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Abstract: Diabetes Mellitus, a metabolic disease, causes the body to lose control over blood glucose
regulation. With recent advances in self-monitoring systems, a patient can access their personalized
glycemic profile and may utilize it for efficient prediction of future blood glucose levels. An efficient
diabetes management system demands the accurate estimation of blood glucose levels, which, apart
from using an appropriate prediction algorithm, depends on discriminative data representation. In
this research work, a transformation of event-based data into discriminative continuous features
is proposed. Moreover, a multi-layered long short-term memory (LSTM)-based recurrent neural
network is developed for the prediction of blood glucose levels in patients with type 1 diabetes. The
proposed method is used to forecast the blood glucose level on a prediction horizon of 30 and 60 min.
The results are evaluated for three patients using the Ohio T1DM dataset. The proposed scheme
achieves the lowest RMSE score of 14.76 mg/dL and 25.48 mg/dL for prediction horizons of 30 min
and 60 min, respectively. The suggested methodology can be utilized in closed-loop systems for
precise insulin delivery to type 1 patients for better glycemic control.

Keywords: diabetes mellitus; blood glucose prediction; forecasting; long short-term memory

1. Introduction

The ability of the human body to control imbalanced blood glucose (BG) levels is
administered by the pancreas. When the glucose level in the bloodstream increases beyond
the normal range, the pancreas senses this and instructs the β-cells to release insulin. As
a result, excess sugar begins to be stored in fat cells, keeping the blood glucose in the
normal range. In contrast, the low sugar level in the bloodstream is handled by α-cells,
which release glucagon hormone. This hormone dictates the liver releasing glucose into the
bloodstream, maintaining BG levels in the safe range. Diabetes mellitus (DM) is a medical
condition in which the human body loses this closed-loop control partially or completely. In
Type-1 diabetes, the human pancreas loses its ability to produce insulin to regulate elevated
sugar levels.

In Type-2 diabetes, the patient becomes insulin resistant, or the insulin produced
becomes ineffective at decreasing the high BG levels. In comparison to other diseases,
diabetics have a higher prevalence of illness and mortality. Regardless of its present
incidence and burden, i.e., 415 million adults, this disease is projected to affect 642 million
by 2040 [1]. In 2015, it was estimated that there were 415 million people with diabetes aged
20–79 years, 5 million deaths attributable to diabetes, and a total global health expense
due to diabetes of 673 billion US$. This figure was reported to be 760 billion dollars in
a 2019 survey [2]. Since no established cure exists for diabetes, disease management is
the only option. Efficient glycemic control requires constant monitoring of BG levels,
sufficient physical activity, precise insulin delivery, and appropriate diet intake. In this
regard, future estimation of blood glucose levels is the most important aspect for a patient.
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A realistic assessment of BG levels can help patients avoid fatal glycemic conditions such
as hypo-glycemia (BG < 70 mg/dL) or hyper-glycemia (BG > 180 mg/dL). The prediction
of blood glucose levels is quite a complex task due to its non-linear nature and multiple
confounding factors. Although a number of factors affect BG levels, the few important ones
include previous BG values, dietary intakes, insulin infusion, and the physical activity of a
patient [3].

BG prediction methodologies can be categorized into three types: Physiology-based
(knowledge-based), data-driven (empirical-based), and hybrid. The physiological model
requires comprehensive knowledge of individual underlying physiological mechanisms. It
divides the person’s BG metabolism into three different regulatory sectors: BG dynamics,
meal absorption dynamics, and insulin dynamics [4]. Each one is modeled using a variety
of mathematical (differential) equations and probabilistic frameworks. The physiology-
based approach is primarily categorized into two: The lumped (semi-empirical) model and
the comprehensive model. In contrast to the physiology-based approach, the data-driven
strategy relies on the person′s self-recorded historical data and needs little knowledge of
the underlying physiological mechanism; thus, referred to as the “black box” approach.
Neural networks (NNs) and autoregressive (AR) models are the most common examples of
this type of approach. A data-driven approach can generally be divided into three models:
A time series model, a machine learning model, and a hybrid model. Hybrid models, as
the name suggests, are a combination of both physiological and data-driven models. The
blood glucose prediction approaches are illustrated in Figure 1.
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Historically, efforts have been made to employ statistical approaches for the prediction
of blood glucose levels. A multivariate statistical modeling approach was employed using a
latent variable for short-term blood glucose forecasting in T1DM patients [5]. Another study
presented a comparative analysis of various machine learning techniques with classical time
series forecasting methods such as auto-regression with Exogenous input (ARX) for glucose
level prediction [6]. Event detection such as hypo/hyperglycemia has also been an interest
of researchers for T1DM patients [7]. In addition to BG level forecasting, the study [8]
presented the efficiency of detecting hypo/hyperglycemic events in Type 1 diabetic patients.
In another study, the application of the XG-Boost algorithm was proposed for glycemia
prediction [9]. The authors in the study [10] developed a model of multi-horizon glucose
level prediction with alerts for the hypoglycemia condition.

Recently, machine learning and deep learning applications for blood glucose prediction
in patients with Type 1 and Type 2 diabetes have gained a lot of attention. A recurrent neural
network (RNN) was employed for blood glucose level forecasting with the provision of
forecast certainty [11]. A personalized BG level forecasting model was proposed based on a
convolutional neural network (CNN) by converting the regression task into a classification
task [12]. Another study [13] proposed a personalized deep learning framework for the
prediction of BG distribution over the prediction horizon of 30 and 60 min in T1DM patients.
Authors in the study [14] worked on the development of a multitask learning [15] approach
using a convolutional recurrent neural network MTCRNN for short-term personalized
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blood glucose forecasting. Multitask learning allows for learning from the data of all
available diabetic subjects who took part in the research.

The authors of another study [16] proposed the rectification of a sensor defect for CGM
readings using the Kalman filter smoothing technique [17]. The prediction of blood glucose
levels using a stacked Long-short term memory-based RNN model was presented. The
proposed work on sensor fault rectification is prone to flaws since the target labels were
modified in lieu of sensor noise rectification.

Deep learning approaches have recently played a significant role in increasing blood
glucose forecasting accuracy. However, the need to furnish an optimized deep learning
model, for multi-horizon prediction, is not over and requires more research. In addition
to the learning model, the discriminative feature representation of sensor data is equally
vital to establish an efficient and robust prediction model. Pre-processing of sensor data
including normalization, interpolation, and filtering has been performed. However, the
discriminative feature transformation of sensor data is rare in the literature.

In this research work, a deep learning technique based on multi-layer Long Short-Term
Memory for blood glucose prediction of T1DM patients is presented. The pre-processing
of sensor data is performed, including sampling consistency, interpolation to fill missing
samples, and filtering. Moreover, to achieve lower forecasting errors, the event-based
features are transformed into time-stamped samples. The Ohio T1DM dataset published
by the University of Ohio for the BGLP challenge in 2018 is used. It contains eight weeks
of data from six T1DM patients including a variety of physiological features along with
event-based information such as meal and insulin injection. The contributions of this
research work are as follows:

• Pre-processing of the T1DM dataset is performed including the incorporation of time-
consistency in features as per the target values, interpolation for missing values, and
filtering to achieve smoothing.

• Based on the relation with blood glucose levels, two event-based features, namely, meal
and insulin, are transformed into continuous features, which led to improved accuracy.

• The LSTM and Bi-LSTM-based RNN models are developed and optimized to achieve
minimum prediction error for blood glucose levels.

• The proposed models outperformed the state-of-the-art methods for the prediction
horizons of 30 and 60 min.

The paper is organized as follows: Section 2 presents the dataset and the pre-processing.
Feature transformation is explained in Section 3. The evaluation strategy is discussed in
Section 4. The learning algorithm is presented in Section 5. Section 6 presents the results
and discussion. Finally, the conclusion is added in Section 7.

2. Dataset and Pre-Processing
2.1. Dataset

The Ohio T1DM dataset [18] published by the University of Ohio is used in this
research. It is a great source of blood glucose forecasting research due to the fact that it
provides a diverse range of characteristics associated with Type 1 diabetes patients, which,
according to the most recent literature on diabetes [3], affect blood glucose levels. The
dataset was released in two phases: In 2018 and in 2020. Each release contains data from
six T1DM patients who were on insulin therapy wearing a fitness tracker and Medtronic’s
insulin pump with continuous glucose monitoring (CGM). In addition, the self-reported life
events from these contributors were also recorded via a smartphone application. The data
recorded for each individual includes CGM sampled at 5 min intervals, finger stick blood
glucose levels for self-monitoring, insulin doses (both basal and bolus), self-reported time
of physical activity, work, stress, sleep, and illness, and physiological information from a
fitness tracker such as Galvanic skin resistance (GSR), heart rate, step count, air temperature,
and skin temperature. The dataset contains the sensors’ data for a total period of eight
weeks. Several data features, such as CGM and heart rate, are recorded at 5 min intervals,
whereas others, such as meal and insulin, are recorded only at the time of eating a meal
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or insulin intake, respectively. An illustrative overview of these features recorded from
one of the contributors (ID 570) is illustrated in Figure 2. In each release of the Ohio T1DM
dataset, the training data and testing data are already segregated by the provider. Table 1
summarizes the data of six patients in the Ohio T1DM dataset version 2018, including the
number of training and testing samples predefined by the data providers.
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Table 1. Ohio T1DM dataset contributor details.

ID Gender Pump Model Sensor Band Train Samples Test Samples

559 female 530 G Basis 10,796 2514
563 male 530 G Basis 12,124 2570
570 male 530 G Basis 10,982 2745
575 female 530 G Basis 11,866 2590
588 female 530 G Basis 12,640 2791
591 female 530 G Basis 10,847 2760

2.2. Feature Vector

The dataset includes automatic and manual measuring of several parameters forming
the feature vector for a patient. The type of feature is periodic and event-based; however,
all of them are recorded with a time stamp. The details of recorded features are provided in
Table 2.
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Table 2. Feature details in Ohio T1DM dataset.

Ser # Feature Name Type Source

1 glucose level periodic medtronic Sensor
2 basal insulin event self-Reported
3 bolus insulin event self-Reported
4 finger stick event self-Reported
5 meal event self-Reported
6 exercise event self-Reported
7 sleep event self-Reported
8 work event self-Reported
9 hypo Events event self-Reported
10 air temperature periodic basis Sensor
11 GSR periodic basis Sensor
12 heart Rate periodic basis Sensor
13 skin temperature periodic basis Sensor
14 sleep periodic basis Sensor
15 steps periodic basis Sensor

2.3. Pre-Processing
2.3.1. Time Coherence

The features, as shown in Table 2, are periodic and event-based in nature. Continuous
glucose monitoring (CGM)—the vital information—is recorded at a sampling interval of
5 min. However, during sensor replacement, the time coherence breaks. Consequently,
upcoming samples are time inconsistent. To avoid this, new samples are added to the data,
ensuring a sampling time of 5 min. The net effect is the introduction of many new samples.
For example, there exist 10,982 training samples of CGM for patient ID 570. After time
coherence, 649 more samples were introduced. Next, since CGM is the most important
feature, the rest of the periodic features were also time-aligned with the CGM time stamps.

2.3.2. Interpolation

The criterion for filling new CGM values was based on the forward-filling rule with
a limit of 1, i.e., if there is a single new sample, it will be assigned the magnitude of the
previous sample. In the case there were 2 or more consecutive new samples, interpolation
was performed to fill the samples. Several interpolation techniques including linear, Akima
cubic, spline, and shape-preserving methods were used. It was found that linear interpolation
learns the best behavior of glucose levels, producing the best prediction results. Figure 3
shows the linear interpolation result of the CGM feature over a period of 4 days. The orange
color in Figure 3 shows the interpolated samples, which were empty in the original data. The
same interpolation strategy was adopted for the test data. However, for result evaluation, the
interpolated samples in the test data were not considered for error calculation.

2.3.3. Median Filtering

Observing Figure 3, sharp changes in the CGM profile are visible, which can be
regarded as sensor noise. To smooth the profile, a median filter is used replacing the
extreme values with the median value as used in an earlier study [19]. Figure 4 shows the
CGM profile smoothing using the median filter where the profiles of both the original data
and the filtered data are shown. Smoothing the feature profile enables the predictor to learn
better. The filtering scheme was only implemented on training data while the test data
remained unchanged.



Diagnostics 2023, 13, 340 6 of 19

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 

to learn better. The filtering scheme was only implemented on training data while the test 

data remained unchanged. 

 

Figure 3. Missing CGM data imputation using linear interpolation. The orange lines represent the 

interpolated sample data, which were missing in the original dataset. 

 

Figure 4. Data smoothing using median filtering. 

Figure 3. Missing CGM data imputation using linear interpolation. The orange lines represent the
interpolated sample data, which were missing in the original dataset.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 

to learn better. The filtering scheme was only implemented on training data while the test 

data remained unchanged. 

 

Figure 3. Missing CGM data imputation using linear interpolation. The orange lines represent the 

interpolated sample data, which were missing in the original dataset. 

 

Figure 4. Data smoothing using median filtering. Figure 4. Data smoothing using median filtering.



Diagnostics 2023, 13, 340 7 of 19

3. Feature Transformation

The data include several periodic features such as CGM and some event-based features
such as meal and sleep. Since all the periodic features are made time-coherent with the feature,
it is beneficial to approximate the event-based features as time-coherent periodic values. The
meal and insulin injection are two features recorded at random time stamps. Currently, such
features can be treated as binary features where a value of 1 will be observed when a meal was
eaten and 0 for the rest of the time. Such values are not only insignificant to the feature vector
but also may cause an adverse effect on the learning of the algorithm. Therefore, we propose
the transformation of such features into continuous-value observation. This transformation
will improve the feature representation for meal and insulin information. To consider those
features for blood glucose prediction, they need to be made time-coherent with CGM, which
is performed and explained in the following sub-sections.

3.1. Carbs from Meal to Operative Carbs Transformation

One of the data features is the carb intake by patients in the form of a meal, which
has a direct impact on blood glucose. The rate at which the carbs affect blood glucose
levels depends on their type, as high glycemic index (GI) carbs instantly affect the blood
glucose while low-glycemic-index carbs have a slower effect, but the effect remains over a
longer period of time. Research [20] revealed that a normal meal starts raising the blood
glucose level after 15 min of having the meal. The glucose level approaches its peak in
60 min and then decays at a certain rate such that after 3 h it becomes steady. Based on
that, carbohydrate absorption can be converted into operative carbs, which provides a
continuous-value feature. The primary objective of this conversion is to determine the
effectiveness of carb intake at any certain time in the human body. The conversion model
can be estimated by combining the rise and decay profile as shown in Figure 5.
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The operative carbohydrates at any time in the data are estimated using the following
procedure:

i Based on the assumption of working at a 5 min reference time scale, the first three
samples after taking the meal have zero operative carbs.

ii The operative carbs start rising at a rate of 0.11 (11.1%).
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iii At the 12th sample or the 60th minute after having the meal, the value of operative
carbs attains its maximum value, which is almost equal to the total amount of carbs.

iv After that, the operative carbs start decreasing at a rate of 0.028 (2.8%). It reaches zero
after 3 h.

The mathematical piecewise function of the above-mentioned method can be obtained
as follows:

Cop(ts) =


0, 0 ≤ tmeal ≤ 2

(ts − tmeal+2)/(ts − ts−1 )∗αinc∗Cmeal , 3 ≤ tmeal < 12(
1− (ts − tpeak

)
/(ts − ts−1 )∗αdec)∗Cmeal , 12 ≤ tmeal < 48

(1)

where:

ts is the sampling time.
tmeal is the time when the meal is encountered.
Cop is the effective carbohydrates at any given time.
Cmeal is the total amount of carbohydrates taken in a meal.
tpeak is the time when Cop reaches its maximum value → Cop ∼= Cmeal .
αinc is the increasing rate of the curve.
αdec is the decreasing rate of the curve.

Figure 6 shows the meal carbs transformation to the operative carbs of patient ID 570.
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3.2. Bolus Insulin to Active Insulin Transformation

Patients with Type-1 diabetes rely on exogenous insulin delivery [21], which usually
has two types, one is rapid-acting insulin named bolus and the second is slow-acting insulin
termed basal insulin. Bolus insulin is normally taken before meals to compensate for the
effect of a rise in blood glucose. Most insulin-pump users are familiar with the insulin
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activity curve, as insulin’s effect is time dependent. It takes a short while for insulin to
have an effect on the blood glucose level: Normally, it peaks after 1 h and decays gradually
over 6 h. The effect of insulin is characterized by the type and brand of insulin used, such
as rapid-acting insulin—child, which has a peak time of 65 min, whereas rapid-acting
insulin—adult has a peak time of 75 min. The insulin activity remaining or the percentage
of active insulin after a bolus insulin injection can be modeled with an exponential decay
curve [22] known as insulin on board (IOB). It is the inverse of the insulin activity curve for
a given duration of insulin action (DIA).

The transformation of bolus insulin into active insulin is performed. With insulin
infusion, the blood glucose is expected to drop based on several aspects such as the insulin
sensitivity factor (ISF), amount of dose, and type of insulin. The effect of insulin could be
visualized in three different ways, one of which is expected active insulin. We envision the
effect of bolus insulin in terms of active insulin. The expected active insulin in the human
body at any time is the product of the original insulin delivered and the percent of insulin
activity remaining (IOB). Figure 7 shows the transformation of four units of bolus insulin
into the respective active insulin.
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Figure 7. Bolus-to-active-insulin transformation curve.

The mathematical expression for active insulin can be described as follows:

IOB(ts) = 1− S∗(1− a) ∗
{(

ts
2

τ ∗ td ∗ (1− a)
− ts

τ
− 1
)
∗ e−

ts
τ + 1

}
(2)

where:

ts is the sampling time.
td is the total duration of insulin activity.
τ is the time constant of exponential decay.
a is the Rise time factor.
S is the Auxiliary Scale factor.

τ = tp ∗
(

1−
tp

td

)
/
(

1− 2 ∗
tp

td

)
(3)

a = 2 ∗ τ/td (4)
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S = 1/
(

1− a + (1 + a) ∗ e−
td
τ

)
(5)

Figure 8 shows the bolus insulin intake and the corresponding active insulin for patient
ID 570.
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4. Evaluation Strategy
4.1. Evaluation Metric

The root mean squared error (RMSE) is used to evaluate the performance, as it has
been widely used in existing studies. A prediction horizon (PH) of 30 min and 60 min is
considered. If the prediction for the ith example made by the model against the actual
target yi is denoted as yi, then RMSE can be expressed as:

RMSE =

√
1/n

n

∑
i=1

(yi − yi)
2 (6)

where n is the total number of test samples. It is, once again, worth mentioning that within
the test data, only samples that were recorded using the sensor were used to compute the
error and not the interpolated samples.

4.2. Feature Configurations

The dataset contains plenty of features; to start with, a recent review study guides the
suitable choice based on their historical employment for blood glucose prediction [3]. The
adoption of different features in terms of percentage in 624 previous studies is shown in
Figure 9.
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Figure 9. Input Feature set contribution in recent studies for diabetes prediction.

Based on widely used features, we opted for BG, diet, and insulin. Overall, three
feature configurations are used in this work, as follows:

Configuration 1 (C-01): In this scheme, a univariate model is developed using CGM data only.
Configuration 2 (C-02): For this scheme, a combination of CGM and operative carbs is
used as a feature set.
Configuration 3 (C-03): This is the combination of three features: CGM, operative carbs,
and active insulin.

In addition to the mentioned features, other features such as basal insulin, heart rate,
and physiological features were also used; however, the performance was inferior. The
complete profiles of the three selected features for this study are shown in Figure 10.
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Figure 10. The profiles of CGM, Operative Carbs, and Active insulin in the dataset for patient ID 570.

5. Learning Model

Continuous blood glucose prediction is a multistep time-series forecasting task, and
therefore a sequence-to-sequence learning algorithm is a suitable choice. The class of deep
learning models for such a task belongs to recurrent neural networks (RNNs). The long
short-term memory (LSTM) model is considered due to its ability to memorize long-term
temporal dependencies [23]. In this section, the model architecture is presented first, and
then the training and optimization details of the developed model are discussed.

5.1. Model Arhitecture

RNNs are a type of neural network that has the capability to learn sequential data.
This is because of the provision of feedback paths known as the hidden state h. The hidden
state can be computed using the following expression:

h(t) = fc(Ux(t) + Wh(t− 1) + b) (7)

where h(t) is the current hidden state, h(t− 1) is the previous hidden state, fc is a non-
linear activation function such as tanh or ReLU (Rectified Linear Unit), x(t) is the input
vector, b is the bias term, and U and W are the weight matrices defined between input-
to-hidden and hidden-to-hidden connections, respectively. The standard RNN computes
the output through cyclic flow across different hidden layers. It faces the problem of
a vanishing gradient due to the short-term memory constraint and thus minimizes the
learning. The updated RNN architecture, known as long short-term memory (LSTM),
resolves this problem by making use of a memory cell and gates to regulate the flow of
information [24].

A two-layer LSTM, i.e., Bi-LSTM, model is developed for this research work, com-
prising two layers stacked on top of each other. The first hidden layer in LSTM 1 contains
128 neurons followed by a leaky ReLU layer and then a dropout layer to prevent overfitting.
The second LSTM layer with 64 neurons is introduced followed by a dropout layer and
a dense layer, respectively. The dense layer is the deeply connected output layer of this
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network, which receives input from all previous hidden layers. The number of units in the
dense layer depends on the prediction horizon (PH) for which the model is trained, which
are 6 for 30 min PH and 12 for 60 min PH. The developed Bi-LSTM structure for 30 min
blood glucose level forecasting is shown in Figure 11. The figure is generated using the
software ‘Netron’, which is a utility to visualize the trained deep learning models. The
model expects data to have the following shape: [examples, sample per example, number of
features], which the software produced as [? × 6 ×1]. Figure 11 depicts the proposed model
architecture that is trained using a single feature with six lag samples (timestamps) to
predict the output.
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the number of examples fed to the model.

To understand the input data volume, we consider an example of patient ID 570
with a univariate (one input feature: Glucose level) model, which has the following three-
dimensional training and test set shapes:

• Total Number of training samples = 10,982.
• Total Number of training samples after resampling and interpolation = 11,611.
• Number of training samples (80%) = 9288 [1548, 6, 1].
• Number of training examples = 1548 (9288/6).
• Number of test samples (20%): 2322 [387, 6, 1].
• Number of test examples 387 (2322/6).

The training set has 1548 samples with one feature and six lag values. In other words,
9288 timestamps in the training data are converted into 1548 training examples with
6 samples (timestamps) per example. Similarly, there are 387 test examples with 6 samples
per test example. The output of the model is 6 samples for a prediction horizon of 30 min
as shown in Figure 11.

Similarly, ‘? × 12 × 2′ represents the data input into the model for 60- min prediction
(12 samples per example) using 2 features. Likewise, the output of the model for the 60 min
prediction horizon will be 12 samples.

In the end, the dense layer produces a vector of 6 values, which represents the predic-
tion for a 30 min horizon. For example:
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Input→Output:
[[152. 155. 156. 158. 161. 164.]]=====>[[168. 170. 171. 173. 174. 175.]]
The model takes six previous samples of single features as the input and predicts the

six-step-ahead values of the target variable.
Moreover, the vanilla model with a single LSTM layer is also used separately.

5.2. Model Training and Optimization

The Ohio T1DM dataset includes pre-split files of each contributor as the training
data and test data. In this research, the test data are used to finally evaluate the results,
while the training data are subdivided for training and validation using the time-series
cross-validator [25] provided by the Scikit-learn library of python. It splits the data based
on the rolling origin, where each successive training set is a superset of those that come
before them. The training data were split into training and validation sets. The five splits
were made where the validation data size remains constant, but the training data size
increases. For instance, the number of training samples visualized in Figure 12 is 1936,
3871, 5806, 7741, and 9676 in splits 1, 2, 3, 4, and 5, respectively. The number of validation
samples remains at 1935 in each split; however, the validation samples themselves change
every time. The data-splitting strategy is illustrated in Figure 12. The data for each split
are visualized in Figure 13. After normalizing the training and validation data using a
standard scalar, the trained model is evaluated using validation data, and the mean score
of five splits is recorded. While training, the number of input samples was also altered
using the sliding window mechanism with a stride of 1 and a variable window size of half
an hour to 6 h. The optimum input sample size was observed as 6, i.e., the last half hour,
based on the best mean prediction score.
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Figure 13. The five combinations of training–validation splits for CGM data of patient ID 570.

As discussed earlier, both vanilla- and Bi-LSTM RNN models are employed; the
performance is evaluated based on the blood glucose prediction. The blood glucose
regulation system is nonlinear in nature; therefore, to best approximate the input–output
relationship, several hyper parameters were adjusted to achieve the optimum results,
such as the number of neurons in each LSTM layer, the batch size, the learning rate,
and the number of epochs. Different batch sizes including 32, 64, and 128 were used
in the experiments where 128 produced the best validation results. Likewise, different
combinations of the number of neurons in the LSTM layers were tested and resulted in
128 and 64 neurons in the first and second LSTM layers, respectively. The Adam optimizer
was used with an optimized learning rate of 0.001 to train the model. Once all the model
parameters are optimized, the final model is evaluated using the walk-forward validation
scheme [26] on the test data.

6. Results and Discussion

The model results are recorded using the test data provided in the dataset. Each of
the three input feature configurations are used to produce the prediction results. The root
mean square error is computed to evaluate the model performance. The continuous glucose
monitoring (CGM) prediction results of patient ID 570 for 30-min and 60-min prediction
horizon are shown in Figures 14 and 15 respectively. Figure 16 shows the complete test
data forecasting results for patient ID 570.
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Figure 16. Prediction curve for complete test data of Patient ID 570.
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Table 3 shows the model’s prediction error for each of the three feature configurations
over 30-min as well as 60-min PH for patient ID 570. The performance of the model with
Bi-LSTM shows better results than vanilla LSTM due to its capability of memorizing the
long-term temporal dependencies.

Table 3. Prediction error using different input feature configurations at 30 min and 60 min PHs for
patient 570.

Configuration RMSE @ PH = 30 min RMSE @ PH = 60 min

Vanilla-LSTM Bi-LSTM Vanilla-LSTM Bi-LSTM
C-01 15.43 15.22 26.41 26.10
C-02 15.67 15.12 26.12 25.48
C-03 15.48 14.76 26.18 25.65

The model with an input configuration of C-03 = [CGM, Carbs(Cop), Insulin(Ieff)] pro-
duced the best results for the PH of 30 min while configuration C-02 = [CGM, Carbs(Cop)]
outperformed for the 60 min PH. Based on these results for patient ID 570, the blood
glucose prediction results of other patients were recorded by employing a, similar feature
configuration pattern, i.e., configuration C-03 for PH of 30 min and C-02 for 60 min. Table 4
presents the error results produced by the trained model for patients ID 588 and 563. The
Bi-LSTM model outperformed the vanilla-LSTM model. A comparison of the proposed
model with existing studies for the 30 min prediction horizon is presented in Table 5. It
can be observed that the proposed methodology outperformed the state-of-the-art tool
except for patient ID 563 where the margin was almost negligible. Moreover, the mean
RMSE across the data of three contributors was computed, and the proposed methodology
produced the minimum error.

Table 4. Prediction error for patient ID 588 and 563.

Patient ID Configuration RMSE @ PH = 30 min RMSE @ PH = 60 min

Vanilla-
LSTM Bi-LSTM Vanilla-

LSTM Bi-LSTM

588
C-02 × × 30.44 30.17
C-03 18.29 17.55 × ×

563
C-02 × × 29.98 29.11
C-03 18.58 18.14 × ×

Table 5. Comparison of prediction RMSE with other studies at prediction horizon of 30 min.

Patient ID
Bi-LSTM
(Prposed

Work)
[11] [4] [5] [9]

570 14.76 15.94 16.40 18.26 15.73
588 17.55 17.71 19.20 21.69 17.66
563 18.14 18.12 19.00 20.17 18.51

Mean RMSE 16.81 17.25 18.20 20.04 17.30

Among existing studies, for this dataset, several performed blood glucose prediction
using the prediction horizon of 60 min. Their results are compared with the proposed
model results for the three patients as shown in Table 6. The proposed model produced
less prediction error than the state of the art for the prediction horizon of 60 min.
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Table 6. Comparison of prediction RMSE with other studies at prediction horizon of 60 min.

Patient ID Bi-LSTM (Proposed
Work) [18] [4] (Martinsson,

et al., 2018)

570 25.48 25.74 28.6
588 30.17 30.45 33.1
563 29.11 30.42 29.9

Mean RMSE 28.25 28.87 30.53

Although the achieved error margin is relatively small with the state of the art, con-
sidering the highly non-linear nature of the blood glucose profile, the slight improvement
in forecasting becomes significant. The existing studies used features such as insulin and
meals as event-based features. However, the proposed methodology incorporates the
transformation of event-based features into continuous values, which led to improving the
prediction performance.

7. Conclusions

Efficient blood glucose forecasting is critical for continuous monitoring in diabetic
patients. This research proposed an efficient method for accurate continuous glucose
monitoring. The data of three contributors in the Ohio T1DM (2018) dataset were used
for the performance evaluation of the proposed algorithm. Preprocessing of data was
performed including interpolation and filtering. Two important event-based input features
were transformed into continuous features that are inherent to the critical relationship with
the blood glucose level. Recurrent-neural-network-based LSTM models were trained for
blood glucose forecasting with prediction horizons of 30 and 60 min. The proposed models
outperformed the state-of-the-art tools, achieving an RMSE as low as 14.76 mg/dL and
25.48 mg/dL for prediction horizons of 30 min and 60 min, respectively. This research will
help practitioners and patients in closed-loop systems such as artificial pancreas/automated
insulin-delivery systems. It will assist people with diabetes in predicting and managing
their blood glucose levels, potentially reducing the risk of complications such as hypo-
glycemia (low blood sugar) or hyperglycemia (high blood sugar). It was observed that
our model generated larger errors approximating sharp transitions in the CGM. Moreover,
interpolated data may not reflect the true nature of the blood glucose profile. Therefore,
efficient approximation of missing samples and the introduction of discriminative features
for improved performance are possible future work directions.

Author Contributions: Conceptualization, H.B. and I.K.; methodology, H.B., I.K., and M.A.I.; val-
idation, H.B. and I.K.; formal analysis, I.K. and M.A.I.; software, H.B. and I.K.; supervision, I.K.;
writing—original draft, H.B. and I.K.; writing—review and editing, H.B, I.K and M.A.I. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is publically available from the following link: https://
pubmed.ncbi.nlm.nih.gov/33584164/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atlas, I.D. Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50.
2. Elflein, J. Number of Adults with Diabetes in the U.S. as of 2019 (in Millions); Statista: Hamburg, Germany, 2022.
3. Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-Driven Modeling and

Prediction of Blood Glucose Dynamics: Machine Learning Applications in Type 1 Diabetes. Artif. Intell. Med. 2019, 98, 109–134.
[CrossRef] [PubMed]

https://pubmed.ncbi.nlm.nih.gov/33584164/
https://pubmed.ncbi.nlm.nih.gov/33584164/
http://doi.org/10.1016/j.artmed.2019.07.007
http://www.ncbi.nlm.nih.gov/pubmed/31383477


Diagnostics 2023, 13, 340 19 of 19

4. Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A Review of Personalized Blood Glucose Prediction Strategies for T1DM Patients. Int.
J. Numer. Methods Biomed. Eng. 2017, 33, e2833. [CrossRef] [PubMed]

5. Sun, X.; Rashid, M.; Sevil, M.; Hobbs, N.; Brandt, R.; Askari, M.R.; Shahidehpour, A.; Cinar, A. Prediction of Blood Glucose Levels
for People with Type 1 Diabetes Using Latent-Variable-Based Model. CEUR Workshop Proc. 2020, 2675, 115–119.

6. Xie, J.; Wang, Q. Benchmark Machine Learning Approaches with Classical Time Series Approaches on the Blood Glucose Level
Prediction Challenge. CEUR Workshop Proc. 2018, 2148, 97–102.

7. Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Jump Neural Network for Online Short-Time Prediction of Blood Glucose
from Continuous Monitoring Sensors and Meal Information. Comput. Methods Programs Biomed. 2014, 113, 144–152. [CrossRef]

8. McShinsky, R.; Marshall, B. Comparison of Forecasting Algorithms for Type 1 Diabetic Glucose Prediction on 30 and 60-Minute
Prediction Horizons. CEUR Workshop Proc. 2020, 2675, 12–18.

9. Midroni, C.; Leimbigler, P.J.; Baruah, G.; Kolla, M.; Whitehead, A.J.; Fossat, Y. Predicting Glycemia in Type 1 Diabetes Patients:
Experiments with XGBoost. CEUR Workshop Proc. 2018, 2148, 79–84.

10. Dave, D.; Erraguntla, M.; Lawley, M.; DeSalvo, D.; Haridas, B.; McKay, S.; Koh, C. Improved Low-Glucose Predictive Alerts Based
on Sustained Hypoglycemia: Model Development and Validation Study. JMIR Diabetes 2021, 6, e26909. [CrossRef]

11. Martinsson, J.; Schliep, A.; Eliasson, B.; Meijner, C.; Persson, S.; Mogren, O. Automatic Blood Glucose Prediction with Confidence
Using Recurrent Neural Networks. CEUR Workshop Proc. 2018, 2148, 64–68.

12. Zhu, T.; Li, K.; Herrero, P.; Chen, J.; Georgiou, P. A Deep Learning Algorithm for Personalized Blood Glucose Prediction. CEUR
Workshop Proc. 2018, 2148, 64–78.

13. Li, K.; Liu, C.; Zhu, T.; Herrero, P.; Georgiou, P. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting. IEEE J.
Biomed. Health Inform. 2020, 24, 414–423. [CrossRef]

14. Daniels, J.; Herrero, P.; Georgiou, P. Personalised Glucose Prediction via Deep Multitask Networks. CEUR Workshop Proc. 2020,
2675, 110–114.

15. Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
16. Rabby, M.F.; Tu, Y.; Hossen, M.I.; Lee, I.; Maida, A.S.; Hei, X. Stacked LSTM Based Deep Recurrent Neural Network with Kalman

Smoothing for Blood Glucose Prediction. BMC Med. Inform. Decis. Mak. 2021, 21, 101. [CrossRef]
17. Staal, O.M.; Salid, S.; Fougner, A.; Stavdahl, O. Kalman Smoothing for Objective and Automatic Preprocessing of Glucose Data.

IEEE J. Biomed. Health Inform. 2019, 23, 218–226. [CrossRef]
18. Marling, C.; Bunescu, R. The OhioT1DM Dataset for Blood Glucose Level Prediction: Update 2020. CEUR Workshop Proc. 2020,

2675, 71.
19. Chen, J.; Li, K.; Herrero, P.; Zhu, T.; Georgiou, P. Dilated Recurrent Neural Network for Short-Time Prediction of Glucose

Concentration. CEUR Workshop Proc. 2018, 2148, 69–73.
20. Kraegen, E.W.; Chisholm, D.J.; McNamara, M.E. Timing of Insulin Delivery with Meals. Horm. Metab. Res. 1981, 13, 365–367.

[CrossRef]
21. Boiroux, D.; Finan, D.A.; Jørgensen, J.B.; Poulsen, N.K.; Madsen, H. Optimal Insulin Administration for People with Type 1

Diabetes. IFAC Proc. Vol. 2010, 43, 248–253. [CrossRef]
22. LoopDoc. Glucose Prediction. Available online: https://loopkit.github.io/loopdocs/operation/algorithm/prediction/ (accessed

on 3 February 2022).
23. Manaswi, N.K. RNN and LSTM. In Deep Learning with Applications Using Python; Apress: Berkeley, CA, USA, 2018. [CrossRef]
24. Hochreiter, S. Recurrent Neural Net Learning and Vanishing Gradient. Int. J. Uncertainity Fuzziness Knowl. Based Syst. 1998, 6, 8.
25. TimeSeriesSplit. Sklearn.Model_selection.TimeSeriesSplit—Scikit-Learn 1.2.0 Documentation. Available online: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection (accessed on 19 December 2022).
26. Brownlee, J. Introduction to Time Series Forecasting with Python: How to Prepare Data and Develop Models to Predict the Future; Machine

Learning Mastery: Vermont, Australia, 2017; Available online: https://books.google.com.pk/books/about/Introduction_to_
Time_Series_Forecasting.html?id=-AiqDwAAQBAJ&redir_esc=y (accessed on 19 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/cnm.2833
http://www.ncbi.nlm.nih.gov/pubmed/27644067
http://doi.org/10.1016/j.cmpb.2013.09.016
http://doi.org/10.2196/26909
http://doi.org/10.1109/JBHI.2019.2931842
http://doi.org/10.1023/A:1007379606734
http://doi.org/10.1186/s12911-021-01462-5
http://doi.org/10.1109/JBHI.2018.2811706
http://doi.org/10.1055/s-2007-1019271
http://doi.org/10.3182/20100705-3-BE-2011.00041
https://loopkit.github.io/loopdocs/operation/algorithm/prediction/
http://doi.org/10.1007/978-1-4842-3516-4
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection
https://books.google.com.pk/books/about/Introduction_to_Time_Series_Forecasting.html?id=-AiqDwAAQBAJ&redir_esc=y
https://books.google.com.pk/books/about/Introduction_to_Time_Series_Forecasting.html?id=-AiqDwAAQBAJ&redir_esc=y

	Introduction 
	Dataset and Pre-Processing 
	Dataset 
	Feature Vector 
	Pre-Processing 
	Time Coherence 
	Interpolation 
	Median Filtering 


	Feature Transformation 
	Carbs from Meal to Operative Carbs Transformation 
	Bolus Insulin to Active Insulin Transformation 

	Evaluation Strategy 
	Evaluation Metric 
	Feature Configurations 

	Learning Model 
	Model Arhitecture 
	Model Training and Optimization 

	Results and Discussion 
	Conclusions 
	References

