An increased level of basophils results
in a blood disorder after an allergic reaction. Monocytes fight against infections, remove
dead or damaged tissues, and kill cancerous cells; lymphocytes combat bacteria, viruses,
and other cells that pose a threat to the body’s ability to function [5]. A detailed analysis of
WBCs is very important to assess the overall condition of the human immune system. In
particular, WBC analysis is crucial in the diagnosis of leukemia, a type of blood cancer that
occurs due to the excessive production of malignant WBCs in the bone marrow. Leukemia
diagnosis is performed by one of three main clinical tests, i.e., physical test, complete blood
count (CBC) test, and bone marrow test. The first step of CBC is to determine different
types of WBCs from the blood samples. This task is mainly performed by hematologists
through the visual examination of microscopic images of blood smears. This manual
method is labor-intensive, time-consuming, and prone to inaccuracy due to judgment
errors influenced by several external factors.
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defined as cells without granules in their cytoplasm, are further divided into lymphocytes and monocytes
[4]. Each type of cell has a unique role in the immune system of the body. For example, neutrophils act
as scavengers that surround and destroy bacteria and fungi present in the body. Eosinophils play a role in
the general immune and inflammatory responses of the body. An increased level of basophils results in a
blood disorder after an allergic reaction. Monocytes fight against infections, remove dead or damaged
tissues, and kill cancerous cells; lymphocytes combat bacteria, viruses, and other cells that pose a threat to
the body's ability to function [5]. Detailed analysis of WBCs is very important to assess the overall
condition of the human immune system. In particular, WBCs analysis is crucial in the diagnosis of
leukemia, a type of blood cancer that occurs due to the excessive production of malignant WBCs in the
bone marrow. Leukemia diagnosis is done by one of three main clinical tests, i.e., physical test, complete
blood count (CBC) test, and bone marrow test. The first step of CBC is to determine different types of
WBCs from the blood samples. This task is mainly performed by hematologists through the visual
examination of microscopic images of blood smears. This manual method is labor-intensive, time
consuming, and prone to inaccuracy because of judgment errors influenced by several external factors.

With the recent advancement in digital image processing technology, the automated classification of
WBCs using computer vision techniques has attracted significant research interest. However, due to
morphological overlap between different subclasses and their structural irregularities, machine learning
based classification and localization of WBCs is challenging. Deep learning with convolutional neural
networks (CNNs) is the most promising method for classification and detection tasks in the field of
contemporary medical imaging [6][7]. Despite the fact that CNNs perform best on large data sets, training
them takes a lot of data and computational power. The dataset is frequently small and might not be
sufficient to train a CNN from scratch. In such a case, transfer learning is frequently used to maximize
the effectiveness of CNNs while also decreasing the computational costs [8]. In this approach, the CNN is
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With the recent advancement in digital image processing technology, the automated
classification of WBCs using computer vision techniques has attracted significant research
interest. However, due to morphological overlap between different subclasses and their
structural irregularities, the machine learning-based classification and localization of WBCs
is challenging. Deep learning with convolutional neural networks (CNNs) is the most
promising method for classification and detection tasks in the field of contemporary medical
imaging [6,7]. Despite the fact that CNNs perform best on large datasets, training them
takes a lot of data and computational power. The dataset is frequently small and may not
be sufficient to train a CNN from scratch. In such a case, transfer learning is frequently
used to maximize the effectiveness of CNNs while also decreasing the computational
costs [8]. In this approach, the CNN is initially pre-trained on a large dataset consisting
of a diverse range of classes and then applied to a specific task [9]. There are various
pre-trained neural networks that have won international contests, including VGGNet [10],
Resnet [11], Darknet [12], Densenet [13], Mobilenet [14], Inception [15], Xception, [16]
etc. Through their capacity for self-learning, these models are able to extract a rich set of
features from images that contain substantial semantic information. This helps to achieve
a significant level of accuracy for a variety of image classification scenarios. In modern
deep learning applications, feature selection is a crucial step which reduces the difficulty
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of model learning by removing irrelevant or redundant features. The present research
is focused on achieving a high level of accuracy with a smaller feature set to reduce the
computation costs and memory requirements of expert systems.

The existing works on WBC classification are broadly classified into two categories,
i.e., (a) classical methods and (b) deep learning methods. The classical methods consist
of approaches which propose efficient preprocessing techniques to extract strong features
from WBC images and classify them using baseline classifiers. Some remarkable works
in this domain are discussed as follows. In [17], the authors proposed a method which
selects the eigenvectors from color images of blood cells based on the minimization of
similarities. The Bayesian classifier is then used to classify the eigen cells on the basis of
density and color information. In [18], Fuzzy C-means clustering is applied to separate
the nucleus and cytoplasm of leukocytes. Then, various geometric, color, and statistical
properties are extracted and classified by support vector machines (SVMs). In [19], an image
segmentation method is proposed based on mean-shift clustering and boundary removal
rules with a gradient vector flow. An ensemble of features is extracted from the segmented
nucleus and cytoplasm, which is then classified using a random forest algorithm. In [20],
the authors tested the performance of six different machine learning algorithms on 35
different geometric and statistical features. The multinomial logistic regression algorithm
outperformed other methods. A stepwise linear discriminant analysis method is proposed
in [21], which extracts specific features from blood structure images and classifies them
using reversion values such as partial F values. In [22], the authors presented a WBC
cancer detection method which combines various morphological, clustering, and image
pre-processing steps with random forest classifier. The suggested method uses a decision
tree learning method, which uses predictors at each node to make better decisions, in order
to categorize various types of cancer.

The second category of works is based on deep learning approaches for WBC clas-
sification. The works in this category primarily employ transfer learning of a pretrained
deep neural network for feature extraction or classification. Some important works are
discussed as follows. In [23], the authors proposed a deep learning method that uses
the DenseNet121 [13] model to classify WBC subtypes. The model is optimized with the
preprocessing techniques of normalization and data augmentation applied to a Kaggle
dataset. The work in [24] first applies a thresholding-based segmentation on the WBC
images. Feature extraction from segmented images is performed using VGG16 CNN [10]
model learning. The extracted feature vectors are classified using the K-nearest neighbor
(KNN) algorithm. In [25], the authors investigated generative adversarial networks (GANs)
for data augmentation and employed the DenseNet169 [13] network for WBC classification.
In [26], the authors applied Gaussian and median filtering before training the images using
multiple deep neural networks. The authors in [27] applied a you-only-look-once (YOLO)
algorithm for the detection of blood cells from a smear images. In [28], two techniques
are proposed for blood cell identification, namely single-shot multibox detector and an
incrementally improved version of YOLO.

Although modern approaches based on transfer learning on deep CNN models achieve
a decent level of accuracy for a variety of classification tasks, they all share the use of a
large number of features extracted from deep neural networks. This suffers from high com-
putational cost and memory requirements for practical deployment. In most biomedical
scenarios, many of these deep features are redundant or contain zeros. Effective dimen-
sionality reduction, or choosing only powerful, discriminant features, increases classifier
accuracy while decreasing computational time and expense. WBC classification using
deep feature selection is an emerging research area. Few works have reported population-
based meta-heuristics for deep feature selection. The authors of [29] have proposed a
leukemia detection system in which various features, such as color, texture, shape, and
hybrid features, are first extracted from WBC images and then an optimization algorithm
inspired by social spiders is used to select the most useful features. In [30], a leukemia
detection approach is proposed which combines deep feature extraction using VGGNet
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and a statistically enhanced salp swarm algorithm for feature selection. Furthermore, the
classification of reduced feature vectors was performed using a baseline classifier. The work
in [31] proposes a self-designed neural network named W-Net to classify five subtypes of
WBCs. The authors also generated a synthetic WBC dataset using a generative adversarial
network (GAN).

In this study, we have proposed a hybrid approach for WBCs classification. The
proposed approach first creates an ensemble of deep features extracted by applying transfer
learning of multiple deep CNNs on WBC images and then performs feature selection using
an entropy-controlled nature-inspired algorithm. The main contributions of this work can
be summarized in the following steps.

1. Using a synthetic, real-world, large-scale dataset of five WBC types, transfer learning
is performed using two deep CNNs, namely Darknet53 and Densenet201, followed
by their feature fusion;

2. For feature selection, a nature-inspired meta-heuristic named entropy-controlled
marine predators algorithm (ECMPA) is proposed. The proposed algorithm effectively
selects only the most dominant features;

3. The reduced feature set is classified using various baseline classifiers with multiple
kernel settings;

4. The proposed feature selection algorithm demonstrates a high accuracy with signifi-
cant reduction in feature size. The algorithm also achieves a better convergence rate
as compared to classical population-based selection methods.

The main focus of our manuscript is to present a novel method of deep-feature selection
using an entropy-controlled population-based algorithm and show its effectiveness in the
domain of WBCs classification for leukemia detection. Since the definition of appropriate
image features is a very difficult task due to the morphological similarity of images and
subject variability, WBC classification is a pertinent design case for such an approach. The
rest of this paper is organized as follows. Section 2 discusses all steps of the proposed WBC
classification pipeline, Section 3 presents the results and analysis, and Section 4 concludes
the paper.

2. Materials and Methods

This section provides a description of all steps of the proposed WBC classification
system which are discussed in the following subsections.

2.1. Dataset Description

This work uses the public dataset in [31], which was generated synthetically from a
real-world dataset [32] of five sub-types of WBC images, namely neutrophil, eosinophil,
basophil, lymphocyte, and monocyte. The synthetic dataset was generated with the help
of a deep convolutional generative adversarial network (DCGAN) trained on the original
real-world dataset [32] of blood smear images, captured by a Sysmex DI-69 machine
and provided by the Catholic University of Korea. The synthetic dataset is composed
of 5000 images each of size (128× 128× 3), with 1000 images belonging for each class.
Figure 2 shows samples belonging to all classes of the dataset of [32] used in this work.

2.2. WBCs Classification Pipeline

Figure 3 shows the proposed WBCs classification pipeline, whose main computation
steps are discussed as follows.

2.2.1. Preprocessing

Image contrast enhancement is a fundamental pre-processing step of many digital
image-processing applications. In this work, the input image enhancement is performed
with the help of color histogram equalization. The classical method of histogram equal-
ization is applied to grayscale images and performs as redistribution of their intensity.
In case of color images, performing histogram equalization on R, G, and B components



Diagnostics 2023, 13, 352 5 of 18

independently will not necessarily enhance the image. Color histogram equalization can
be achieved by converting a color image into a HSV/HSI image and enhancing the inten-
sity while preserving hue and saturation components. The main steps of color histogram
equalization are as follows.

• Convert the RGB image into HSI image;
• Obtain the intensity matrix from the HSI image matrix;
• Perform histogram equalization on the intensity matrix;
• Replace the intensity matrix of the HSI image with the histogram-equalized intensity

matrix;
• Convert HSI image back to RGB image.

CMC, 202x, vol.xx, no.xxxxxx
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2.2.2. Feature Extraction Using Transfer Learning

The pre-processed image dataset is now subjected to the feature extraction using the
transfer learning step. In this work, we performed transfer learning on two well-known
deep CNNs, namely DarkNet53 and DenseNet201, which are discussed as follows.

DarkNet53 is a convolutional neural network proposed as a feature extractor in
YOLO3 image detection workflow [12]. It is pretrained on more than a million images from
ImageNet database [33]. The pretrained network is able to classify up to 1000 categories of
image objects. Details about the various layers in the DarkNet CNN architecture are shown
in Table 1. The network has an input layer with a size of 256× 256× 3 and is primarily made
up of convolution layers with sizes of 1× 1 and 3× 3, totaling 53 layers, including the final
fully connected layer but excluding the residual layer. Each convolutional layer is composed
of a Conv2d layer followed by a batch normalization (BN) [34] and LeakyReLU [11] layer.
The residual layer is added to solve the gradient disappearance or gradient explosion
problems in the network [12]. In Darknet53, a significant reduction in parameters is
achieved as compared to its previous version, i.e., Darknet19.

Table 1. DarkNet53 layer architecture.

Layer Type Filters Filter Size Stride Size Repeat Output Size

Input - - - - 224× 256

Convolutional 32 3× 3 1 1 256× 256

Convolutional 64 3× 3 2 1 128× 128

Convolutional 32 1× 1 1
1Convolutional 64 3× 3 1

Residual 128× 128

Convolutional 128 3× 3 2 1 64× 64

Convolutional 64 1× 1 1
2Convolutional 128 3× 3 1

Residual 64× 64

Convolutional 256 3× 3 2 1 32× 32

Convolutional 128 1× 1 1
8Convolutional 256 3× 3 1

Residual 32× 32

Convolutional 512 3× 3 2 1 16× 16

Convolutional 256 1× 1 1
8Convolutional 512 3× 3 1

Residual 16× 16

Convolutional 1024 3× 3 2 1 8× 8

Convolutional 512 1× 1 1
4Convolutional 1024 3× 3 1

Residual 8× 8

GlobalAvgPool

Fully Connected 1000

Softmax

In order to perform transfer learning of Darknet53, the last learnable layer of Darknet53,
i.e., “Conv5”, is replaced with a new fully connected layer with the number of outputs equal
to the number of classes in our WBCs dataset (5 classes). A new softmax layer is created
and replaced with the original softmax layer of the network. Similarly, the classification
layer of the network is replaced with a new classification layer without class labels. To
perform the network training, first the dataset images are resized to 256× 256× 3 using the
nearest neighbor interpolation method, followed by image augmentation which performs
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random rotation of images in the range of [0, 360] degrees and scaling with a factor in the
range of [0.5, 1]. The deep features are extracted from the “GlobalAvgPool” layer. The
DarkNet53 returns a deep feature vector of size 1024 per image.

DenseNet201. This deep convolutional neural network is 201 layers deep [13]. It is
also pre-trained on Imagenet [33] dataset. DenseNet is designed to overcome the vanishing
gradient problem in high-level neural networks. In DenseNet, each layer receives new
inputs from all preceding levels and passes on its own feature maps to all following layers.
Concatenation is utilized. Each layer receives “collective knowledge” from all preceding
levels. This results in a thinner and compact network that achieves a high computational
efficiency and memory saving. Table 2 shows the layer details of DenseNet201.

Table 2. DenseNet201 layer architecture.

Layer Type Composition Repeat OutSize

Input – – 224× 224

Convolution Conv(7× 7), stride 2 112× 112

MaxPool (3× 3), stride 2 56× 56

Dense Block 1 Conv(1× 1) 6Conv(3× 3 ) 56× 56

Transition Layer 1 Conv(1× 1) 1 56× 56
Avg Pool(2× 2), Stride 2 28× 28

Dense Block 2 Conv(1× 1) 12Conv(3× 3 ) 28× 28

Transition Layer 2 Conv(1× 1) 1 28× 28
Avg Pool(2× 2), Stride 2 14× 14

Dense Block 3 Conv(1× 1) 48Conv(3× 3 ) 14× 14

Transition Layer 3 Conv(1× 1) 1 14× 14
Avg Pool(2× 2), Stride 2 7× 7

Dense Block 4 Conv(1× 1) 32Conv(3× 3 ) 7× 7

Classification Layer 7× 7 Global Avg. Pool
1000D fully Connected, softmax 1× 1

In order to perform transfer learning using DenseNet201, the last learnable layer of
the network, i.e., “fc1000” is replaced with a new fully connected layer with 5 classes
of the WBCs dataset used in this work. A new softmax layer is created and replaced
with the original softmax layer of the network. Similarly, the classification layer of the
network is replaced with a new classification layer without class labels. The dataset images
are first resized to 224× 224 and augmented in a way similar to DarkNet53. From the
trained network, the deep features are extracted from the global average pooling layer.
DenseNet201 returns a deep feature vector of size 1920 per image. There was no layer
freezing carried out during the training process. As a result, the highest possible numbers
of trainable parameters, i.e., 18.1 million for DenseNet201 and 41.6 million for DarkNet53,
were considered.

2.2.3. Feature Fusion

The deep features extracted from both the Darknet53 and Densenet201 networks
discussed above are concatenated together to form a fused feature vector. Let X and Y
be the feature vectors of Darknet53 and Densenet201, respectively, and the fused feature
vector Z is given as

Z = [XY]
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The total size of fused feature vector Z is 2944 features per image.

2.2.4. Feature Selection Using Marine Predators Algorithm

Feature selection is an important step which significantly alleviates the curse of di-
mensionality by reducing the size of the feature vector, selecting only relevant features.
The classical feature selection methods based on search algorithms such as complete and
sequential search suffer from high computational cost. Population-based meta-heuristic
algorithms have been demonstrated as an effective way to solve complex optimization
problems [35,36].

The marine predators algorithm (MPA) is a meta-heuristic algorithm that draws
inspiration from nature and models the foraging behavior of marine predators (MPs)
to find their prey [37]. In the aquatic environment, both the prey and the predator are
looking for food at the same time. Position updates for the predator and prey are based
on Brownian or Lévy movement, depending on the relative velocities of the two. The goal
of MPA, like other swarm optimization techniques, is to choose the best solution (elite)
from the population of predators. The MP with the strongest foraging capacity is called
elite predator. The MPA is based on the observation that MPs move in Lévy patterns when
there are few prey items present and in Brownian patterns when there are many prey items
present. Additionally, predators alter their behavior and move to areas with different prey
concentrations in the presence of environmental effects. As a result, there are three phases
to the position updates in MPA optimization based on the relative velocities of predator
and prey: low velocity ratio, unit velocity ratio, and high velocity ratio. The velocity ratio
vs. is defined as the ratio between the velocity of prey and predator.

1. In low velocity ratio (v <= 0.1), the most suitable movement strategy for the MP is
Lévy, whereas the prey moves in Brownian or Lévy movement;

2. In unit velocity ratio (v <= 1), if the prey moves in Lévy, the most suitable movement
for MP is Brownian;

3. In high velocity ratio (v > 1), the best strategy for a predator is not moving at all. In
this case, either prey is moving Brownian or Lévy.

Standard MPA Methodology. The standard MPA is an iterative, population-based
optimization algorithm. The first step is to generate an initial population of solutions. The
population matrix of size n× d is generated as follows:

P =


X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d

...
...

...
...

Xn,1 Xn,2 · · · Xn,d

 (1)

where n is the size of population, i.e., number of search agents (each predator and prey are
searching for food and can be considered as a search agent), and d is the dimension (no. of
variables) of each agent. Each variable of initial solution is uniformly distributed over the
search space computed as

Xi = lb + rand× (ub − lb) (2)

where lb denotes the lower bound, ub denotes the upper bound, and rand is a uniformly
distributed random number from the interval [0, 1]. Based on the concept of survival of the
fittest, the top predators have the best foraging capabilities. Therefore, the fittest solution is
nominated as the best predator and used to construct a matrix called Elite. In an iteration I,
the Elite matrix is constructed as

Elite =


X I

1,1 X I
1,2 · · · X I

1,d
X I

2,1 X I
2,2 · · · X I

2,d
...

...
...

...
X I

n,1 X I
n,2 · · · X I

n,d

 =


X
X
...
X

 (3)
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where X is the top predator vector which is replicated n times to construct the Elite matrix.
At the end of each iteration, the Elite matrix will be updated if the fittest predator of a
population is replaced by another better predator. Another matrix named Prey is generated
with the same dimensions as Elite. The Prey matrix is computed as

Prey =


X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d

...
...

...
...

Xn,1 Xn,2 · · · Xn,d

 (4)

where Xi,j denotes the j-th dimension of i-th prey. During first iteration, the Prey matrix is
equal to randomly generated population matrix P. In all subsequent iterations, the Prey is
updated and its values are used to compute the Elite matrix. The update of the Prey matrix
is carried separately in three phases of MPA optimization. These phases include:

Phase 1: This phase corresponds to the high velocity ratio and happens in the first
( 1

3 )
rd of maximum iterations of algorithm where exploration is more significant. The update

rule of this phase is given as:

Stepsizei = RB
⊗

(Elitei − RB
⊗

Preyi), ∀i = 1, · · · , n (5)

Preyi = Preyi + P.R
⊗

Stepsizei, ∀i = 1, · · · , n (6)

where Preyi is a vector of Prey matrix, RB and R are vectors of dimensions d containing
random numbers from Normal and Uniform distribution, respectively, P is constant value
equal to 0.5, and

⊗
shows element-wise multiplication.

Phase 2: This phase corresponds to unit velocity ratio when predator and prey are
moving at the same pace. This is the phase which occurs for intermediate ( 1

3 )
rd of iterations,

where exploration and exploitation matters. The update rules for this phase are given as
follows:

Stepsizei = RL
⊗

(Elitei − RL
⊗

Preyi), ∀i = 1, · · · ,
n
2

(7)

Preyi = Preyi + PR
⊗

Stepsizei, ∀i = 1 · · · ,
n
2

(8)

Stepsizei = RB
⊗

(Elitei − RB
⊗

Preyi), ∀i =
n
2
+ 1, · · · , n (9)

Preyi = Elitei + P.CF
⊗

Stepsizei, ∀i =
n
2
+ 1 · · · , n (10)

(11)

where RL is vector of size d containing random numbers based on Lévy distribution,

CF = (1 − I
IMax

)
(2 I

IMax
) is an adaptive parameter to control the step size for predator

movement, I is the current iteration, and IMax is the maximum number of iterations.
Phase 3: This phase corresponds to low velocity ratio when predator is moving faster

than prey. This scenario happens in the last ( 1
3 )

rd iterations of the optimization phase where
exploitation matters. The update rules for this phase are given as follows:

Stepsizei = RL
⊗

(Elitei − Preyi), ∀i = 1, · · · , n (12)

Preyi = Elitei + P.CF
⊗

Stepsizei, ∀i = 1 · · · , n (13)

The next step is to model the behavioral change in MPs as a result of environmental
effects. These effects are known as fish aggregating devices (FADs). The FADs are known
as local optima; therefore, the prey and predators must perform longer jumps during
simulation to avoid stagnation in local optima. The update of Prey matrix considering the
FAD effect is mathematically represented as follows:
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Preyi =

{
Preyi + CF[Xmin + R

⊗
(Xmax − Xmin)]

⊗
U r ≤ FADs

Preyi + [FADs(1− r) + r](Preyr1 − Preyr2) r > FADs)

}
(14)

where FADs = 0.2 is the probability of occurrence of FAD effects, U is a randomly generated
binary vector, r is the uniform number in [0, 1], Xmax and Xmin are the vectors containing
lower and upper bounds of dimensions, respectively, and r1, r2 are the random indices of
the Prey matrix.

After the Prey matrix is updated using Equations (6)–(13), and incorporating the FAD
effects of Equation (14), this matrix is evaluated for fitness function. The fitness of each
solution of current iteration is compared to its equivalent solution in prior iteration. If
the current solution is more fitted, it replaces the previous one. In the next iteration, the
best solution of Prey is used to generate the Elite matrix and update the Prey matrix using
Equations (6)–(13).

2.2.5. Entropy-Controlled MPA for Feature Selection

In this work, we proposed a multi-level feature selection algorithm named entropy-
controlled marine predators algorithm (ECMPA). The proposed technique is based on two
stages of feature selection, the first of which corresponds to feature reduction based on the
entropy of the fused feature vector, followed by additional feature reduction based on the
MPA. The main computational steps of ECMPA are discussed in Algorithm 1.

Notations: In Algorithm 1, matrices and vectors are represented as double struck
characters (e.g., F) and scalars are represented as normal letters.

The algorithm receives as inputs the fused feature matrix F, the label vector L, the
entropy-controlled feature reduction parameter ec, the maximum number of iterations
IMax, and the population size N. Other constant parameters specific to MPA are upper
bound ub, lower bound lb, threshold t, constant P, Levy coefficient β, and fish aggregating
devices effect FADS. The matrix F is of dimensions nt × D, where nt is the number of
training images and D is the number of features extracted from the feature fusion step.
The first level of feature extraction, i.e., entropy-based, is performed by steps 4–7. Step
4 computes the entropy of each column of F and returns a vector E of size 1× D. Step
5 sorts E in descending order, thus returning the sorted vector E2 along with indices
stored in I. Step 6 extracts the indices of the first ec percentage of features with maximum
entropy. Step 7 extracts features in these indices from F and stores them in F2. The task for
generating initial population matrix P using Equation (1) is performed in Steps 11–15. Step
13 corresponds to Equation (2), where rand() computes a random number from uniform
distribution from interval [0, 1]. In Steps 19–26, the fitness function of each individual
of P is computed using CostFunction and stored in fitness vector Fit. The best fitness is
stored in f itg and best individual is stored in xgb. The Elite matrix E is computed in Step
28, by performing the Repeat function which concatenates N copies of xgb along the first
dimension (i.e., column-wise). Steps 31–37 perform update of Prey matrix P according
to Phase 1 (Equations (5) and (6)). In Step 32, the function randn(1, D) returns a vector
of size 1 × D, containing random numbers from Normal distribution. The Phase 2 of
MPA according to update rules of Equations (7)–(11) is performed by Steps 39–57. In
Step 43, Levy(β, D) generates a vector of size D containing random numbers from Lévy
Distribution. Steps 59-66 perform the P matrix update according to Equations (12) and (13)
of Phase 3. In Steps 68–83, the FAD effects are added to the Prey according to update rules
of Equation (14). In each iteration, Steps 85–92 correspond to the memory-saving step
where the updated Prey matrix P is evaluated for CostFunction and best individual of Xgb
is obtained. Steps 95–97 correspond to the output step where SF, i.e., a binary vector of size
D is obtained. The indices of non-zero entries of SF correspond to the indices of selected
features of the fused feature vector.

In Steps 100–115 the execution of CostFunction is demonstrated, which performs the
computation of fitness value of each individual solution. The function accepts as inputs
the entropy-reduced feature vector F2, the label vector L, and a binary vector a computed
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by comparing the entries of ith solution of P with the threshold t. The Step 104 extracts all
the features of F2 whose indices correspond to non-zero values of a, and then the function
partition splits the feature matrix F2 and label vector L into training feature set Ftrain,
testing feature set Ftest, training label set Ltrain, and testing label set Ltest with a splitting
ratio ho. In the subsequent steps of the function, model training and prediction is performed
using KNN classifier and fitness value (cost) is computed using the classification error
metric. An individual with a smaller cost value is the fitter individual.

Algorithm 1 ECMPA for feature selection.

1: Inputs: F,L, ec , IMax , N
2: Parameters: lb = 0, ub = 1, t = 0.5, β = 1.5, P = 0.5,

FADS = 0.2
3: Level1: Entropy Based Feature Selection
4: E← entropy(F)
5: [I,E2]← sort(E)
6: I2 ← select(I, ec)
7: F2 ← F(:, I2)
8: Level2: MPA
9: D ← size(F2, 2)

10: Generate Initial Population
11: for i = 1 : N do
12: for j = 1 : D do
13: P(i, j)← lb + rand()(ub − lb)
14: end for
15: end for
16: while I < IMax do
17: f itg ← ∞
18: Compute the fitness and Elite Solution
19: for I = 1 : N do
20: a← (P(i, :) > t)
21: Fit(i)← CostFunction(F2,L,a)
22: if Fit(i) < f itg then
23: f itg ← Fit(i)
24: xgb ← P(i, :)
25: end if
26: end for
27: Generate Elite Matrix
28: E← Repeat(xgb , N, 1)
29: Phase 1
30: if I < IMax

3 then
31: for i = 1 : N do
32: RB ← randn(1, D)
33: for d = 1 : D do
34: step← RB(d).(E(i, d)−RB(d).P(i, d))
35: P(i, d) = P(i, d) + P.rand().step
36: end for
37: end for
38: Phase2
39: else if IMax

3 < I < 2
3 IMax then

40: CF = (1− I
IMax

)
2I

IMax

41: for i = 1 : N do
42: if i ≤ N

2 then
43: RL ← Levy(β, D)
44: RB ← randn(1, D)
45: for d = 1 : D do
46: step← RL(d).(E( i, d)−RL(d).P(i, d))
47: P(i, d) = P(i, d) + P.rand().step
48: end for
49: else
50: RB ← randn(1, D)
51: for d = 1 : D do
52: step← RB(d).(RB(d).Ei(i, d)− P(i, d))
53: P(i, d)← E(i, d) + P.CF .step
54: end for
55: end if
56: end for
57: Phase3
58: else if I > 2

3 IMax then

59: for i = 1 : N do
60: RL ← Levy(β, D)
61: for d = 1 : D do
62: step← RL(d).(RL(d).Ei(i, d)− P(i, d))
63: P(i, d)← E(i, d) + P.CF .step
64: end for
65: end for
66: end if
67: FADs Effect
68: r ← randn()
69: if r <= FADS then
70: for i = 1 : N do
71: : U ← (randn(1, D) < FADS)
72: for d = 1 : D do
73: P(i, d) ← P(i, d) + CF(lb + rand().(ub −

lb).U(d)
74: end for
75: end for
76: else
77: for i = 1 : N do
78: for d = 1 : D do
79: P1 = P(randn(), :),P2 = P(randn(), :),
80: P(i, d)← P(i, d) + [FADS(1− r) + r](P1 − P2)
81: end for
82: end for
83: end if
84: Memory Saving
85: for i = 1 : N do
86: a← (P(i, :) > t)
87: Fit(i)← CostFunction(F2,L,a)
88: if Fit(i) < f itg then
89: f itg ← Fit(i)
90: xgb ← P(i, :)
91: end if
92: end for
93: end while
94: Compute the Index of Best Features
95: I← 1 : D
96: SF ← I((Xgb > t) == 1)
97: OUTPUT: SF
98: ——————————————————————————-

99: Function: CostFunction
100: Inputs:F2,L,a
101: Parameters: α1 = 0.99, α2 = 0.01, k = 5, ho = 0.2
102: if (sum(a == 1) == 0 then
103: cost = 1
104: else
105: F2 ← F2(:,a == 1)
106: Ftrain ,Ltrain ,Ftest ,Ltest ← partition(F2,L, ho)
107: a2 ← (a == 1)
108: Model ← trainKNN(Ftrain ,Ltrain , k)
109: Lpred ← predict(Model,Ftest)

110: acc← sum(Lpred == Ltest)/length(Ltest)

111: err ← 1− acc
112: fs ← sum(a == 1)
113: ft ← length(a)
114: cost← α1 × err + α2 × ( fs

ft
)

115: end if
116: OUTPUT: cost

2.2.6. Classification

The indices of the reduced feature set extracted from the ECMPA step discussed above
are used to perform training and validation using baseline classifiers with multiple feature



Diagnostics 2023, 13, 352 12 of 18

settings. In this work, we used KNN [38] and SVM [39] classifiers with multiple kernel
settings.

3. Results and Discussion

The proposed system was implemented in Matlab 2021 on Windows 10 64-bit using
a Core i5, 2.5 GHz CPU, and 8 GB of RAM. The dataset of 5000 thousand images was
split into training and testing with an 80% splitting ratio in order to perform transfer
learning using DenseNet201 and DarkNet53 deep models. Table 3 demonstrates the main
model training parameters for deep transfer learning. For both networks, a significant level
of training and validation accuracy was achieved with five epochs. Figure 4 shows the
accuracy and loss function plots for DenseNet201. In order to extract the indices of the
most dominant features, the fused feature vector of size 2944 features was then subjected to
feature reduction using ECMPA. The reduced set of features is then used to train the KNN
and SVM classifiers with multiple kernel settings. In order to perform the classification task,
testing images are applied to the trained deep models and a fused feature vector is obtained.
The reduced feature vector is generated by using the indices obtained by the ECMPA. This
is then classified using the trained KNN and SVM classifiers. Figure 5 demonstrates a set of
reduced features extracted from the ECMPA step. Figure 6 demonstrates the results of the
proposed WBCs classification system with various kernels of SVM and KNN classifiers. The
SVM classifier achieves a 99.9% accuracy with a reduced feature set consisting of 70 strong
features. The confusion matrix of SVM with the quadratic kernel is also demonstrated.
The high value of true positive rate (TPR) and low value of false negative rate (FNR) are
achieved for all image classes.

Table 3. Model training parameters for transfer learning of DenseNet201 and DarkNet53 models.

Property Value Property Value

Kernel sdgm Initial Learning Rate 1× 10−4

Execution Environment Auto MiniBatch Size 20

MaxEpochs 5 Validation Frequency 30

Dropout rate 0.1 Stride Size 1

Figure 4. Training accuracy and loss function plots for DenseNet201 network.
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Table 3: Model training parameters for transfer learning of  DenseNet201 and DarkNet53 models

Parameter Value Parameter Value

Kernel sdgm Initial Learning Rate 1e-4

Execution
Environment

Auto MiniBatch size 20

MaxEpochs 5 Validation Frequency 30

The reduced set of features are then used to train the KNN and SVM classifiers with multiple kernel
settings. In order to perform the classification task, testing images are applied to the trained deep models
and a fused feature vector is obtained. The reduced feature vector is generated by using the indexes
obtained by the ECMPA. This is then classified using the trained KNN and SVM classifiers. Figure 4
demonstrates a set of reduced features extracted from the ECMPA step.

Figure 4: Extracted deep features from proposed ECMPA

Figure 5 demonstrates the results of the proposed WBCs classification system with various kernels of
SVM and KNN classifiers. The SVM classifier achieves a 99.9% accuracy with 70 features. The
confusion matrix of SVM with the quadratic kernel is also demonstrated. The high value of true positive
rate (TPR) and low value of false negative rate (FNR) are achieved for all image classes.

Figure 5. Extracted deep features from proposed ECMPA.

Figure 6. Classification results of proposed WBCs classification system. Left: Test accuracy
achieved by SVM and KNN classifiers with several kernels. Right: Confusion matrix of SVM
with quadratic kernel.

In Figure 7, the convergence of the proposed ECMPA is compared with a classi-
cal population-based meta-heuristic algorithm, i.e., genetic algorithm (GA). The graph
demonstrates that ECMPA achieves a better value of cost function with a smaller number
of iterations.

Table 4 shows an accuracy comparison of the proposed approach with some recent
works on WBC classification using deep learning networks that use similar datasets. The
proposed method shows a comparable or even better accuracy performance with a smaller
number of features as compared to other works. This demonstrates the validity of the
proposed approach.
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Figure 5: Classification results of proposed WBCs classification system
In Figure 6, the convergence of proposed ECMPA is compared with classical population based

metaheuristic i.e. Genetic Algorithm (GA). The graph demonstrates that ECMPA achieves a better value
of cost function with a smaller number of iterations.

Figure 6: Convergence performance of ECMPA and GA

5. Conclusions

WBCs classification is a vital step in the correct diagnosis of Leukemia. The existing manual methods of

Figure 7. Convergence performance of ECMPA and GA.

Table 4. Performance Comparison of proposed method with some existing works. ×: Not done, N.A:
Information not available.

Work
Deep

Learning
Model

Feature
Selection

Feature Vector
Size Classifier Accuracy %

[40] GoogleNet,
ResNet-50

Maximal
Information
Coefficient,

Ridge
Regression

Model

755
Quadratic

Discriminant
Analysis

97.95

[41] AlexNet × 1000 CNN 98.4

[42]

PatternNet
fused

ensemble of
CNNs

× N.A CNN 99.90

[43] ResNet and
Inception

Hierarchical
Approach N.A ResNet and

Inception 99.84

This Work
DenseNet201

and
DartkNet53

ECMPA 76 SVM and
KNN 99.6

Statistical Significance

Obtaining a certain level of confidence in the proposed strategy is the main goal of
this statistical investigation. We use the analysis of variance (ANOVA) [44] to compare the
means of several distributions in order to determine whether the results are statistically
significant. We consider classification accuracy as a performance characteristic for our
proposed framework. In order to implement ANOVA, we performed a series of tests to
validate the assumption of normality using the Shapiro–Wilk test [45], and homogeneity
of variance using the Bartlett’s test [44]. In these testing procedures, we used 1% level of
significance (i.e., α = 0.01). The means of classification accuracy values for the selected
classifiers, i.e., SVM, KNN, and NNN, as µ1, µ2, and µ3, respectively. For each of the tests
mentioned above, the null hypotheses are considered true if the computed Shapiro–Wilk p-
values are less than or equal to α; otherwise, the alternative hypotheses are affirmed as true.
The p-values of SVM, KNN, and NNN classifiers are obtained as p1 = 0.784, p2 = 0.7124,
and p3 = 0.7031, respectively. The Chi-squared probability from the Bartlett’s test is
pch = 0.85. From these p-values, we fail to renounce the null hypotheses and confidently
claim that our accuracy data are normally distributed with homogeneous variances.

Table 5 presents the statistical results obtained from the ANOVA test including the
sum of squared deviation (SS), degree of freedom (df), F-statistics, mean squared error
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(MSE), and p-value. The obtained p-value is 0.705, which is greater than α and leads to the
conclusion that the means of three classifiers are identical.

Table 5. Statistical test results based on ANOVA using accuracy metric.

V-Source SS df MSE F-Statistics p-Value

Between 7.0812 × 10−5 2 3.6333 × 10−5 0.37 0.705
Within 5.9123 × 10−4 6 9.8222 × 10−5 - -
Total 6.6232 × 10−4 8 - - -

Figure 8 shows the confidence interval plots of accuracy values of the three selected
classifiers. In the figure, red bars present the average accuracy, whereas the black bars
present the 99% confidence limits of each classifier. In addition, the blue bars show lower
and upper quantile points obtained by performing the above-mentioned statistical tests.
From the figure, we can observe that the SVM classifier achieves a higher average accuracy
with relatively smaller confidence interval size as compared to other classifiers. The quantile
points of each classifier lie within their respective confidence limits. The higher p-values
resulting from these quantile points lead to the acceptance of null hypotheses, which means
significant differences in the accuracy distribution of the classifiers.

SVM KNN NNN

Classifiers

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

A
c
c
u

ra
c
y

Confidence Interval

Figure 8. Confidence interval for selected classifiers.

4. Conclusions

WBCs classification is a vital step in the correct diagnosis of Leukemia. The existing
manual methods of WBC classification are labor-intensive and error-prone. Automated
WBC classification using computer vision techniques is an emerging paradigm. Modern
approaches using deep neural networks achieve a significant level of accuracy for a variety
of tasks. However, these neural networks suffer from exorbitant computational complexity,
processing power, and memory requirement owing to very large feature sets. Therefore, an
efficient feature reduction is essential to make deep neural networks feasible for real-time
biomedical applications. This work proposes a complete WBCs classification pipeline that
performs transfer learning using deep neural networks followed by an efficient feature
reduction algorithm. The proposed feature reduction method is validated using several
baseline classifiers with multiple kernel settings. An accuracy of 99.9% is achieved with
a feature reduction of 95%, which demonstrates the feasibility of the proposed WBCs
classification method. While the proposed approach has been applied to an augmented
clean dataset containing only WBC subtype images, the ECMPA feature selection algorithm
can be applied in any blood cell classification setup with little tuning of parameters. In
the future, we plan to extend this work to a more challenging dataset for clinical-grade
classification of other cell entities such as platelets and red blood cells, among others. The
proposed algorithm can also be tested on the bench mark datasets for other diseases such as
skin lesion and brain tumors, among others. In order to address the “curse of dimensionality”,
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other similar bio-inspired meta-heuristics can be investigated to obtain a trade-off between
classification accuracy and computational complexity.
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