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Abstract: Breast cancer is a heterogeneous disease, and computed tomography texture analysis
(CTTA), which reflects the tumor heterogeneity, may predict the prognosis. We investigated the
usefulness of CTTA for the prediction of disease-free survival (DFS) and prognostic factors in patients
with invasive breast cancer. A total of 256 consecutive women who underwent preoperative chest
CT and surgery in our institution were included. The Cox proportional hazards model was used to
determine the relationship between textural features and DFS. Logistic regression analysis was used
to reveal the relationship between textural features and prognostic factors. Of 256 patients, 21 (8.2%)
had disease recurrence over a median follow-up of 60 months. For the prediction of shorter DFS,
higher histological grade (hazard ratio [HR], 6.12; p < 0.001) and lymphovascular invasion (HR, 2.93;
p = 0.029) showed significance, as well as textural features such as lower mean attenuation (HR, 4.71;
p = 0.003) and higher entropy (HR, 2.77; p = 0.036). Lower mean attenuation showed a correlation
with higher tumor size, and higher entropy showed correlations with higher tumor size and Ki-67.
In conclusion, CTTA-derived textural features can be used as a noninvasive imaging biomarker to
predict shorter DFS and prognostic factors in patients with invasive breast cancer.

Keywords: breast neoplasms; computed tomography; texture analysis; prognosis; disease-free
survival

1. Introduction

Breast cancer is a heterogeneous disease, and tumor heterogeneity in breast cancer is
divided into intertumoral heterogeneity and intratumoral heterogeneity [1–7]. Intratumoral
heterogeneity, which can be different according to genetic and phenotypic variations, has
been a major obstacle to effective personalized treatment in breast cancer patients, as it
drives metastasis, progression, and treatment resistance [8]. According to previous studies,
patients with high intratumoral heterogeneity have a poorer prognosis than those with
low intratumoral heterogeneity [9–11]. For the evaluation of intratumoral heterogeneity,
assessment of both genetic and phenotypic variation is essential. Genetic assessment is
performed using partial tissue samples derived from surgical or biopsy samples. Due to
heterogeneity in the structure of breast cancer, genetic assessment may not be sufficient for
assessing intratumoral heterogeneity [12]. Therefore, it is clinically important to evaluate
the complete phenotypic variation within a tumor using noninvasive methods such as
computed tomography (CT) or magnetic resonance imaging (MRI), which can assess the
whole tumor phenotype [7].
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To evaluate the spatial heterogeneity of tumors, computed tomography texture anal-
ysis (CTTA), which can quantify the intensity of pixel histograms of tumors and reflect
intratumoral heterogeneity, has been widely used [13–18]. In a variety of tumor types,
CTTA can predict pathological features, response to therapy, and prognosis [14–18]. How-
ever, there have been no published studies on the use of CTTA in breast cancer patients
because chest CT is not the primary method for the evaluation of breast cancer, and cur-
rent guidelines do not recommend chest CT in patients with early breast cancer [19,20].
Nevertheless, chest CT has been widely and steadily used in clinical practice because it is
useful for the accurate evaluation of asymptomatic metastasis to the lungs, bone, lower
part of the liver, and axillary and supraclavicular lymph nodes (LN) [21]. Also, chest CT
can be used as a staging work-up method for patients who cannot undergo breast MRI
due to obesity, MRI contrast allergy, renal insufficiency, or claustrophobia. In the United
States, 27% (36.2% of patients with stage II tumors and 11% of patients with stage I tumors)
of patients with early breast cancer underwent chest CT scans, and in Australia, 40% of
patients underwent chest CT [19,22]. In South Korea, 97.2% of patients underwent chest
CT [23]. Therefore, chest CT-derived textural features can be used for predicting survival
outcomes or prognoses in patients with invasive breast cancer.

The purpose of this study was to investigate the usefulness of chest CT-derived textural
features in predicting disease-free survival (DFS) and to investigate the association be-
tween textural features and clinicopathological prognostic factors in patients with invasive
breast cancer.

2. Materials and Methods
2.1. Patients

The institutional review board approval was acquired for this retrospective study, and
the need for written informed patient consent was waived. Through a review of medical
records between January 2013 and May 2015, we identified consecutive women who had
been newly diagnosed with primary invasive breast cancers. The inclusion criteria were
as follows: (a) pretreatment postcontrast chest CT performed at our institution, (b) breast
surgery such as mastectomy or breast-conserving therapy performed at our institution,
and (c) lesion visible on chest CT correlated with those identified on preoperative breast
MRI. The exclusion criteria were as follows: (a) neoadjuvant chemotherapy (NAC) before
surgery, (b) distant metastasis at the time of diagnosis, (c) absent histological grade, and
(d) patient who had undergone mammoplasty.

2.2. CT Acquisition

For the evaluation of the involvement of LNs or distant organs such as lungs or
bones, chest CTs were performed for all patients with a supine position using various CT
scanners, including Brilliance 64, Ingenuity 128 (Philips Medical Systems, Amsterdam,
The Netherlands), and Somatom Definition Flash (Siemens, Erlangen, Germany). Our
chest CT protocols included a postcontrast scan (280 ms gantry rotation, 80–120 kVp with
30–300 mAs, 1 mm slice collimation) according to the automatic tube current modulation.
The reconstruction parameters comprised a 3 mm slice thickness and no reconstruction
interval. Intravenous contrast medium (100 mL of iopromide (ProsureM300, LG Life
Sciences, Seoul, Republic of Korea) was injected at a rate of 2.5–3 mL/s, followed by a
40 mL saline bolus. Scanning was commenced 90 s after contrast medium injection.

2.3. Texture Analysis

Preoperative CT images were retrospectively reviewed by a radiologist with 11 years
of experience in breast imaging (S.E.S) who was blinded to the clinicopathological findings.
With a reference standard of breast MRI images, texture analysis was performed by drawing
a region of interest (ROI) around the entire enhancing tumor margin at the maximum
cross-sectional area of the tumor on axial postcontrast DICOM images with a mediastinal
window setting using commercial software (TexRAD software VER 3.9, Feedback Medical
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Ltd., Cambridge, UK), which is a postprocessing software that uses a filtration-histogram
technique (Figures 1 and 2). In the case of multifocal or multicentric diseases, the largest
visible tumor was selected to draw the ROI as an index. Texture quantification of the ROI
was performed with each filter setting, i.e., a Laplacian of Gaussian spatial bandpass filter,
including fine (spatial scaling factor [SSF] 2), medium (SSF 3–4), and coarse (SSF 5–6) filter
settings. A fine filter value emphasizes the fine anatomic details, whereas a coarse filter
value emphasizes the coarse features [24]. Various texture parameters were calculated.
Mean attenuation indicates the average attenuation value. Standard deviation (SD) shows
the degree of dispersion from the average. The mean of positive pixels (MPP) indicates the
average gray-level intensity above the threshold of zero. Entropy shows irregularity or
complexity of pixel intensities. Kurtosis indicates the pointiness of the pixel distribution,
and skewness represents its degree of asymmetry.

2.4. Clinicopathological Data

The final histopathological results were obtained from surgical specimens to deter-
mine the histological type, histological grade, tumor size, presence of LN involvement and
lymphovascular invasion, and estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), and Ki-67 status. ER and PR positivity was de-
termined using a cutoff value of >1% positively stained nuclei. The HER2 staining intensity
was scored as 0, 1+, 2+, and 3+, and tumors with HER2 scores of 3+ were considered posi-
tive. Tumors with HER2 scores of 2+ were further evaluated with silver-enhanced in situ
hybridization. Based on the results of ER, PR, and HER2 analyses, the tumors were charac-
terized into three molecular subtypes—luminal-like (ER/PR-positive and HER2-negative),
HER2-like (ER/PR-negative and HER2-positive), and basal-like (ER/PR/HER2-negative)
tumors [25]. Regarding the Ki-67 expression status, nuclear staining ≥14% was considered
a high level of expression.

2.5. Statistical Analysis

The primary endpoint was DFS, which was calculated as the time interval from the
date of surgery to the date of the first event, such as breast cancer recurrence (locoregional or
distant recurrence) or the development of new primary contralateral breast cancer. Patients
were followed up until the first event or until May 2020 if they were alive.

The clinicopathological characteristics and CT texture features were compared be-
tween patients with and without recurrence using the chi-square test, Mann–Whitney U test,
or Student’s t-test. For survival analysis, significant CT texture features were dichotomized
according to the optimal cutoff values identified by receiver operating characteristic (ROC)
curve analysis using the maximum Youden index. According to the cutoff values, pa-
tients were categorized into a low-risk recurrence group or a high-risk recurrence group.
Kaplan–Meier survival curves were drawn to compare survival between the high-risk and
low-risk recurrence groups. To determine the relationship between clinicopathological
or textural features and DFS, the Cox proportional hazards model was used. Features
with p-values < 0.05 at univariate analysis were further analyzed using a multivariate anal-
ysis. To adjust for multiple comparisons, we performed a false discovery rate correction
using the Benjamini and Hochberg method. Adjusted p < 0.05 was considered indicative of
a significant difference. The relationships between textural features associated with DFS
and clinicopathological prognostic factors were assessed using the Mann–Whitney U test
or Student’s t-test and linear logistic regression analysis (SPSS software, version 20.0; IBM
Corp., Armonk, NY, USA). p-values < 0.05 were considered statistically significant.
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Figure 1. Findings in a 45-year-old woman with basal-like cancer in the right breast (pathological stage
IIA, T2N0, histological grade III). (A) Axial contrast-enhanced T1−weighted MRI image acquired
for 2 min shows an enhancing mass (arrows) in the right breast. (B) Axial postcontrast CT image
shows an enhancing mass with a central area of low attenuation (arrows) in the right breast. (C) With
the reference standard of an MRI image, a region of interest was drawn along the margin of the
enhancing tumor on the CT image (blue line), and texture parameters without image filtration (SSF0)
and with image filtration (SSF2−6) were acquired. Mean attenuation using SSF5 was 35.57, and
entropy using SSF2 was 5.36. (D) CT texture histogram using SSF5 provides information on mean
attenuation. (E) CT texture histogram using SSF2 provides information on entropy. (F) Ipsilateral
lymph node metastasis (circle) in her axilla on PEC−CT 1 year after surgery.
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Figure 2. Findings in a 42−year-old woman with luminal-like cancer in the right breast (pathological 
stage IIA, T2N0, histological grade I). (A) Axial contrast-enhanced T1−weighted MRI image ac-
quired for 2 min shows an enhancing mass in the right breast. (B) Axial postcontrast CT image 
shows an enhancing mass without a central area of low attenuation in the right breast. (C) With the 
reference standard of an MRI image, a region of interest was drawn along the margin of enhancing 
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Figure 2. Findings in a 42−year-old woman with luminal-like cancer in the right breast (pathological
stage IIA, T2N0, histological grade I). (A) Axial contrast-enhanced T1−weighted MRI image acquired
for 2 min shows an enhancing mass in the right breast. (B) Axial postcontrast CT image shows an
enhancing mass without a central area of low attenuation in the right breast. (C) With the reference
standard of an MRI image, a region of interest was drawn along the margin of enhancing tumor on
CT image (blue line), and texture parameters without image filtration (SSF0) and with image filtration
(SSF2−6) were acquired. Mean attenuation using SSF5 was 86.73, and entropy using SSF2 was 5.14.
(D) CT texture histogram using SSF5 provides information on mean attenuation. (E) CT texture
histogram using SSF2 provides information on entropy. There have been no signs of recurrence for
5 years since the surgery.
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3. Results
3.1. Patient Characteristics and Disease-Free Survival

Among 350 consecutive women who had been newly diagnosed with primary invasive
breast cancers, 41 patients who had undergone NAC before surgery because clinicopatho-
logic prognostic factor could be changed after NAC, 39 patients who had previously under-
gone excision, 9 patients who had distant metastasis at the time of diagnosis, 4 patients who
had no histological grade available, and one patient who had undergone mammoplasty
before surgery, were excluded. Finally, 256 patients were enrolled (Figure 3). The mean
interval between preoperative CT and surgery was 9.5 days. Of the 256 patients (mean
age, 54 ± 11 years; range, 30–87 years), 176 (68.8%) patients underwent breast-conserving
surgery and 80 (31.2%) patients underwent mastectomy. One patient who underwent
breast-conserving surgery had a positive resection margin on the pathologic report.
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Figure 3. Flowchart of patient inclusion.

Of the 256 patients (mean age, 54 ± 11 years; range, 30–87 years), the most common
histological types were invasive ductal carcinoma (n = 218), invasive lobular carcinoma
(n = 13), mucinous carcinoma (n = 7), other or mixed type (n = 5), medullary carcinoma
(n = 4), tubular carcinoma (n = 3), papillary carcinoma (n = 3), and metaplastic carcinoma
(n = 3). The molecular subtypes were luminal-like (n = 167), HER2-like (n = 50), and basal-
like subtypes (n = 39).

There were 21 (nine locoregional, nine distant, and three contralateral) events and
three deaths. The median follow-up period was 60 months (range, 11–89 months). The
mean time to events was 39 months (range, 11–72 months). Patients with recurrence were
more likely to have a higher histological grade, tumor size >2 cm, lymphovascular invasion,
and a high Ki-67 expression than patients without recurrence (Table 1).
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Table 1. Patient characteristics according to recurrence status.

Features All Patients
(n = 256) *

Nonrecurrence Group
(n = 235)

Recurrence Group
(n = 21) p-Value

Patient age (years) 54.86 ± 11.34 54.82 ± 11.10 55.28 ± 14.06 0.860
Histological type 1.000

Invasive ductal 218 (85.1) 200 (85.1) 18 (85.7)
Others 38 (14.9) 35 (14.8) 3 (14.3)

Histological grade <0.001
I or II 180 (70.3) 173 (73.6) 7 (33.3)
III 76 (29.7) 62 (26.4) 14 (66.7)

Tumor size 0.006
≤2 cm 157 (61.3) 150 (63.8) 7 (33.3)
>2 cm 99 (38.7) 85 (36.2) 14 (66.7)

LN a status 0.063
Negative 169 (66.0) 159 (67.7) 10 (47.6)
Positive 87 (34.0) 76 (32.3) 11 (52.4)

Lymphovascular invasion
0.013Absent 218 (85.2) 204 (86.8) 14 (66.7)

Present 38 (14.8) 31 (13.2) 7 (33.3)
ER b status 0.069

Negative 57 (22.3) 49 (20.9) 8 (38.1)
Positive 199 (77.7) 186 (79.1) 13 (61.9)

PR c status 0.230
Negative 69 (27.0) 61 (26.0) 8 (38.1)
Positive 187 (73.0) 174 (74.0) 13 (61.9)

HER2 d status 1.000
Negative 206 (80.5) 189 (80.4) 17 (81.0)
Positive 50 (19.5) 46 (19.6) 4 (19.0)

Molecular subtype 0.197
Luminal-like 167 (65.2) 156 (66.4) 11 (52.4)
HER2-like 50 (19.5) 46 (19.6) 4 (19.0)
Basal-like 39 (15.2) 33 (14.0) 6 (28.6)

Ki-67 status 0.001
Low (<14%) 159 (62.1) 153 (65.1) 6 (28.6)
High (≥14%) 97 (37.9) 82 (34.9) 15 (71.4)

* Data are presented as number of cancers with percentages in parentheses. a LN, lymph node; b ER, estrogen
receptor; c PR, progesterone receptor; d HER2, human epidermal growth factor receptor type 2.

3.2. CT Texture Features

The CT textural features were compared between the nonrecurrence group (n = 235)
and the recurrence group (n = 21). When no image filtration (SSF0) was used, textural
features were not significantly different between the two groups. When images were
obtained using SSF2–6, the recurrence group had a lower mean CT attenuation and MPP
than the nonrecurrence group. When using SSF2, the recurrence group had higher entropy
than the nonrecurrence group, and when using SSF6, the recurrence group had higher
kurtosis than the nonrecurrence group (Table 2). The optimal cutoff values for CT textural
features were acquired. At SSF2, the optimal cutoff value was 32.76 Hounsfield units
(HU) for mean, 68.06 for MPP, and 5.31 for entropy. At SSF3, the optimal cutoff value was
47.31 HU for mean and 66.74 for MPP. At SSF4, the optimal cutoff value was 54.97 HU for
mean and 80.81 for MPP. At SSF5, the optimal cutoff value was 62.59 HU for mean and
74.50 for MPP. At SSF6, the optimal cutoff value was 52.45 HU for mean, 86.40 HU for MPP,
and −0.90 for kurtosis.
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Table 2. CT Textural features according to recurrence status.

CT Textural Features All Patients
(n = 256) *

Nonrecurrence Group
(n = 235)

Recurrence Group
(n = 21) p-Value Adjusted p-Value †

SSF a 0
Mean 84.68 (66.98, 101.34) 85.00 (67.17, 103.04) 82.54 (53.17, 94.06) 0.175
SD b 47.16 (41.91, 52.78) 47.09 (42.24, 53.10) 47.98 (38.47, 50.17) 0.339
MPP c 90.02 (73.36, 105.63) 89.91 (73.75, 106.77) 90.20 (63.92, 96.75) 0.157
Entropy 4.78 (4.50, 5.01) 4.78 (4.48, 5.01) 4.96 (4.59, 5.16) 0.098
Skewness −0.03 (−0.19, 0.13) −0.04 (−0.21, 0.13) 0.10 (−0.13, 0.17) 0.102
Kurtosis −0.09 (−0.31, 0.09) −0.09 (−0.09, 0.10) −0.05 (−0.27, 0.02) 0.802

SSF2
Mean 40.44 (29.00, 65.40) 42.78 (29.45, 67.47) 32.74 (18.89, 43.07) 0.004 0.032
SD 73.52 (63.57, 88.54) 74.10 (63.67, 88.62) 65.68 (61.30, 88.52) 0.395
MPP 78.55 (63.68, 100.52) 79.68 (64.16, 101.72) 64.31 (57.68, 83.45) 0.016 0.039
Entropy 5.06 (4.71, 5.31) 5.05 (1.70, 5.28) 5.32 (4.82, 5.42) 0.039 0.022
Skewness −0.09 (−0.34, 0.10) −0.11 (−0.36, 0.10) −0.04 (−0.60, 0.31) 0.821
Kurtosis −0.14 (−0.51, 0.27) −0.16 (−0.52, 0.25) 0.18 (−0.39, 0.38) 0.322

SSF3
Mean 57.10 (−0.51, 0.27) 60.29 (41.44, 94.53) 40.32 (26.46, 58.78) 0.002 0.022
SD 69.06 (55.99, 80.75) 69.08 (56.92, 80.82) 63.91 (51.06, 80.98) 0.265
MPP 83.67 (66.04, 113.85) 85.01 (68.63, 116.69) 65.78 (53.74, 87.30) 0.002 0.022
Entropy 5.00 (4.67, 5.22) 4.99 (4.67, 5.21) 5.21 (4.65, 5.34) 0.107
Skewness −0.18 (−0.44, 0.04) −0.18 (−0.44, 0.04) −0.19 (−0.38, 0.03) 0.712
Kurtosis −0.36 (−0.72, 0.11) −0.37 (−0.73, 0.10) −0.33 (−0.62, 0.36) 0.265

SSF4
Mean 70.51 (47.99, 100.00) 72.14 (49.72, 109.77) 48.06 (30.58, 68.78) 0.004 0.032
SD 64.09 (50.95, 80.32) 64.88 (51.67, 80.62) 58.75 (45.97, 79.03) 0.502
MPP 89.97 (67.77, 122.21) 91.39 (69.00, 123.78) 67.27 (52.29, 90.34) 0.006 0.036
Entropy 4.98 (4.63, 5.19) 4.96 (4.62, 5.19) 5.16 (4.63, 5.30) 0.126
Skewness −0.24 (−0.52, −0.01) −0.24 (−0.52, 0.00) −0.24 (−0.74, 0.40) 0.862
Kurtosis −0.49 (−0.85, −0.12) −0.51 (−0.87, −0.02) −0.30 (−0.74, 0.40) 0.061

SSF5
Mean 72.55 (47.57, 105.26) 74.22 (50.81, 110.82) 49.97 (31.48, 79.34) 0.004 0.032
SD 60.84 (45.76, 79.58) 61.08 (45.97, 80.23) 57.88 (44.10, 75.15) 0.502
MPP 88.76 (67.56, 124.56) 91.13 (69.23, 126.48) 68.64 (53.83, 99.96) 0.006 0.036
Entropy 4.94 (4.57, 5.21) 4.92 (4.58, 5.18) 5.11 (4.56, 5.28) 0.126
Skewness −0.26 (−0.51, −0.05) −0.26 (−0.50, −0.05) −0.29 (−0.62, 0.02) 0.862
Kurtosis −0.60 (−0.60, −0.19) −0.64 (−0.89, −0.22) −0.40 (−0.71, 0.23) 0.061

SSF6
Mean 69.69 (43.71, 102.11) 74.22 (45.80, 104.65) 42.90 (24.56, 77.29) 0.011 0.039
SD 57.27 (41.61, 79.39) 56.63 (41.67, 81.58) 60.03 (40.98, 73.46) 0.777
MPP 89.16 (59.21, 122.40) 90.03 (61.50, 124.24) 68.90(51.85, 100.47) 0.020 0.039
Entropy 4.92 (4.52, 5.20) 4.90 (4.51, 5.19) 5.03 (4.59, 5.36) 0.113
Skewness −0.03 (−0.19, 0.13) −0.29 (−0.53, −0.07) −0.41 (−0.67, 0.09) 0.898
Kurtosis −0.09 (−0.09, 0.09) −0.70 (−0.93, −0.31) −0.27 (−0.76, 0.24) 0.018 0.039

* Data are median with Q1 and Q3 percentiles in parentheses. † For adjusted p values, we performed a false
discovery rate correction using the Benjamini and Hochberg method. a SSF, spatial scale filter; b SD, standard
deviation; c MPP, mean of positive pixels.

3.3. Survival Analysis Using Cox Proportional Hazard Models

In the univariate Cox proportional hazards model, the clinicopathological features
of higher histological grade, larger tumor size, presence of lymphovascular invasion,
and higher Ki-67 status were associated with shorter DFS outcomes. For CT textural
features, lower MPP and higher entropy using SSF2, lower mean and lower MPP using
SSF3, lower mean and lower MPP using SSF4, lower mean and lower MPP using SSF5,
and lower mean and lower MPP using SSF6 were associated with shorter DFS outcomes
(Table 3). In multivariate analysis, higher histological grade (HR, 6.12; p < 0.001), presence
of lymphovascular invasion (HR, 2.93, p = 0.029), the textural feature of lower mean
attenuation using SSF5 (HR, 4.71; p = 0.003), and higher entropy using SSF2 (HR, 2.77;
p = 0.036) were significant factors for predicting shorter DFS (Table 4).
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Table 3. Univariate Cox proportional hazards analysis of variables associated with disease-free survival.

Univariate Analysis

Variable HR 95% CI p-Value

Clinicopathologic features
Histological grade 0.002

III 4.260 1.713–10.590
I or II Reference

Tumor size 0.008
>2 cm 3.461 1.392–8.606
≤2 cm Reference

Stage
II 2.398 0.872–6.593 0.090
I Reference

Lymphovascular invasion 0.034
Present 2.678 1.077–6.664
Absent Reference
Ki-67 status 0.015
High (≥14%) 3.269 1.263–8.464
Low (<14%) Reference
Textural Features

Mean using SSF2 a

<32.76 HU
≥32.76 HU

23.267
Reference 0.025–21,555.829 0.367

MPP b at SSF2
<68.06 HU 2.395 1.006–5.702 0.048
≥68.06 HU Reference

Entropy using SSF2
<0.001>5.31 4.809 2.007–11.523

≤5.31 Reference
Mean using SSF3

0.017<47.31 HU 2.926 1.209, 7.077
≥47.31 HU Reference

MPP using SSF3
0.001<66.74 HU 4.597 1.901–11.114

≥66.74 HU Reference
Mean using SSF4

0.001<54.97 HU 4.401 1.771–10.934
≥54.97 HU Reference

MPP using SSF4
0.004<80.81 HU 4.023 1.559–10.383

≥80.81 HU Reference
Mean using SSF5 0.002

<62.59 HU 4.390 1.698–11.348
≥62.59 HU Reference

MPP using SSF5
0.005<74.50 HU 3.530 1.459–8.540

≥74.50 HU Reference
Mean using SSF6

0.012<52.45 HU 3.057 1.283–7.281
≥52.45 HU Reference

MPP using SSF6
0.021<86.40 HU 3.070 1.188–7.931

≥86.40 HU Reference
Kurtosis using SSF6

0.168>−0.50 1.844 0.773–4.399
≤−0.50 Reference

a SSF, spatial scale filter; b MPP, mean of positive pixels.
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Table 4. Multivariate Cox proportional hazards analysis of variables associated with disease-free survival.

Multivariate Analysis

Variable HR 95% CI p-Value

Clinicopathological features
Histologic grade <0.001

III 6.128 2.322–16.172
I or II Reference

Lymphovascular invasion 0.029
Present 2.931 1.116–7.696
Absent Reference

Textural features
Mean using SSF5 a 0.003

<62.59 HU 4.714 1.685–13.183
≥62.59 HU Reference

Entropy using SSF2
0.036>5.31 2.770 1.068–7.184

≤5.31 Reference
a SSF, spatial scale filter.

3.4. Association with Textural Features and Clinicopathological Features

At univariate analysis, lower mean attenuation at SSF5 was associated with higher
tumor size, whereas higher entropy at SSF2 was correlated with higher histologic grade,
higher tumor size, presence of LN metastasis and lymphovascular invasion, negative
HER2 status, and higher Ki-67 status (Table 5). At multivariate analysis, higher entropy at
SSF2 was correlated with higher tumor size (odds ratio [OR] = 6.59; p < 0.001) and higher
Ki-67 status (OR = 1.94; p = 0.049) (Table 6). Kaplan–Meier survival curves using lower
mean attenuation with SSF5 or higher entropy with SSF2 were drawn (Figure 4).

Table 5. Textural features according to clinical-pathological prognostic factors.

Features Mean Using SSF5 a Entropy Using SSF2

Mean Value p Mean Value p

Histological type 0.684 0.266
Invasive ductal 80.00 ± 51.24 4.95 ± 0.43

Others 76.83 ± 39.70 5.04 ± 0.44
Histological grade 0.967 0.002

I or II 79.94 ± 51.41 4.91 ± 0.43
III 79.66 ± 45.50 5.09 ± 0.41

Tumor size <0.001 <0.001
≤2 cm 87.70 ± 55.38 4.82 ± 0.42
>2 cm 67.43 ± 35.72 5.21 ± 0.32

LN a status 0.347 0.040
Negative 81.85 ± 52.22 4.93 ± 0.44
Positive 75.79 ± 44.22 5.04 ± 0.40

Lymphovascular invasion
0.189 0.004Absent 81.56 ± 50.19 4.93 ± 0.43

Present 70.09 ± 45.80 5.15 ± 0.37
ER b status 0.830 0.153
Negative 79.50 ± 50.28 4.95 ± 0.43
Positive 81.10 ± 47.76 5.04 ± 0.41

PR c status 0.497 0.166
Negative 78.58 ± 50.35 4.94 ± 0.42
Positive 83.33 ± 47.88 5.03 ± 0.44

HER2 d status 0.784 0.015
Negative 78.33 ± 41.70 5.10 ± 0.39
Positive 80.23 ± 51.47 4.93 ± 0.43
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Table 5. Cont.

Features Mean Using SSF5 a Entropy Using SSF2

Mean Value p Mean Value p

Molecular subtype 0.450 0.142
Luminal-like 79.81 ± 52.24 4.92 ± 0.43

HER2-like 78.33 ± 41.70 5.10 ± 0.39
Basal-like 82.04 ± 48.65 4.97 ± 0.42

Ki-67 status 0.872 0.004
Low (<14%) 79.46 ± 48.07 4.91 ± 0.43
High (≥14%) 80.51 ± 52.37 5.06 ± 0.40

a LN, lymph node; b ER, estrogen receptor; c PR, progesterone receptor; d HER2, human epidermal growth factor
receptor type 2.

Table 6. Results of linear logistic regression analysis for entropy using SSF2.

Features β (SE b) Odds Ratio 95% CI p

Histologic type † −0.009 (0.070) −0.135 −0.147–0.128 0.893
Histological grade ‡ 0.039 (0.062) 0.627 −0.083–0.161 0.531

Tumor size †† 0.358 (0.054) 6.598 0.251–0.465 <0.001
LN status § 0.025 (0.055) 0.451 −0.083–0.132 0.652

Lymphovascular invasion * 0.054 (0.074) 0.731 −0.092–0.200 0.466
HER2 a status # −0.075 (0.062) −1.195 −0.197–0.048 0.233
Ki-67 status

√
0.111 (0.057) 1.949 −0.001–0.223 0.049

† Independent variable was histological type with grouping invasive ductal vs. others. ‡ Independent variable
was histological grade with grouping 1 and 2 vs. 3. †† Independent variable was tumor size with grouping <2 cm
vs. ≥2 cm. § Independent variable was LN status grouping negative vs. positive. * Independent variable was
lymphovascular invasion grouping absence vs. presence. # Independent variable was HER2 status grouping
negative vs. positive.

√
Independent variable was Ki-67 with grouping <14% vs. ≥14%. a HER2, human

epidermal growth factor receptor type 2. b Standard error of the estimate.
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Figure 4. Kaplan–Meier curves. There are significant differences in disease-free survival according to
a mean attenuation of tumor of 62.59 Hounsfield units using SSF5 (p = 0.001) (A) and an entropy of
5.31 (p < 0.006) (B) between the recurrence group and nonrecurrence group.

4. Discussion

Intratumoral heterogeneity evolves unpredictably during disease progression, posing
significant challenges for chemotherapeutics and necessitating a paradigm shift from stan-
dard pathological classifications of breast cancers to a more personalized approach in which
intratumoral heterogeneity is thoroughly characterized prior to treatment [3,5]. Recent
radiomic studies have focused on the impact of intratumoral heterogeneity on the prognosis
of patients with breast cancer. Son et al. [26] revealed that intratumoral metabolic hetero-
geneity assessed using 18F-fluorodeoxyglucose positron emission tomography (PET)/CT
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was a prognostic factor for overall survival. Two recent articles using breast MRI also
demonstrated that higher values of kinetic heterogeneity using computer-aided diagno-
sis or a higher apparent diffusion coefficient difference value at diffusion-weighted MRI
showed associations with poor distant metastasis-free survival in patients with invasive
breast cancers [11,27].

Texture analysis to quantify the spatial pattern of pixel intensities of whole tumors
is an objective measure of intratumoral heterogeneity [14–17]. In patients with breast
cancer, several studies have used texture analysis based on breast MRI for detecting micro-
calcifications [28], distinguishing between breast cancer subtypes [29,30], differentiating
between benign and malignant lesions [31,32], and predicting outcomes in patients with
neoadjuvant chemotherapy [33,34]. For the prediction of survival outcomes, two studies
using breast MRI revealed that the textural feature of entropy was associated with survival
outcomes in patients with breast cancer [35,36]. However, there are no published studies
on the use of CTTA in patients with breast cancer.

Among texture features, the most important feature that showed an association with
DFS in our study was the mean attenuation value of the tumor. In the recurrence group,
the mean attenuation of the tumor using all SSFs was significantly lower than that in the
nonrecurrence group. The reason why lower mean CT attenuation was associated with
poor DFS in our study could be explained by the results of previous studies [37,38], which
investigated the correlation between the degree of necrosis on CT and the expression of
hypoxic and angiogenesis biomarkers in breast cancer. In that study, lower CT attenuation
of breast cancer was significantly associated with tumor necrosis and hypoxic biomarkers,
which appears to be strongly associated with malignant progression, tumor propagation,
and treatment resistance [39]. Several CTTA studies also reported that lower mean CT atten-
uation of tumors predicted poor survival outcomes in metastatic renal cell carcinoma [40]
and pancreatic cancer [41,42]. Based on our study results, a lower mean CT attenuation of
the tumor of <62.59 HU at SSF5 on chest CT could be useful as an imaging biomarker for
predicting poor DFS in patients with primary breast cancer.

Entropy has been recognized as a marker of tumor heterogeneity. Our study showed
that entropy >5.31 using SSF2 is an independent risk factor for poor DFS. Previous CTTA
studies of head and neck squamous cancer, esophageal cancer, and non-small-cell lung
cancer also revealed that higher entropy was associated with a poor prognosis [14,17,18].
Two previous studies using breast MRI also reported that entropy was the most important
texture feature for predicting the prognosis of breast cancer [29,35]. Waugh et al. [29]
demonstrated that entropy on breast MRI could differentiate histological and immuno-
histochemical subtypes in breast cancer. Kim et al. [35] also showed that higher entropy
on T2-weighted breast MRI and lower entropy on postcontrast T1-weighted breast MRI
were associated with poor recurrence-free survival in patients with invasive breast cancer.
Collectively, our results and previous study results suggest that textural features of higher
entropy can be used for predicting poor prognosis in patients with invasive breast cancers,
regardless of the use of CT or MRI.

Among the clinicopathological features, the presence of lymphovascular invasion and
higher histological grade were significantly associated with recurrence in our study. In
a previous study, the presence of lymphovascular invasion was an important prognostic
factor independent of LN status, histological grade, ER status, and tumor size [43]. In
another study, higher histological grade was a prognostic factor, independent of the number
of positive LNs and tumor size [44]. Truong et al. [45] also found that the presence of
lymphovascular invasion, in combination with histological grade III, increased the risk of
locoregional recurrence, which was consistent with our study results.

This study has several limitations. First, this was a retrospective study, and selection
bias might have been present in patient enrollment. Second, we used four different types
of CT scanners using nonuniform CT acquisition factors. However, Miles et al. showed
that texture parameters are less sensitive to differing tube voltages and currents [44].
Third, our study was performed at a single institution, and no external validation was
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performed. Fourth, a single user manually performed segmentation for CTTA. Thus,
interobserver variability was not evaluated. However, a previous study has revealed that
the intra-observer reproducibility of single-section measurements is quite high [45]. Fifth,
contrast enhancement of breast cancer on a postcontrast chest CT scan can depend on many
individual factors, such as age, sex, body weight and height, cardiac output, renal function,
and hydration status, resulting in variability in CTTA [46].

5. Conclusions

In conclusion, textural features such as lower mean attenuation and higher entropy
using preoperative chest CT were associated with shorter DFS in patients with invasive
breast cancer. In regards to prognostic factors, lower mean attenuation may reflect higher
tumor size, and higher entropy may reflect higher tumor size and higher Ki-67. From our
exploratory study results, CTTA-derived tumor heterogeneity can be used as a noninvasive
imaging biomarker to provide additional methods for risk stratification in patients with
invasive breast cancers who cannot undergo breast MRI due to obesity, MRI contrast allergy,
renal insufficiency, or claustrophobia.

Author Contributions: Conceptualization, S.E.S.; methodology, H.Y.; software, Y.C.; validation,
K.R.C.; formal analysis, S.E.S.; investigation, H.Y.; resources, S.P.J.; data curation, K.S. and Y.C.;
writing—original draft preparation, H.Y.; writing—review and editing, S.E.S.; visualization, Y.C.;
supervision, S.E.S.; project administration, S.E.S.; funding acquisition, S.E.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: NRF-
2021R1F1A1046016) and a grant of the Korea Health Technology R&D Project through the Korea
Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic
of Korea (grant number: HR22C1302). The APC was funded by KHIDI grant number HR22C1302.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Korea University
Anam Hospital (IRB Number: 2021AN0001, 5 January 2021).

Informed Consent Statement: Patient consent was waived due to retrospective study.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author ( S.E.S.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martelotto, L.G.; Ng, C.K.; Piscuoglio, S.; Weigelt, B.; Reis-Filho, J.S. Breast cancer intra-tumor heterogeneity. Breast Cancer Res.

2014, 16, 210. [CrossRef] [PubMed]
2. Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364. [CrossRef]
3. Marusyk, A.; Almendro, V.; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 2012, 12, 323–334.

[CrossRef] [PubMed]
4. Ng, C.K.; Pemberton, H.N.; Reis-Filho, J.S. Breast cancer intratumor genetic heterogeneity: Causes and implications. Expert. Rev.

Anticancer Ther. 2012, 12, 1021–1032. [CrossRef] [PubMed]
5. Swanton, C. Intratumor heterogeneity: Evolution through space and time. Cancer Res. 2012, 72, 4875–4882. [CrossRef] [PubMed]
6. Saha, A.; Harowicz, M.R.; Cain, E.H.; Hall, A.H.; Hwang, E.-S.S.; Marks, J.R.; Marcom, P.K.; Mazurowski, M.A. Intra-tumor

molecular heterogeneity in breast cancer: Definitions of measures and association with distant recurrence-free survival. Breast
Cancer Res. Treat. 2018, 172, 123–132. [CrossRef]

7. Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of
tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [CrossRef]

8. Nelson, D.A.; Tan, T.-T.; Rabson, A.B.; Anderson, D.; Degenhardt, K.; White, E. Hypoxia and defective apoptosis drive genomic
instability and tumorigenesis. Genes Dev. 2004, 18, 2095–2107. [CrossRef]

9. Beca, F.; Polyak, K. Intratumor Heterogeneity in Breast Cancer. Adv. Exp. Med. Biol. 2016, 882, 169–189.
10. McDonald, K.-A.; Kawaguchi, T.; Qi, Q.; Peng, X.; Asaoka, M.; Young, J.; Opyrchal, M.; Yan, L.; Patnaik, S.; Otsuji, E.; et al. Tumor

Heterogeneity Correlates with Less Immune Response and Worse Survival in Breast Cancer Patients. Ann. Surg. Oncol. 2019, 26,
2191–2199. [CrossRef]

https://doi.org/10.1186/bcr3658
https://www.ncbi.nlm.nih.gov/pubmed/25928070
https://doi.org/10.1038/nature12627
https://doi.org/10.1038/nrc3261
https://www.ncbi.nlm.nih.gov/pubmed/22513401
https://doi.org/10.1586/era.12.85
https://www.ncbi.nlm.nih.gov/pubmed/23030222
https://doi.org/10.1158/0008-5472.CAN-12-2217
https://www.ncbi.nlm.nih.gov/pubmed/23002210
https://doi.org/10.1007/s10549-018-4879-7
https://doi.org/10.1007/s13244-012-0196-6
https://doi.org/10.1101/gad.1204904
https://doi.org/10.1245/s10434-019-07338-3


Diagnostics 2023, 13, 3569 14 of 15

11. Kim, J.Y.; Kim, J.J.; Hwangbo, L.; Suh, H.B.; Kim, S.; Choo, K.S.; Nam, K.J.; Kang, T. Kinetic Heterogeneity of Breast Cancer
Determined Using Computer-aided Diagnosis of Preoperative MRI Scans: Relationship to Distant Metastasis-Free Survival.
Radiology 2020, 295, 517–526. [CrossRef]

12. Holli-Helenius, K.; Salminen, A.; Rinta-Kiikka, I.; Koskivuo, I.; Brück, N.; Boström, P.; Parkkola, R. MRI texture analysis in
differentiating luminal A and luminal B breast cancer molecular subtypes—A feasibility study. BMC Med. Imaging 2017, 17, 69.
[CrossRef]

13. Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic
Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [CrossRef]

14. Ganeshan, B.; Panayiotou, E.; Burnand, K.; Dizdarevic, S.; Miles, K. Tumour heterogeneity in non-small cell lung carcinoma
assessed by CT texture analysis: A potential marker of survival. Eur. Radiol. 2012, 22, 796–802. [CrossRef] [PubMed]

15. Miles, K.A.; Ganeshan, B.; Rodriguez-Justo, M.; Goh, V.J.; Ziauddin, Z.; Engledow, A.; Meagher, M.; Endozo, R.; Taylor, S.;
Halligan, S.; et al. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS)
mutations in colorectal cancer. J. Nucl. Med. 2014, 55, 386–391. [CrossRef]

16. Ng, F.; Ganeshan, B.; Kozarski, R.; Miles, K.A.; Goh, V. Assessment of primary colorectal cancer heterogeneity by using whole-
tumor texture analysis: Contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 2013, 266, 177–184. [CrossRef]
[PubMed]

17. Yip, C.; Landau, D.; Kozarski, R.; Ganeshan, B.; Thomas, R.; Michaelidou, A.; Goh, V. Primary esophageal cancer: Heterogeneity
as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy. Radiology 2014, 270,
141–148. [CrossRef] [PubMed]

18. Zhang, H.; Graham, C.M.; Elci, O.; Griswold, M.E.; Zhang, X.; Khan, M.A.; Pitman, K.; Caudell, J.; Hamilton, R.; Ganshan, B.;
et al. Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent
prediction of overall survival in patients treated with induction chemotherapy. Radiology 2013, 269, 801–809. [CrossRef]

19. James, J.; Teo, M.; Ramachandran, V.; Law, M.; Stoney, D.; Cheng, M. A critical review of the chest CT scans performed to detect
asymptomatic synchronous metastasis in new and recurrent breast cancers. World J. Surg. Oncol. 2019, 17, 40. [CrossRef]

20. Ravaioli, A.; Pasini, G.; Polselli, A.; Papi, M.; Tassinari, D.; Arcangeli, V.; Milandri, C.; Amadori, D.; Bravi, M.; Rossi, D.; et al.
Staging of breast cancer: New recommended standard procedure. Breast Cancer Res. Treat. 2002, 72, 53–60. [CrossRef]

21. Barrett, T.; Bowden, D.J.; Greenberg, D.C.; Brown, C.H.; Wishart, G.C.; Britton, P.D. Radiological staging in breast cancer: Which
asymptomatic patients to image and how. Br. J. Cancer 2009, 101, 1522–1528. [CrossRef]

22. Linkugel, A.; Margenthaler, J.; Dull, B.; Cyr, A. Staging studies have limited utility for newly diagnosed stage I–II breast cancer. J.
Surg. Res. 2015, 196, 33–38. [CrossRef]

23. Jung, S.Y.; Kim, Y.A.; Lee, D.E.; Joo, J.; Back, J.H.; Kong, S.Y.; Lee, E.S. Clinical impact of follow-up imaging on mortality in Korean
breast cancer patients: A national cohort study. Cancer Med. 2021, 10, 6480–6491. [CrossRef] [PubMed]

24. Chee, C.G.; Kim, Y.H.; Lee, K.H.; Lee, Y.J.; Park, J.H.; Lee, H.S.; Ahn, S.; Kim, B. CT texture analysis in patients with locally
advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and
prognosis. PLoS ONE 2017, 12, e0182883. [CrossRef] [PubMed]

25. Giuliano, A.E.; Edge, S.B.; Hortobagyi, G.N. Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Ann. Surg. Oncol.
2018, 25, 1783–1785. [CrossRef] [PubMed]

26. James, D.; Clymer, B.D.; Schmalbrock, P. Texture detection of simulated microcalcification susceptibility effects in magnetic
resonance imaging of breasts. J. Magn. Reson. Imaging 2001, 13, 876–881. [CrossRef] [PubMed]

27. Waugh, S.A.; Purdie, C.A.; Jordan, L.B.; Vinnicombe, S.; Lerski, R.A.; Martin, P.; Thompson, A.M. Magnetic resonance imaging
texture analysis classification of primary breast cancer. Eur. Radiol. 2016, 26, 322–330. [CrossRef] [PubMed]

28. Holli, K.; Lääperi, A.-L.; Harrison, L.; Luukkaala, T.; Toivonen, T.; Ryymin, P.; Dastidar, P.; Soimakallio, S.; Eskola, H. Charac-
terization of breast cancer types by texture analysis of magnetic resonance images. Acad. Radiol. 2010, 17, 135–141. [CrossRef]
[PubMed]

29. Chen, W.; Giger, M.L.; Li, H.; Bick, U.; Newstead, G.M. Volumetric texture analysis of breast lesions on contrast-enhanced
magnetic resonance images. Magn. Reson. Med. 2007, 58, 562–571. [CrossRef] [PubMed]

30. Gibbs, P.; Turnbull, L.W. Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 2003, 50, 92–98.
[CrossRef]

31. Pickles, M.D.; Lowry, M.; Gibbs, P. Pretreatment Prognostic Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging
Vascular, Texture, Shape, and Size Parameters Compared with Traditional Survival Indicators Obtained From Locally Advanced
Breast Cancer Patients. Investig. Radiol. 2016, 51, 177–185. [CrossRef] [PubMed]

32. Eun, N.L.; Kang, D.; Son, E.J.; Park, J.S.; Youk, J.H.; Kim, J.-A.; Gweon, H.M. Texture Analysis with 3.0-T MRI for Association of
Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology 2020, 294, 31–41. [CrossRef] [PubMed]

33. Kim, J.-H.; Lim, Y.; Lee, K.S.; Han, B.-K.; Ko, E.Y.; Hahn, S.Y.; Nam, S.J. Breast Cancer Heterogeneity: MR Imaging Texture
Analysis and Survival Outcomes. Radiology 2017, 282, 665–675. [CrossRef] [PubMed]

34. Park, H.; Lim, Y.; Cho, H.-H.; Lee, J.E.; Han, B.-K.; Ko, E.Y.; Choi, J.S.; Park, K.W. Radiomics Signature on Magnetic Resonance
Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Clin. Cancer Res. 2018, 24, 4705–4714.
[CrossRef]

https://doi.org/10.1148/radiol.2020192039
https://doi.org/10.1186/s12880-017-0239-z
https://doi.org/10.1148/rg.2017170056
https://doi.org/10.1007/s00330-011-2319-8
https://www.ncbi.nlm.nih.gov/pubmed/22086561
https://doi.org/10.2967/jnumed.113.120485
https://doi.org/10.1148/radiol.12120254
https://www.ncbi.nlm.nih.gov/pubmed/23151829
https://doi.org/10.1148/radiol.13122869
https://www.ncbi.nlm.nih.gov/pubmed/23985274
https://doi.org/10.1148/radiol.13130110
https://doi.org/10.1186/s12957-019-1584-x
https://doi.org/10.1023/A:1014900600815
https://doi.org/10.1038/sj.bjc.6605323
https://doi.org/10.1016/j.jss.2015.02.065
https://doi.org/10.1002/cam4.3873
https://www.ncbi.nlm.nih.gov/pubmed/34472221
https://doi.org/10.1371/journal.pone.0182883
https://www.ncbi.nlm.nih.gov/pubmed/28797063
https://doi.org/10.1245/s10434-018-6486-6
https://www.ncbi.nlm.nih.gov/pubmed/29671136
https://doi.org/10.1002/jmri.1125
https://www.ncbi.nlm.nih.gov/pubmed/11382947
https://doi.org/10.1007/s00330-015-3845-6
https://www.ncbi.nlm.nih.gov/pubmed/26065395
https://doi.org/10.1016/j.acra.2009.08.012
https://www.ncbi.nlm.nih.gov/pubmed/19945302
https://doi.org/10.1002/mrm.21347
https://www.ncbi.nlm.nih.gov/pubmed/17763361
https://doi.org/10.1002/mrm.10496
https://doi.org/10.1097/RLI.0000000000000222
https://www.ncbi.nlm.nih.gov/pubmed/26561049
https://doi.org/10.1148/radiol.2019182718
https://www.ncbi.nlm.nih.gov/pubmed/31769740
https://doi.org/10.1148/radiol.2016160261
https://www.ncbi.nlm.nih.gov/pubmed/27700229
https://doi.org/10.1158/1078-0432.CCR-17-3783


Diagnostics 2023, 13, 3569 15 of 15

35. Perrone, A.; Lo Mele, L.; Sassi, S.; Marini, M.; Testaverde, L.; Izzo, L.; Marini, M. MDCT of the breast. AJR Am. J. Roentgenol. 2008,
190, 1644–1651. [CrossRef] [PubMed]

36. Shan, X.; Wang, D.; Chen, J.; Xiao, X.B.; Jiang, Y.; Wang, Y.B.; Fan, Y. Necrosis degree displayed in computed tomography images
correlated with hypoxia and angiogenesis in breast cancer. J. Comput. Assist. Tomogr. 2013, 37, 22–28. [CrossRef] [PubMed]

37. Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001,
93, 266–276. [CrossRef]

38. Matoori, S.; Thian, Y.; Koh, D.-M.; Sohaib, A.; Larkin, J.; Pickering, L.; Gutzeit, A. Contrast-Enhanced CT Density Predicts
Response to Sunitinib Therapy in Metastatic Renal Cell Carcinoma Patients. Transl. Oncol. 2017, 10, 679–685. [CrossRef]

39. Yun, G.; Kim, Y.H.; Lee, Y.J.; Kim, B.; Hwang, J.-H.; Choi, D.J. Tumor heterogeneity of pancreas head cancer assessed by CT
texture analysis: Association with survival outcomes after curative resection. Sci. Rep. 2018, 8, 7226. [CrossRef]

40. Cassinotto, C.; Chong, J.; Zogopoulos, G.; Reinhold, C.; Chiche, L.; Lafourcade, J.P.; Cuggia, A.; Terrebonne, E.; Dohan, A.; Gallix,
B. Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient
outcomes. Eur. J. Radiol. 2017, 90, 152–158. [CrossRef]

41. Macmillan, R.; Barbera, D.; Hadjiminas, D.; Rampaul, R.; Lee, A.; Pinder, S.; Ellis, I.; Blamey, R.; Geraghty, J. Sentinel node biopsy
for breast cancer may have little to offer four-node-samplers. results of a prospective comparison study. Eur. J. Cancer 2001, 37,
1076–1080. [CrossRef] [PubMed]

42. Schwartz, A.M.; Henson, D.E.; Chen, D.; Rajamarthandan, S. Histologic grade remains a prognostic factor for breast cancer
regardless of the number of positive lymph nodes and tumor size: A study of 161,708 cases of breast cancer from the SEER
Program. Arch. Pathol. Lab. Med. 2014, 138, 1048–1052. [CrossRef] [PubMed]

43. Truong, P.T.; Yong, C.M.; Abnousi, F.; Lee, J.; Kader, H.A.; Hayashi, A.; Olivotto, I.A. Lymphovascular invasion is associated with
reduced locoregional control and survival in women with node-negative breast cancer treated with mastectomy and systemic
therapy. J. Am. Coll. Surg. 2005, 200, 912–921. [CrossRef] [PubMed]

44. Miles, K.A.; Ganeshan, B.; Griffiths, M.R.; Young, R.C.D.; Chatwin, C.R. Colorectal cancer: Texture analysis of portal phase hepatic
CT images as a potential marker of survival. Radiology 2009, 250, 444–452. [CrossRef]

45. Smith, A.D.; Gray, M.R.; Del Campo, S.M.; Shlapak, D.; Ganeshan, B.; Zhang, X.; Carson, W.E., III. Predicting Overall Survival in
Patients with Metastatic Melanoma on Antiangiogenic Therapy and RECIST Stable Disease on Initial Posttherapy Images Using
CT Texture Analysis. AJR Am. J. Roentgenol. 2015, 205, W283–W293. [CrossRef]

46. Johnson, D.Y.; Farjat, A.E.; Vernuccio, F.; Hurwitz, L.M.; Nelson, R.C.; Marin, D. Evaluation of Intraindividual Contrast
Enhancement Variability for Determining the Maximum Achievable Consistency in CT. AJR Am. J. Roentgenol. 2020, 214, 18–23.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2214/AJR.07.3145
https://www.ncbi.nlm.nih.gov/pubmed/18492919
https://doi.org/10.1097/RCT.0b013e318279abd1
https://www.ncbi.nlm.nih.gov/pubmed/23321829
https://doi.org/10.1093/jnci/93.4.266
https://doi.org/10.1016/j.tranon.2017.06.001
https://doi.org/10.1038/s41598-018-25627-x
https://doi.org/10.1016/j.ejrad.2017.02.033
https://doi.org/10.1016/S0959-8049(00)00367-1
https://www.ncbi.nlm.nih.gov/pubmed/11378336
https://doi.org/10.5858/arpa.2013-0435-OA
https://www.ncbi.nlm.nih.gov/pubmed/25076293
https://doi.org/10.1016/j.jamcollsurg.2005.02.010
https://www.ncbi.nlm.nih.gov/pubmed/15922205
https://doi.org/10.1148/radiol.2502071879
https://doi.org/10.2214/AJR.15.14315
https://doi.org/10.2214/AJR.19.21628

	Introduction 
	Materials and Methods 
	Patients 
	CT Acquisition 
	Texture Analysis 
	Clinicopathological Data 
	Statistical Analysis 

	Results 
	Patient Characteristics and Disease-Free Survival 
	CT Texture Features 
	Survival Analysis Using Cox Proportional Hazard Models 
	Association with Textural Features and Clinicopathological Features 

	Discussion 
	Conclusions 
	References

