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Abstract: Tumor boundary identification during colorectal cancer surgery can be challenging, and
incomplete tumor removal occurs in approximately 10% of the patients operated for advanced rectal
cancer. In this paper, a deep learning framework for automatic tumor segmentation in colorectal
ultrasound images was developed, to provide real-time guidance on resection margins using intra-
operative ultrasound. A colorectal ultrasound dataset was acquired consisting of 179 images from
74 patients, with ground truth tumor annotations based on histopathology results. To address data
scarcity, transfer learning techniques were used to optimize models pre-trained on breast ultrasound
data for colorectal ultrasound data. A new custom gradient-based loss function (GWDice) was devel-
oped, which emphasizes the clinically relevant top margin of the tumor while training the networks.
Lastly, ensemble learning methods were applied to combine tumor segmentation predictions of mul-
tiple individual models and further improve the overall tumor segmentation performance. Transfer
learning outperformed training from scratch, with an average Dice coefficient over all individual
networks of 0.78 compared to 0.68. The new GWDice loss function clearly decreased the average
tumor margin prediction error from 1.08 mm to 0.92 mm, without compromising the segmentation of
the overall tumor contour. Ensemble learning further improved the Dice coefficient to 0.84 and the
tumor margin prediction error to 0.67 mm. Using transfer and ensemble learning strategies, good
tumor segmentation performance was achieved despite the relatively small dataset. The developed
US segmentation model may contribute to more accurate colorectal tumor resections by providing
real-time intra-operative feedback on tumor margins.

Keywords: colorectal cancer surgery; ultrasound; tumor segmentation; margin assessment; data
scarcity; transfer learning; ensemble learning; image-guided surgery

1. Introduction

Colorectal cancer is the third-most-commonly diagnosed cancer worldwide [1,2].
Treatment of colorectal cancer often involves surgery. Adequate surgical tumor resection,
with a sufficient margin of healthy tissue both around and distally to the tumor, is crucial for
patient prognosis. However, tumor boundary identification, especially during rectal cancer
surgery, can be challenging without any intra-operative imaging guidance. The current
golden standard for resection margin evaluation based on pathological examination takes
place days after surgery. Unfortunately, a positive resection margin is still found in Dutch
hospitals in 4.7% and 12.7% of T1-3 and T4 rectal tumors, respectively, worsening patient
prognosis and warranting an improved method for intra-operative margin assessment [3].

Several methods have been developed for intra-operative colorectal tumor localization,
such as barium enemas [4,5], frozen sections [6,7], pre-operative endoscopic tattooing or
clip placement [8–14], intra-operative endoscopy [15], fluorescence guidance [16–18], and
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surgical navigation technology [19,20]. However, these techniques all have certain draw-
backs, including radiation exposure, a long duration, non-optimal accuracy, complexity,
and the need for special instruments or technical support. On the other hand, all the afore-
mentioned methods are mainly focused on general tumor localization and are not capable
of providing any information about the tumor boundaries. There is a lack of a technique
that is precise, non-invasive, and simple and that provides real-time automatic analyses for
intra-operative margin assessment. An intra-operative tumor margin assessment technique
can provide real-time feedback to the surgeon, thereby potentially reducing the number of
positive resection margins and improving patient outcomes.

Ultrasound (US) is a non-invasive and real-time imaging technique, which is widely
used in health care for various purposes. The ability to visualize tissue structures could
potentially aid in distinguishing healthy and tumor tissue during colorectal cancer surgery.
Unfortunately, to the best of our knowledge, no studies have been performed on the use
of intra-operative ultrasound (IOUS) for real-time resection margin assessment during
colorectal cancer surgery. Mainly, endorectal ultrasound imaging is used prior to surgery
to determine the tumor stage [21–31]. In most cases, the images are assessed by an expert
radiologist. A recent study by Song et al. developed a deep neural network to distin-
guish endorectal ultrasound images from benign and malignant tumors [31]. Besides
pre-operative staging, a couple of case and feasibility studies have used ultrasound imag-
ing during colorectal cancer surgery to localize the tumor region, with or without the
aid of pre-operative endoscopic clip placement [32–39]. However, this concerned rough
localizations based on human interpretation of the US images, which is often challenging
and requires training and experience.

Deep-learning-based approaches could facilitate the automatic analysis of colorectal
ultrasound images during surgery. Convolutional neural networks (CNNs) are widely
used in medical image analysis for image interpretation through automatic classification
and segmentation. Many studies have already successfully developed automatic tumor
segmentation networks for US imaging [40–45]. However, in the existing literature, these
developments have primarily concentrated on specific oncological domains such as breast
cancer and liver cancer. The application of deep learning techniques for automatic tumor
segmentation in colorectal US images has thus far remained a largely unexplored area.
In response, this study aimed to develop a network for automatic tumor segmentation
in colorectal US imaging. In particular, we will focus on the application in open and
laparoscopic colorectal cancer surgery, where the transducer makes direct contact with the
resection plane on the outer surface of the colon, in contrast to prior studies on endorectal
US imaging of colorectal cancer.

CNNs require a plethora of labeled data samples for adequate training, which is often
scarce in the medical field, especially in the case of colorectal cancer, for which abdominal
ultrasound is not routinely used in standard clinical care. Consequently, no public (labeled)
datasets are available either. To overcome this issue, transfer learning techniques could be
used. Pre-training models with comparable data can decrease the amount of data needed
since the model does not need to be trained from scratch [46]. These pre-trained models can
then be optimized using the dataset of the desired application. Therefore, this study will
present a deep learning framework for tumor segmentation in colorectal US images, using
pre-trained CNNs for tumor segmentation in breast US images. Although an individual
neural network can show good performance, still an inherent bias may always be present
in the model architecture [47]. Ensemble deep learning combats data scarcity by combining
different model predictions into one final prediction. Aggregating multiple predictions
can negate the errors of individual models, thus yielding a higher overall accuracy and
improved generalization ability.

This study will present a deep learning framework for tumor segmentation in colorec-
tal US images, using pre-trained CNNs for tumor segmentation in breast US images and
ensemble learning techniques, to provide real-time intra-operative guidance on resection
margins. The novel contributions of this paper can be summarized as follows:
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• We acquired the first annotated extraluminal US dataset for colorectal cancer, with
ground truth tumor annotation-based histopathology results.

• To combat data scarcity, we used transfer learning techniques to optimize models
pre-trained on breast US data for colorectal US data.

• We applied ensemble learning methods to enhance overall tumor segmentation accuracy.
• We developed a new custom loss function (GWDice), focusing on the clinically relevant

top margin of the tumor.
• We present the first study on automatic colorectal US segmentation for real-time

intra-operative margin assessment.

The remainder of this paper is organized as follows: Section 2 starts with a description
of the data acquisition, labeling, and pre-processing, after which the transfer and ensemble
deep learning techniques that were used to develop a tumor segmentation network are
discussed. The results are presented in Section 3, which is followed by the discussion and
conclusion in Sections 4 and 5.

2. Materials and Methods

In this section, we will first describe the workflow of colorectal ultrasound image
collection and corresponding tumor annotations based on histopathology results. Then, the
necessary image pre-processing steps will be performed, after which we will use transfer
learning to optimize the models pre-trained on breast ultrasound data for our colorectal
ultrasound dataset. The added value of using a custom gradient-based loss function and
ensemble learning techniques will be examined. Finally, the tumor margin prediction
performance will be assessed.

2.1. Data Acquisition

Freshly excised colorectal cancer specimens from 74 patients undergoing surgery at
Antoni van Leeuwenhoek Hospital-Netherlands Cancer Institute (AvL-NKI) for colorectal
cancer between April 2019 and April 2022 were included in this study, under the approval
of the Hospital Ethics Review Board. Patients were included when diagnosed with a tumor
of at least stage T2 in the colon, sigmoid, or rectum, based on pre-operative examinations.
Both patients treated with and without neoadjuvant therapy were included in this study.
No specific exclusion criteria were applied during the data-acquisition process, ensuring a
good representation of the patient population and contributing to the generalizability of
the study findings. All patients had given permission for the further use of their data and
biological materials for scientific research.

Ultrasound images were acquired using a Philips CX50 machine (Philips Research,
Eindhoven, The Netherlands) and a Philips L15-7io high-frequency transducer (7–15 MHz),
which was placed directly on the specimen’s surface. This transducer is well suited for
high-resolution superficial measurements, with an imaging depth of only 3 cm. Per patient,
1 to 3 cross-sectional US images were acquired depending on the tumor size, which resulted
in 179 US images in total (Figure 1a). The dataset was divided patient-wise into a training
set of 121 images, a validation set of 28 images, and a test set of 30 images. The patient-wise
division was implemented to enhance the generalizability of the network and prevent the
potential introduction of bias related to similarities among images from the same patient,
which could lead to overfitting to specific characteristics within patients. All images had a
size of 430 × 344 px.
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Figure 1. Data acquisition workflow: one to three US images are acquired on the freshly excised
colorectal specimens, depending on the tumor size (a). Immediately after each acquisition, the
measured imaging plane was marked with ink to allow correlation with histopathological results (b).
During the histopathology process, the specimen is sliced at the locations of the ink marks (c), after
which these slices are microscopically analyzed and the tumor is delineated by a pathologist (d).
Based on these histopathological results and the location of the ink marks, the tumor was manually
delineated in the acquired US image (e).

2.2. Data Labeling

Interpreting ultrasound images and annotating the tumor area can be challenging,
even for an experienced radiologist. In order to obtain accurate labels, the measurement
plane was marked with ink after the acquisition of each US image to correlate the data with
the histopathology results (Figure 1b). To be able to retrieve the orientation during further
processing, two black ink marks and one purple ink mark were placed.

After data acquisition, the specimens were brought to the pathology department for
further processing according to standard protocols. Here, they were fixated in formalin for
48 h, after which the specimens were dissected into slices in such a way that each row of
ink marks ended up in a separate slice. From these slices, the areas with ink marks on the
surface were sampled in cassettes (Figure 1c). The final H&E-stained sections were digitally
scanned for microscopic analysis (Figure 1d).

The tumor area was delineated by a pathologist in all digital slices. The black and
purple ink marks, representing the exact US measurement locations, can be found back in
the digital tissue slices. Similarly, the position of these locations in the US image is known,
since the US probe was fixated using a mold during data acquisition and the same mold
was used as a reference for marking the locations. Based on this correlation, the tumor was
manually delineated in the acquired US image as the ground truth (Figure 1e).

2.3. Data Pre-Processing

Since this study was focused on resection margin assessment close to the specimen
surface, the US images were cropped to the top half of the images and subsequently resized
to 128 × 128 px. All images were normalized to a pixel intensity range of 0 to 1 before
training the models.

During training, data augmentation was applied to generalize the models and reduce
the risk of overfitting. The augmentation methods included vertical flipping, rotation, and
gamma correction. Image rotation angles between −5 and 5 degrees were used. Gamma
correction was applied according to the formula Pout = (Pin)

γ, in which γ ranged from 0.8
to 1.2. These gamma values were based on the distribution of pixel intensities in the images.

2.4. Transfer Learning Using Pre-Trained Networks

Although deep learning models have proven very useful in medical image segmen-
tation, they require a plethora of labeled data samples for adequate training, which is
often scarce in the medical field. In order to combat data scarcity, a framework leveraging
transfer learning is proposed.

Gomez-Flores et al. trained different convolutional neural network architectures for
semantic segmentation of breast tumors in ultrasound images [40]. These publicly available
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models were trained on 3061 ultrasound images of different public datasets. We used
five pre-trained models on breast US images as the foundation for a transfer learning
approach with the colorectal ultrasound dataset acquired in this study; MobilenetV2 [48],
Resnet18 [49], Resnet50 [49], U-net [50], and Xception [51].

The networks were initiated using the weights and biases that were acquired from
pre-training on breast US data (no initialization). The transfer learning process involved
further training these networks on batches of our colorectal US images. No layers were
frozen during this process, allowing the entire network to undergo fine-tuning to our
dataset. During the fine-tuning stage, learning rates were set a factor of 10 smaller than
those of the original networks, ensuring the retention of previously learned features while
adapting the weights to the new task. This approach effectively employed the pre-trained
networks as a weight initialization scheme.

To optimize the performance, all network architectures were prototyped with hyperpa-
rameter tuning (learning rate, batch size, optimizers, dropout rates) through an exhaustive
grid search. The best-performing network architecture was selected based on the highest
Dice similarity coefficient. All training procedures were performed in MATLAB 2022a
(MathWorks, Natick, MA, USA).

2.5. Loss Functions
2.5.1. Generalized Dice Loss

Overlapping losses such as the Dice loss are commonly used to assess the context and
shape of segmentation results. This loss is derived from the Dice similarity coefficient and
divides the overlapping area of the ground truth mask and the predicted mask by the total
area of both masks. To combat class imbalance between the foreground and background,
a class-weighted variant of the Dice loss called the generalized Dice loss (GenDice) was
used [52,53]. This adaptation of the Dice loss weighs the contribution of each class by the
inverse of the area of the class in the ground truth mask, to counter the influence of larger
regions on the Dice score; see Equation (1) and (2):

GenDice loss = 1− 2
∑2

k=1 wk ∑n gkn pkn

∑2
k=1 wk ∑n gkn + pkn

, (1)

with n the number of pixels in the image, gkn the pixel values of the true tumor mask, pkn
the pixel values of the predicted tumor mask, and wk the class weights for each class k:

wk =
1

(∑N
n=1 gkn)2

. (2)

2.5.2. Gradient-Weighted Dice Loss

Although resection margin assessment benefits from accurate tumor segmentation,
the main clinical focus is the correct identification of the top margin of the tumor. Therefore,
a custom loss function (GWDice) was developed in this study based on an expansion of the
generalized Dice loss (GenDice). In order to emphasize the importance of the top border,
weights were introduced that applied an exponential gradient in the vertical direction to
the ground truth mask; see Figure 2. Weights were applied in a way that tumor weights
at the bottom of the tumor stayed at the original weight assigned by the generalized Dice
loss. Weights for the pixels at the top of the image were increased by a factor of two, which
exponentially decreased to one over the height of the tumor. The method of calculating
the gradient weighted ground truth mask is shown in Algorithm 1. The new GWDice loss
function can be obtained based on this gradient weighted mask, as shown in Equation (3).

GWDice loss = 1− 2
∑2

k=1 wk ∑n gkntkn pkn

∑2
k=1 wk ∑n tkn + pkn

, (3)
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with n the number of pixels in the image, gkn the pixel values of the true tumor mask
extracted from the image IGk, tkn the gradient-transformed pixel values of the true tumor
mask extracted from the image ITk, pkn the pixel values of the predicted tumor mask, and
wk the class weights for each class k.

(a) (b) (c)

Figure 2. Gradient weighting of ground truth mask in the custom loss function. (a) Original US
image, (b) ground truth mask as used in the GenDice loss function, and (c) gradient-weighted ground
truth mask as used in the GWDice loss function.

Algorithm 1 Gradient weighted ground truth mask.

Input: Ground truth mask IGk, where k ∈ {1, 2} . Two-channel image: background (k = 1)
and foreground (k = 2)

Output: Gradient-weighted mask ITk
1: for all (x, y) do . For all pixels in the image
2: IT1(x, y) = IG1(x, y) . Finding indexes of nonzero values
3: M, N ← f ind(IG2(x, y) == 1)
4: if IG2(x, y) is 1 then
5: IT2(x, y)← [(x−max M)/(max M−min M)]2 . Calculating the gradient

weight
6: else if IG2(x, y) is 0 then
7: IT2(x, y)← 0
8: end if
9: end for

2.6. Ensemble Learning

Combining segmentation predictions from different models may reduce the outlying
errors of single models. Hence, after retraining the five individual networks, their seg-
mentation outputs were combined to further improve the final segmentation performance
(see Figure 3). Multiple fusion strategies were examined: (1) unweighted averaging, in
which the output probabilities of the five individual models were averaged; (2) weighted
averaging, in which the output probabilities of the five individual models were averaged
after applying a specific weight to each individual model; (3) voting, in which a tumor label
was assigned when at least a certain number of individual models predicted tumor; and
(4) an ensemble classifier, in which a pixel-based classification model was trained using the
output probabilities of the five individual models as the input. For each fusion strategy, the
weights and/or thresholds were optimized to achieve the best-possible combination of the
Dice score and tumor margin error.
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Figure 3. Visualization of the transfer and ensemble learning framework for tumor segmentation in
colorectal US, using 5 models pre-trained on breast US data. Healthy tissue is highlighted in green;
tumor tissue is highlighted in red.

2.7. Post-Processing

Since tumors generally consist of one continuous area, without gaps, two post-
processing steps were performed on the resulting tumor segmentation masks from all
individual models and ensemble methods. First, the largest connected component was
selected, to remove any separate small regions from the segmentation. Next, morphological
closing was performed with a disk-shaped structuring element with a radius of 3 px to fill
any remaining holes in the segmentation.

2.8. Performance Measures

The performance of all network architectures was evaluated using the Dice similarity
coefficient, the tumor margin error, and the area under the curve (AUC). The Dice similarity
coefficient is a commonly used performance metric in medical image segmentation, measur-
ing the amount of overlap between two segmentation masks (ranging from 0 to 1). A tumor
margin error metric was devised to assess the accuracy of the top tumor margin prediction,
which is calculated as the vertical distance between the top tumor pixel in the ground truth
mask and the top tumor pixel in the predicted mask (in millimeters); see Figure 4. For
comparing the performance, the average tumor margin error was calculated for all test
images. The AUC represents the area under the receiver operating characteristic (ROC)
curve, measuring the performance of the model irrespective of what classification threshold
is chosen (ranging from 0 to 1). For the Dice and AUC, a larger value indicates better per-
formance, while for the tumor margin error, a smaller value indicates better performance.

E

Ground truth Prediction

TMgt TMp

Figure 4. Visualization of the tumor margin error metric. TMgt shows the ground truth tumor
margin; TMp shows the predicted tumor margin. The tumor margin error, E, is the absolute difference
between the ground truth and predicted tumor margin (in millimeters).

3. Results

In the coming subsection, first, the patient and tumor characteristics are summarized,
after which the added value of using transfer learning, a custom-gradient-based loss function,
and ensemble learning for tumor segmentation in colorectal US images will be examined
successively. Finally, the resection margin prediction performance will be assessed.
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3.1. Patient and Tumor Characteristics

Ultrasound images were obtained from freshly excised specimens of 74 colorectal
cancer patients, of whom 41% received neoadjuvant therapy. Tumors with varying locations
and T-stages were included, with the majority situated in the rectum and classified as stage
pT3. The mean tumor diameter measured 4.1 ± 1.9 cm, with an average margin to the
tumor of 6.4 ± 3.7 mm. A detailed breakdown of the patient and tumor characteristics is
presented in Table 1.

Table 1. Patient and tumor characteristics.

Method Number of Patients (%)

Gender
Female 39 (53%)
Male 35 (47%)

Tumor location
Colon 26 (35%)
Sigmoid 18 (24%)
Rectum 30 (41%)

Neoadjuvant therapy
Yes 30 (41%)
No 44 (59%)

T-stage *
pT1 2 (3%)
pT2 11 (15%)
pT3 44 (59%)
pT4 17 (23%)

Tumor diameter 4.1 ± 1.9 cm
Tumor margin 6.4 ± 3.7 mm

* T-stage based on the final histopathological results obtained after surgery.

3.2. Comparison between Scratch Training, Pre-Trained Models, and Transfer Learning

To examine the impact of transfer learning on the colorectal tumor segmentation
performance, the Dice similarity coefficient was initially calculated under two conditions:
by training individual networks from scratch and by using the networks that were pre-
trained on breast US data. These results were compared to the performance after transfer
learning the pre-trained models with our colorectal data, which is summarized in Table 2.
A clear increase in segmentation performance can be seen when the pre-trained networks
were re-trained with our colorectal dataset. Using transfer learning, an average Dice
coefficient of 0.78 was reached over all networks, while with training from scratch and
the pre-trained breast US models, mean Dice coefficients of 0.68 and 0.63 were reached,
respectively. Examples of the segmentation differences between the three methods are
visualized in Figure 5. The figure shows that training from scratch using the pre-trained
breast US models resulted in much over- and under-segmentation in our colorectal US
dataset, depending on the situation. After retraining the pre-trained models with our
colorectal US dataset (transfer learning), the tumor was segmented more consistently
and accurately.
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Table 2. Tumor segmentation performance on the test set when training the individual networks
from scratch, when using the networks that were pre-trained on breast US data, and after transfer
learning of the pre-trained models with our colorectal US dataset. All networks were trained with the
standard GenDice loss function.

Method
Dice

Scratch Pre-Trained on Breast US After Transfer Learning

MobilenetV2 0.70 0.65 0.76
Resnet18 0.72 0.65 0.77
Resnet50 0.70 0.63 0.78
U-net 0.59 0.55 0.79
Xception 0.69 0.67 0.80

Mean 0.68 0.63 0.78

US image Scratch Pre-trained Transfer learningGT mask

Ground truth Prediction Overlap

Figure 5. Visualization of tumor segmentations when training the individual networks from scratch,
when using the networks that were pre-trained on breast US data, and after transfer learning of
the pre-trained models with our colorectal US dataset. All results were obtained for the individual
Resnet50 network, using the standard GenDice loss function.

3.3. Comparison between GenDice and GWDice Loss Functions

The performance of the custom GWDice loss function (introduced in Section 2.5.2)
after transfer learning was compared to the commonly used GenDice loss function for
all five individual models; see Table 3. The GWDice loss function slightly increased the
mean Dice score from 0.78 to 0.80, while the mean tumor margin prediction error clearly
decreased from 1.08 mm to 0.92 mm. This showed that the custom loss function was able
to improve the tumor margin prediction by emphasizing the top margin of the tumor,
without compromising the segmentation of the overall tumor contour. Examples of the
segmentation differences between both loss functions are visualized in Figure 6. The biggest
differences between the two loss functions can be seen at the top border of the tumor mask.

Table 3. Tumor segmentation performance on the test set of the standard GenDice loss function
compared to the custom GWDice loss function.

Method
Dice Tumor Margin

GenDice GW Dice GenDice GW Dice

MobilenetV2 0.76 0.80 1.03 mm 0.96 mm
Resnet18 0.77 0.79 1.25 mm 0.99 mm
Resnet50 0.78 0.81 1.26 mm 0.96 mm
U-net 0.79 0.79 0.83 mm 0.88 mm
Xception 0.80 0.81 1.02 mm 0.83 mm

Mean 0.78 0.80 1.08 mm 0.92 mm
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US image GenDice GWDiceGT mask

Ground truth Prediction Overlap

Figure 6. Visualization of tumor segmentations using the standard GenDice loss function and the
custom GWDice loss function, for the individual Resnet50 network.

3.4. Comparison between Individual Models and Ensemble Learning

The tumor segmentation performances of the different ensemble strategies are shown
in Table 4, together with the average performance of the individual models. For all results,
transfer learning with the GWDice loss function was used. Combining the tumor segmen-
tation predictions from individual models into one ensemble prediction further improved
the Dice coefficient from a mean of 0.80 to 0.84, and the tumor margin prediction error
decreased from a mean of 0.92 mm to 0.67 mm. Between the different ensemble strategies,
no major differences can be seen. The corresponding ROC curves are shown in Figure 7, for
all individual models and ensemble methods. The highest AUC values were reached using
the unweighted averaging (0.965) and classification ensemble methods (0.964), compared
to an average AUC value of 0.951 for the individual segmentation models. The curves
show that, by choosing an appropriate threshold value, a tumor segmentation sensitivity of
0.95 and specificity of 0.85 can be reached. Examples of the resulting tumor segmentations
are visualized in Figure 8. Each individual segmentation model produced a slightly differ-
ent tumor segmentation, with, at certain locations, over- or under-segmentation. Using the
ensemble approach, the best of all these variations was combined into one final prediction,
which showed the highest overlap with the ground truth tumor contour (column 8 in
Figure 8).

As a reference, the tumor was annotated by two independent observers in ten ran-
domly selected images to determine the human observers’ agreement on both the Dice
coefficient and the tumor margin. This showed an inter-observer Dice score of 0.84 and
tumor margin variation of 0.59 mm.

Table 4. Tumor segmentation performance on the test set of individual models compared to multiple
ensemble methods, using transfer learning with the GWDice loss function.

Method Dice Tumor Margin AUC

Individual models (mean) 0.80 0.92 mm 0.95
Unweighted averaging 0.84 0.68 mm 0.97
Weighted averaging 0.84 0.68 mm 0.96
Voting 0.84 0.67 mm 0.95
Classification model 0.83 0.67 mm 0.97
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Figure 7. Receiver operating characteristic (ROC) curves of tumor segmentation for both the individ-
ual models and the different ensemble methods.

Ground truth Prediction Overlap

GT mask MobilenetV2 Resnet18 Resnet50 Unet Xception EnsembleUS image

Figure 8. Visualization of tumor segmentations for four different tumor samples (rows 1–4), using
the five individual models (column 3–7), and the classification ensemble method (column 8). For all
results, transfer learning with the GWDice loss function was used.

3.5. Resection Margin Prediction

The agreement between the predicted tumor margins using deep ensemble learning
and the true tumor margins based on manual annotations is demonstrated in Figure 9, for
all US images in the test set. This figure shows that small margins can be predicted with
high accuracy. For tumor margins larger than 5 mm, some larger errors can be seen. A
correlation coefficient of 0.77 was found, indicating a strong positive correlation between
the true and predicted tumor margins. In addition, the tumor margin prediction results
using our ensemble method did not show a consistent over- or under-estimation of the
tumor margin.
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Figure 9. Predicted tumor margins versus the true tumor margins for all images in the test set, using
the classification ensemble method.

3.6. Optimization

Choosing the optimal output probability threshold for the networks involves a trade-
off between the best Dice coefficient and tumor margin error. The results presented in the
previous section were based on a threshold for an optimal balance between the Dice and
tumor margin error. However, when for the final application, one of them is most important,
the thresholds can be further optimized for the Dice or tumor margin specifically. Figure 10
shows the resulting Dice and tumor margin error for the classification ensemble method,
using every possible output probability threshold between 0 and 1. When optimizing
purely the Dice coefficient, a maximum Dice of 0.84 can be achieved compared to the
0.83 previously reported using ensemble learning. When optimizing purely the tumor
margin prediction error, a minimum tumor margin error of 0.64 mm can be achieved
compared to the 0.67 mm previously reported using ensemble learning.
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Figure 10. Dice and tumor margin error for every possible output probability threshold between
0 and 1, using the classification ensemble method. The solid line and shaded area represent the
average and standard deviation of all images in the test set, respectively.

4. Discussion

In this paper, a model for automatic tumor segmentation in colorectal US images was
developed, to provide real-time guidance on resection margins using intra-operative US.
First, the added value of using transfer learning, a new custom gradient-based loss function,
and ensemble learning was assessed, successively. Finally, the resection margin prediction
accuracy based on the segmentation results was evaluated.
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Due to data scarcity in the field of intra-abdominal colorectal ultrasound images, CNN
models pre-trained for tumor segmentation in breast US were used as a starting point. After
re-training these models with our colorectal US dataset, the segmentation performance
(mean Dice of 0.78) outperformed the results that were achieved using only the pre-trained
CNNs (mean Dice of 0.63) or training the CNN models from scratch (mean Dice of 0.68);
see Table 2 and Figure 5. Although the pre-trained networks were trained on a large dataset
of more than 3000 breast US images, it does concern a different application (breast tissue),
which may explain why this method achieved the lowest Dice coefficient. On the other
hand, training the CNNs from scratch was performed using our colorectal US dataset,
which resulted in a slightly higher Dice coefficient. However, the fact that this dataset
was relatively small may be a reason why optimal results were not achieved. Using the
transfer learning method, the networks were pre-trained on a large comparable dataset,
after which they were optimized on our current colorectal dataset. This strategy clearly
increased the tumor segmentation performance. The available pre-trained models for
tumor segmentation in breast US concern long-established neural network architectures. In
follow-up research, more recent network architectures (i.e., EfficientNetV2 or ConvNeXt)
could be investigated, where transfer learning techniques with a large comparable dataset
may be used as well to combat data scarcity when training these networks from scratch.

A new custom GWDice loss function was introduced to put more emphasis on the
top tumor border, which is clinically most important for intra-operative resection margin
assessment. The new loss function achieved the desired effect: improving the top tumor
margin prediction from 1.08 mm to 0.92 mm, while preserving a good general overlapping
score (the mean Dice score increased from 0.78 to 0.80); see Table 3 and Figure 6. Currently,
a vertical exponential gradient was used to adjust the weights in the ground truth mask. In
future research, exploring other intensity profiles where the weights of the ground truth
mask decrease less or more rigorously in the vertical direction could be interesting.

As a next step, multiple ensemble learning techniques were examined. The results
showed that combining predictions from the five individual models further increased the
Dice score from 0.80 to 0.84 and decreased the tumor margin error from 0.92 to 0.67 mm
(Table 4 and Figure 8), compared to using one separate model. All four ensemble methods
that were evaluated in this study resulted in comparable tumor segmentation performance
metrics. As can be seen in Figure 8, the ensemble method canceled out some of the areas
with over- and under-estimation that the different individual models showed. In this
study, some commonly used ensemble strategies were used to examine whether ensemble
learning could positively influence the segmentation performance. In the future, more
sophisticated ensemble strategies could be explored as well.

To provide intra-operative guidance on resection margins, accurate tumor margin
prediction is crucial. In this study, an average tumor margin prediction accuracy of 0.67 mm
was achieved. This value is in the same order of magnitude as the US resolution (≈0.5 mm).
The use of high-frequency ultrasound, with a higher spatial resolution and lower penetra-
tion depth, may achieve a slightly higher tumor margin prediction accuracy. In addition,
the accuracy of 0.67 mm fell within the resection margin of 1 mm, which is generally used
in colorectal cancer surgery. Figure 9 showed larger errors for deeper tumor margins, which
could be due to a decrease in the US signal deeper in the tissue. However, given the fact
that tumor detection close to the resection surface (up to 5 mm in depth) is clinically most
relevant, this is not a major concern.

Although a correlation with histopathology was performed to obtain accurate tumor
annotations, small errors might have been made during the manual annotations. The
Dice coefficient of 0.84 achieved with our automatic segmentation model was equal to the
human observers’ agreement of 0.84. In the case of the resection margin prediction, an
accuracy of 0.67 mm was achieved with our automatic segmentation model, compared
to an inter-observer variability of 0.59 mm. This shows that the automatic segmentation
model achieved comparable results to the human observers, indicating that intra-operative
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US in combination with an automatic tumor segmentation model seems promising and
may contribute to more accurate colorectal tumor resections.

Figure 10 shows that the optimal output probability threshold depends on the metric
used to evaluate the performance of the segmentation model. The thresholds can be
optimized specifically for the final application and user wishes, e.g., fully focused on
achieving the best tumor margin, the entire tumor contour, or a combination. A similar
trade-off can be made between sensitivity and specificity.

While our developed network demonstrated accurate tumor segmentations and tumor
margin predictions for our colorectal US dataset, it is important to acknowledge certain
limitations of our study. The use of a single US device and transducer introduces a potential
challenge in generalizing our findings to other US devices and datasets, as hardware
variations may impact tumor appearance and image quality. Future research should
explore the generalizability of our model, including the custom loss function (GWDice),
to diverse US devices and datasets (possibly even extending to other oncological fields).
Potential hardware differences may be addressed by applying pre-processing steps, such
as equalizing or enhancing the resolution and contrast. Additionally, the relatively small
dataset size in our study may affect the model’s generalizability as well. Addressing
this limitation by expanding the dataset in future research will contribute to a more-
comprehensive evaluation of the proposed methods and their applicability across a broad
patient population.

Currently, the US images were acquired on specimens from patients undergoing
surgery for colorectal cancer, directly after surgical resection. The next step towards the clin-
ical implementation of intra-operative US with automatic tumor segmentation would be to
evaluate the tumor segmentation performance in vivo during surgery on intra-operatively
acquired US images. Specifically, this in vivo validation should involve a comparison of
the model’s predicted tumor margins during surgery with the definitive histopathological
results obtained post-operatively. Subsequently, a randomized study could be considered to
prove the clinical value of intra-operative US-based tumor segmentation in terms of positive
margin incidence, patient outcomes, or surgery duration. The developed US segmentation
model could contribute to more accurate colorectal tumor resections by providing real-time
intra-operative feedback to surgeons on tumor margins. This may ultimately reduce the
positive margin rate and enhance patient outcomes.

5. Conclusions

This study presented a deep learning framework for tumor segmentation in colorectal
US images. A colorectal US dataset was acquired, with ground truth tumor annotations
based on histopathology results. Using transfer learning to optimize the CNNs pre-trained
on breast ultrasound data for the current colorectal ultrasound dataset, good tumor seg-
mentation performance could be achieved despite the data scarcity. A new custom gradient-
based loss function (GWDice) was developed, which emphasized the top margin of the
tumor while training the networks. Ensemble learning methods were applied to combine
the tumor segmentation predictions of multiple individual models and further improve the
overall tumor segmentation performance, resulting in a final Dice coefficient of 0.84 and a
tumor margin prediction accuracy of 0.67 mm. To the best of our knowledge, this is the first
study on tumor segmentation for intra-operative colorectal US in the literature. Automatic
tumor segmentation in colorectal US enables real-time intra-operative guidance and may
contribute to more accurate colorectal tumor resections.
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