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Abstract: An intense level of academic pressure causes students to experience stress, and if this stress
is not addressed, it can cause adverse mental and physical effects. Since the pandemic situation,
students have received more assignments and other tasks due to the shift of classes to an online mode.
Students may not realize that they are stressed, but it may be evident from other factors, including
sleep deprivation and changes in eating habits. In this context, this paper presents a novel ensemble
learning approach that proposes an architecture for stress level classification. It analyzes certain
factors such as the sleep hours, productive time periods, screen time, weekly assignments and their
submission statuses, and the studying methodology that contribute to stress among the students by
collecting a survey from the student community. The survey data are preprocessed to categorize
stress levels into three categories: highly stressed, manageable stress, and no stress. For the analysis
of the minority class, oversampling methodology is used to remove the imbalance in the dataset, and
decision tree, random forest classifier, AdaBoost, gradient boost, and ensemble learning algorithms
with various combinations are implemented. To assess the model’s performance, different metrics
were used, such as the confusion matrix, accuracy, precision, recall, and F1 score. The results showed
that the efficient ensemble learning academic stress classifier gave an accuracy of 93.48% and an
F1 score of 93.14%. Fivefold cross-validation was also performed, and an accuracy of 93.45% was
achieved. The receiver operating characteristic curve (ROC) value gave an accuracy of 98% for the
no-stress category, while providing a 91% true positive rate for manageable and high-stress classes.
The proposed ensemble learning with fivefold cross-validation outperformed various state-of-the-art
algorithms to predict the stress level accurately. By using these results, students can identify areas
for improvement, thereby reducing their stress levels and altering their academic lifestyles, thereby
making our stress prediction approach more effective.

Keywords: stress; students; academic; routine; mitigate; tension; conventional; boosting; metrics;
practical analysis; model; performance

1. Introduction

The pandemic has played its role to keep classes for students online, and it has
significantly increased the stress levels of the students because they must look at devices
such as laptops, PCs (personal computers), and mobiles throughout the day, complete
assignments, and handle exams online. This is the primary reason for an increase in stress
amongst college students in the United States [1]. This physically affects the students
because they sit in one place, and there is less physical activity compared to how it would
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have been if the classes were conducted in schools and colleges on campus [2]. To identify
certain academic factors that affect students, a survey was conducted across various schools
and colleges about their workloads and collected their responses. With the use of machine
learning models, which play a significant role in recognizing patterns that are not visible
to the naked eye, this paper aims to predict the stress levels of the students based on the
responses collected from them.

There are many factors that contribute to stress such as personal relationships, wor-
rying about something, uncertainty in taking decisions, and so on [3], but the focus here
will be on the academic factors that contribute to the stress. After brainstorming various
ideas, certain key features were picked that may contribute to academic stress, and those
questions were asked of students in the teenage group, and the responses were collected
along with the stress levels, which will be used as the training data for the purpose of
predicting stress levels for other students in future using the model. The model thus pro-
vides insights to the students to find the ideal habits that they need to follow in day-to-day
life in order to keep their stress levels under control. Machine learning models such as
the decision tree classification algorithm, random forest algorithm (bagging), AdaBoost
algorithm, and gradient boosting algorithm have been developed on the collected data to
obtain various insights, thus maximizing the efficiency of the output for predicting stress
levels and determining a student’s ideal workload and daily habits to live a stress-free
student life. A challenge faced before building the model was the bias in the collected
survey. The students who responded to the survey mostly responded that their stress levels
were either in a manageable state or that they were highly stressed; hence, the numbers of
responses for the no-stress category were fewer, which in turn caused an imbalance in the
dataset. In order to solve this issue, the oversampling method was used to bring the count
of the minority class, that is, the no-stress responses, to the other two majority classes. This
ensured that there was no bias in the trained machine learning models that would be used
to predict the stress levels on the testing data.

To overcome the challenges, the key contributions involved in the paper are as follows:

(i) The research proposes a unique ensemble learning strategy designed primarily for
classifying students’ levels of stress. While earlier research focused on stress prediction
as outlined in Section 2, the work presented here ingeniously blends decision trees,
random forest classifiers, AdaBoost, gradient boost, and ensemble learning techniques
to provide a thorough model for precisely classifying stress levels.

(ii) In contrast to other approaches outlined in Section 2, the article incorporates survey
data from the student population to thoroughly analyze stress causes. The method
also uses oversampling methods to correct the imbalance in the dataset of stress levels.
A more reliable and accurate stress prediction model is produced because of the
integration of survey-based insights with imbalance management.

(iii) The work uses a number of performance assessment criteria, such as accuracy, preci-
sion, recall, and F1 score, to go beyond intuitive measurements. The results’ validity is
further strengthened by the use of fivefold cross-validation. The addition of receiver
operating characteristic (ROC) curve analysis also offers a full review of the model’s
performance for each category of stress level, demonstrating a comprehensive and
in-depth examination of the suggested strategy.

Bagging and boosting techniques have been used to increase the efficiency of the
predictions. The objective of boosting is to combine weak learners together to form an
overall strong model. However, it is important to note that bagging is computationally more
effective than boosting because it can train ‘n’ models in parallel, while boosting cannot do
that. If we do not have a high bias and there is only a need to reduce overfitting, bagging
was the best option to choose, which was another challenge that had to be overcome for
the analysis of the survey data.

Academics play an important role in determining the future of a student, and this can
cause mental pressure by testing their coping skills [4]. Keeping this in mind, management
of stress plays a crucial role while navigating through challenges faced by the students
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in their academic coping lifestyles. The COVID-19 pandemic caused many struggles in a
student’s life when classes and assignments were given in online modes [5]. This caused an
increase in screentime and working hours, thereby imposing more pressure on the students.
Thus, this paper aims to analyze which factors affect the way students cope with academics
by obtaining responses from them and building a model that can predict how well they
manage their stress levels. This enables them to adapt and improvise their lifestyles to keep
their stress levels in check.

The Section 2 of the paper talks about the various related work conducted in the
field of stress prediction and the models used for that purpose; the Section 3 explains the
proposed work and the models used to obtain the results, followed by the Sections 4 and 5
that explain the experimental setup and the results obtained in comparison with the other
works, with a summary of the various performance metrics that determine the efficiency of
the model.

2. Related Works

In this section, related papers are referenced and surveyed. It is noted that different
authors used different methodologies in implementing their solutions to similar stress-level
balancing problems. Some used deep learning using neural networks and long short-term
memory (LSTM) models, while many used supervised learning classification methods such
as random forests, decision trees, and other ensemble learning algorithms.

2.1. Deep Learning Algorithms

The authors in [6] tried to predict stress levels using LSTM. The dataset is obtained
from a student life app, which collects passive and automatic data from the sensors available
in mobiles. The data were collected from students of Dartmouth for a 10-week spring term.
They concluded that they were 62.83% confident in determining if the student was stressed
or not by observing their last 2–12 h of usage of their mobiles. They stated that if the
number of epochs were increased, the training accuracy reached a maximum of 99%, but a
drop in the performance of the testing set was noticed. The authors in [7–12] proposed a
method to predict personalized stress in students using a deep multitask network. They
received the dataset from a SmartLife study of 48 students in Dartmouth. They concluded
that the best model that predicted stress levels accurately was the CALM network model
with an F1 score of 0.594.

2.2. Supervised and Ensemble Learning

There are works that address a similar problem to ours, and the authors of those
research projects use different methods to arrive at a conclusion for their specific problems.
Some used deep learning algorithms to classify the data they collected. Others used
various machine learning algorithms such as ensemble algorithms, boosting algorithms,
etc. In [10–12], the authors took the Open Sourcing Mental Illness (OSMI) Mental Health
in Tech 2017 survey as their dataset. They initially performed one-hot encoding after
cleaning the data, and they took 14 of the most relevant attributes out of 68. One-hot
encoding is a popular encoding method to utilize when processing datasets containing
categorical variables [13]. They finally concluded that stress is highly correlated to gender
among the selected parameters, i.e., women are generally found to experience greater stress
than men in the same department. The authors in [14] researched about detecting anxiety,
depression, and stress using the dataset obtained from the Depression, Anxiety, and Stress
Scale (DASS 21) questionnaire. Their results show that the highest accuracy for all three
classes, depression, anxiety, and stress, is achieved in the naïve Bayes classifier; however,
the F1 score for stress was highest in the random forest algorithm, and for depression, it
was highest in the naïve Bayes classifier with the F1 score for anxiety being low in all tested
models. They also stated that the patients without diseases, i.e., negative cases, were also
classified appropriately. In [15], the authors researched the prevalence and the predicting
causes of stress among university students in Bangladesh. They surveyed students from
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28 different universities using questions regarding academic-, health-, and lifestyle-related
information, which in turn was referred to the perceived stress status of the students. They
stated that the most important factors that were selected for the prediction of stress were
academic background, blood pressure, pulse rate, sleep status, etc. The highest performance
was observed from the random forest algorithm with an accuracy of nearly 80%, and the
lowest was observed by logistic regression with an accuracy of 75%. They concluded
that their model predicts the psychological problem of students more accurately, and this
can help stakeholders, families, management, and authorities to understand the health
problems faced by the students.

The authors in [16] tried to model students’ happiness by using machine learning
methods on data collected from students who were monitored for a month via mobile
phone logs and sensors. They stated that modeling and predicting the happiness of the
students can help to detect individuals who are either prone to or at risk of depression, and
then, they can intervene and help the student.

They finally stated that they had achieved 70% classification accuracy of the happiness
of students on the test data. In [17,18], perceived stress caused by the COVID-19 pandemic
on adults were modeled and predicted through machine learning models and psychological
traits. They collected data from around 2000 Italian adults via online surveying methods
concerning their stress factors, psychological traits, demographics, etc. They stated that
higher levels of distress were observed in the parts of society where people earn less. It was
also found that women were comparatively more stressed, and those who lived with others
also faced more distress. They finally said that the machine learning models identified
people with high stress with a sensitivity of more than 76%.

The authors in [19,20] tried to predict stress in the students who are transitioning
from teenagers to adults in a few institutions of India, and the data were collected from
them. The top-most contributors of stress in those people were found to be social media,
academic pressure, workload, and anxiety, among others. The data showed that B. Tech
students are under more high stress as compared to bachelor of computer application
(BCA) students. Their research also showed that academics, work stress, and unhealthy
social media consumption contributed much toward stress among generation Z students.
Finally, their algorithm resulted in an R-squared value of 0.8042 after elimination of around
30% of the initial features obtained. In [21], the authors tried to detect and predict high-
resolution stress as a tool for electronic or mobile health systems supporting personalized
treatments both clinically and remotely. The dataset they used to train their models was the
Wearable Stress and Affect Detection (WESAD) dataset, and they calculated stress scores
based on various questionnaires from it. Their results show that the specific algorithms of
random forests, least-squares gradient boosting, and nonlinear auto-regressive network
with exogenous inputs offered the best predictions of high-resolution stress, and they
also proposed that this can be integrated with a decision support system to aid in the
decision-making for stress management and monitoring.

2.3. Analysis of Stress Factors

In [22,23], the authors tried to find the interrelationship between stressors, i.e., stress-
causing agents, and coping strategies. They used self-collected data from various students
from five colleges in the city of Shillong. They reported that academic stress had a high
degree of correlation with social and financial stress, and positive stress-coping mechanisms
such as prayer, sleep, and meditation were helpful to combat academic stress. The authors
in [24] tried to predict stress in pre-registration nursing students using self-collected data
from all the pre-registration nursing students in a top English university. They finally
stated that the work–life balance of pre-registration nursing students, especially those who
must take care of children, should be considered important while designing the curriculum
of nursing education. They also said that the main predictors of caseness are pressure,
whether they had children or not, coping method employed, and scores on their personal
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problems, and the caseness rate was around 33% of the population. Table 1 shows the
summary of the key contributions and algorithms used in the various surveyed works.

Table 1. Key contributions and algorithms used in different fields of scope.

S. No. Scope Works Key Contributions Algorithms Used

1.
Deep

Learning

Acikmese, Y., et al. (2019) [6]
Worked on the StudentLife project, which
collects passive and automatic data from

students’ phones in Dartmouth.

Recurrent Neural Networks
using LSTMs

Shaw, A. (2019) [7] Worked on personalized stress prediction of
students in SmartLife study in Dartmouth.

Deep Multitask Network
using LSTMs

Wang, R. (2014) [8] Worked on StudentLife dataset and analyzed
stress factors

LSTMs and Correlation of
factors

Raichur, N., et al. (2017) [9] Detected stress from facial expressions
presented in an image of subjects.

Deep learning models using
theano package in python and

linear regression

2.
Supervised

and Ensemble
Learning

Reddy, U. S., et al. (2018) [10]
Predicted stress levels in working employees
from the OSMI Mental Health in Tech 2017

dataset.

Logistic Regression, KNN,
Decision Tree, Random Forest,

Bagging, Boosting

Gamage, S. N., et al. (2022) [11]
Predicting mental distress in the IT workforce
during the height of the pandemic in a remote

environment.

Random Forests, SVM,
XGBoost, CatBoost, Decision

Tree, Naïve Bayes

Rahman, A. A., et al. (2022) [12] Analysis of stress in undergraduate students
from Jordan at the height of the pandemic.

Linear Regression, Logistic
Regression

Priya, A., et al. (2020) [14] Detected anxiety, depression, and stress using
DASS 21.

Decision Trees, Random
Forests, Naïve Bayes. SVMs,

KNNs

Rois, R., et al. (2021) [15] Researched causes of stress in Bangladesh
university students.

Decision Tree, Random Forest,
SVM, Logistic Regression

Jaques, N., et al. (2015) [16] Modeled students’ happiness by monitoring
their phones.

SVMs, Random Forests,
Logistic Regression, KNN,

Naïve Bayes, Adaboost.

Flesia, L., et al. (2020) [17] Predicted perceived stress on adults caused by
the pandemic.

SVMs, Logistic Regression,
Random Forests, Naïve Bayes

Li, H., et al. (2022) [18] Predicted perceived stress based on
micro-EMA history data of adults.

Elastic Net Regression, Super
Vector Regression, Gradient

Boosted Regression Trees

Pabreja, K., et al. (2021) [19] Predicted stress in students transitioning from
adolescent teens to adults. Random Forests

Bisht, A., et al. (2022) [20] Analyzed stress in over 190 school kids aged
14–18.

Decision Trees, Logistic
Regression, KNN, Random

Forest

Martino, F. D., et al. (2020) [21]
Developed a tool to predict high-resolution

stress for health systems to aid in clinical
treatments.

Random Forests,
Least-Squares Gradient

Boosting, Nonlinear
AutoRegressive Network

3.
Stress Factors

Analysis

Pariat, M. L., et al. (2014) [22] Tried to find relationship between stressors. Logistic Regression,
Correlation

Kim, J., et al. (2014) [23] Analyzed the impact of exercise on stress and
mental well-being of university students. Correlation

Pryjmachuk, S., et al. (2007) [24] Predicted stress in nursing students from a top
English university.

Logistic Regression,
Correlation.

In [11], the authors discussed that the global pandemic was a cause of fear and stress
being instigated among the people, with students especially becoming stressed over their
studies in various forms. Their analysis showed that there was a key importance in certain
features affecting academic stress such as prolonged use of digital tools for education
purposes, lack of physical learning on campus contributing to improper education, and
the psychological elements at play. In [1], the authors surveyed students from Texas
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A&M University regarding stress. Over 40% of surveyed students reported an increase
in stress due to online classes and then, concerns over grades. Participants had difficulty
concentrating and had an increased workload that contributed to their stress. Some also
stated that their sleep schedules have also been impacted, causing stress. In [25], the authors
said that students suddenly feel less motivated to focus on academics due to the sudden
switch from traditional teaching to an online mode. Students also believe they are wasting
a lot of time indulging in social media as they do not have anything interesting to do and
as a diversion from academia.

Four stress parameters are taken into consideration in distinguishing each work analyzed,
namely academic/student-related stress (S1), workplace-related stress (S2), personal stress
(S3), and stress caused by the COVID-19 pandemic (S4). For each of the authors mentioned
below in Table 2, the stress factors they have considered in their work are represented.

Table 2. Depiction of stress parameters considered in various works.

S. No. Scope Works
Stress Parameters

S1 S2 S3 S4

1. Deep Learning

Acikmese, Y., et al. (2019) [6] Yes No No No

Shaw, A. (2019) [7] Yes No No No

Wang, R. (2014) [8] Yes No No No

Raichur, N., et al. (2017) [9] Yes No No No

Supervised
and

Ensemble Learning

Reddy, U. S., et al. (2018) [10] No Yes Yes No

Gamage, S. N., et al. (2022) [11] No Yes Yes No

Rahman, A. A., et al. (2022) [12] Yes No No Yes

Priya, A., et al. (2020) [14] No No Yes No

Rois, R., et al. (2021) [15] Yes No Yes No

Jaques, N., et al. (2015) [16] Yes No Yes No

Flesia, L., et al. (2020) [17] No No Yes Yes

Li, H., et al. (2022) [18] No No Yes Yes

Pabreja K., et al. (2021) [19] Yes No Yes No

Bisht, A., et al. (2022) [20] Yes No Yes Yes

Martino, F. D., et al. (2020) [21] No No Yes No

3. Analysis of
Stress Factors

Pariat, M. L., et al. (2014) [22] Yes No Yes No

Kim, J., et al. (2014) [23] Yes No Yes No

Pryjmachuk, S., et al. (2007) [24] Yes No Yes No

The various works related to the management and prediction of stress were surveyed
and analyzed. A standard benchmark for the prediction of stress levels caused by the
impact of academics is proposed and implemented in this paper with this trend in mind.

3. Problem Statement

The primary focus of the problem is to classify the students’ stress levels and classify
them into three categories: whether they are extremely stressed, experiencing manageable
stress, or are completely free from any mental pressure brought on by analyzing particular
academic factors. Ensemble learning models such as random forest and boosting algorithms
such as the AdaBoost and gradient boost have been utilized after a traditional approach
such as the decision tree classifier to determine if there is any improvement in the efficacy
of the findings so acquired. The data used for this purpose were collected from the student
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community using a survey questionnaire. The attributes of the model and the methods
used to construct it are described in the following sections.

4. Proposed Work

After collecting the survey data, preprocessing work and various machine learning
models are applied to classify the stress levels into three categories: highly stressed, man-
ageable stress, and no stress. The oversampling method is used to remove the imbalance
in the dataset caused by the minority class. Decision tree, random forest classification,
AdaBoost, and the gradient boost algorithm are used as the ML models for the analysis.
Figure 1 represents the architecture of the entire process that is followed.
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The oversampling methodology used to balance the dataset is described in Algorithm 1.

Algorithm 1: Oversampling the minority class in survey data to remove bias
Step 1 The minority class, “No stress” class, is oversampled to remove bias.
Step 2 Oversampling the data due to the imbalance in the dataset for the “No stress” class.

No stress data← take subset (data, where stress level = “No stress”)
Sampling “no stress” subset data to generate duplicate rows← Sample ‘n’ rows
(no-stress data, specify additional data point count)

Step 3 Merge the additional duplicate records created with the initial data
New data← Row binding the data frame (data, Sampled “no stress” data)

Shuffled data← new data (sample (1: total data point count of new
obtained data))

Step 4 Use the obtained data to train machine learning models

The algorithm takes the imbalanced dataset and adds more samples to replicate the
“No stress” class, and it is merged with the initial dataset to form the data that will be
provided as input to the models.
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4.1. Decision Tree Classification to Classify Stress Levels

Decision trees use the concept of entropy and information gain to build trees from
a root node. Entropy is defined as the measure of randomness of a variable, while the
information gain computes the difference between the entropy value before and after the
splitting of the tree and specifies the impurity in the class elements [26]. Here, the stress
levels are classified by using both criteria to extract information from the dataset.

The entropy of an attribute is calculated by using Equation (1).

E(S) =
c

∑
i=1
− pilog2 pi (1)

where E(S) is the entropy of attribute S, and pi is the probability of event i or the percentage
of class i in a node of S.

Each node in the tree yields a maximum amount of data in each split, which could be
achieved using the information gain (IG) provided by Equation (2).

IG
(

Dp, f
)
= I

(
Dp

)
−

m
∑

j=1

Nj
Np

I
(

Dj
)

IG
(

Dp, a
)
= I

(
Dp

)
− Nle f t

Np
I
(

Dle f t

)
− Nright

Np
I
(

Dright

) (2)

The parameters used to train the decision tree classifier are described in Algorithm 2.

Algorithm 2: Implementing decision tree classifier to classify stress levels
Step 1 Read the surveyed dataset
Step 2 Transforming data to feed them to the machine learning model

Data← transform (data, sleep = convert as integer (sleep), productivity← convert
as factor (productivity),
screentime← convert as factor (screentime), assignments← convert as integer
(assignments), deadline← convert as factor(deadline), study← convert as factor
(study), stress← convert as factor (stress))

Step 3 Training the decision tree model using the unbiased dataset
Sample← sample rows (1: total data point count (data), split into 80–20 ratio)
Train← data[sample,]
Test← data[-sample,]
Decision tree model← feed data (stress ~., data = training data)

Step 4 Interpreting the results

The algorithm takes the dataset as the input and converts the categorical variables
such as the productivity and study-time columns into factors and the assignment column
into an integer, which act as the preprocessing steps before splitting the training and testing
data and feeding them into the decision tree classifier.

4.2. Random Forest Classification to Classify Stress Levels

The random forest algorithm is an ensemble learning method that uses the concept
of bagging. The random forests select a subset of the features in the survey dataset, and
the final classification of the stress levels is obtained by training the model using multiple
decision trees as base learners [27]. It uses the concepts of the Gini index and entropy,
which are calculated using Equations (3) and (4).

Gini = 1−
c

∑
i=1

(pi)
2 (3)

Entropy =
C

∑
i=1
−pi ∗ log2(pi) (4)
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where pi is the probability of event i or the percentage of class i in a node of S.
The parameters used to train the random forest model are described in Algorithm 3.

Algorithm 3: Feeding the data to random forest classifier
Step 1 Implement the similar transformation steps used in decision tree classifier
Step 2 Random forest model← random forest (stress~., data = training data, mtry = 2)
Step 3 Evaluate the model using performance metrics
Step 4 Interpreting the results

The algorithm follows the preprocessing steps described in the previous algorithm
and feeds the data to the random forest classifier.

4.3. Stress Level Classification Using Adaboost Algorithm

This is another ensemble learning technique that uses the concept of boosting [28].
Decision tree “stumps” are used as base learners, and each time a wrong classification is
made on the base learners, those weak links are alone passed to the next stump, and this
process keeps happening until the error is minimized. Weights are assigned to all the data
points, and after each time a wrong classification happens, higher weights are assigned to
those points.

Equation (5) calculates the weights of the data points.

w(xiyi) =
1
N

, i = 1, 2, . . . n (5)

where n is the total number of data points.
The performance of each stump is calculated by the formula in Equation (6).

Performance of the stump =
1
2

loge

(
1− Total Error

Total Error

)
(6)

Then, the new weights after each iteration are updated using Equation (7).

New weight = Old Weight ∗ e±(Performance) (7)

The parameters used to train the AdaBoost model are described in Algorithm 4.

Algorithm 4: Feeding the data to the AdaBoost classifier
Step 1 Implement the similar transformation steps used in decision tree classifier
Step 2 Model← boosting (stress~., data = training data, boost = TRUE, mfinal = 100)

predictions← predict (model, test)
Step 3 Evaluate the model using performance metrics
Step 4 Interpreting the results

The algorithm follows the preprocessing steps described in the previous algorithm
and feeds the data to the AdaBoost algorithm with the parameters mentioned above.

4.4. Stress Level Classification Using Gradient Boost Algorithm

The gradient boost algorithm is another boosting technique under the ensemble
learning method. It also uses the concept of decision stumps. It increases the weight of the
records that are incorrectly classified and decreases the weight of the ones that are correctly
classified. It works on the principle that the weak learners combine together to form a
strong model [29]. It is described in Equation (8).

F0(x) = argmin
n

∑
i=1

L(yi, γ) (8)
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where yi is the observed value of each observation, L is the loss function, and gamma is the
value for log (odds).

The derivative of the loss function is provided by Equation (9).

d
dlog(odds)

obs ∗ log(odds) + log
(

1 + elog(odds)
)

(9)

The gamma value that minimizes the loss function can be written in a generalized
equation, as below:

γ =
Sum of residuals

Sum of each p(1− p) for each sample in the leaf
(10)

And finally, the predictions are updated using Equation (11).

Fm(x) = Fm−1(x) + ν
Jm

∑
j=1

γjm I
(
x ∈ Rjm

)
(11)

The parameters used to train the gradient boost algorithm are described in Algorithm 5.

Algorithm 5: Feeding the data to gradient boost classifier
Step 1 Implement the similar transformation steps used in decision tree classifier
Step 2 Model gbm = gbm (stress~., data = training_data,

distribution = “multinomial”, cv.folds = 10,
shrinkage = 0.01, n.minobsinnode = 10, n.trees = 200)

Step 3 Evaluate the model using performance metrics
Step 4 Interpreting the results

The algorithm follows the preprocessing steps described in the previous algorithm
and feeds the data to the gradient boost algorithm with the parameters mentioned above,
and the combinations of the above algorithms are analyzed for ensemble learning. The
next section describes the exploratory analysis of the factors involved in determining
the academic stress level of students and the application of these algorithms with the
results obtained.

5. Experimental Setup and Analysis
5.1. Exploratory Analysis

The survey data were collected from the student community in the teenage group,
and the experiments were conducted using the RStudio environment, version 1.4.1717-3.
R-programming version 4.1.1 was used to do the preprocessing and the building of machine
learning models.

The following questions were the parts of the survey that were answered by the
students and were used as the dataset for training the models:

• Number of hours of sleep every night;
• Most productive time in the day—early bird/night owl;
• Screen time per day;
• Number of weekly assignments assigned to the student;
• Submission status of the weekly assignments;
• Study plan—regular or procrastinated;
• Stress level as assessed by the student.

The variables that are categorical are as follows: most productive time, submission
status of weekly assignments, study plan, and stress level. The remaining variables are
numeric; 197 responses were collected from the community, and exploratory analysis of
the results was performed to analyze the responses. In the given problem statement, we
have multiple columns representing different variables related to student stress levels.
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We performed the Tukey test [30], which allows for multiple comparisons between the
levels of each variable, providing valuable insights into the differences and relationships
among these variables. This capability is particularly useful when trying to identify which
variables have a significant impact on the stress levels of students. On top of this, the
test is known for its ability to handle small sample sizes effectively. It does not rely on
strict assumptions about the underlying data distribution, making it suitable for datasets
with relatively limited observations. The number of samples with respect to each stress
class is analyzed in Figure 2. It shows that most students were highly stressed or were
able to manage stress; however, a fraction of the students answered by saying that they
experienced no stress as well.
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The average sleeping hours of a student fall more or less between the range of 6 to 8 h,
which is a healthy sign; however, there is still a fraction of people sleeping fewer hours than
ideal, which is not good for our bodies. It can be seen that the people who are observed to
be highly stressed have a sleep time of less than the ideal amount of 6 h a day.

From Table 3, it is inferred that out of the 197 responses, 144 students sleep for at least
a minimum of six hours, which is the recommended minimum sleeping time for a person.
It also shows that the people who sleep for less than 6 h are more likely to be highly stressed
than not. The data for highly stressed students can be seen toward the top left of the table,
which implies that there is a correlation between sleep hours and stress levels. The absolute
value for the highly stressed might be higher in the 6 h range, but this is because there
are more entries, i.e., more people who achieve around 6 h of sleep compared to the other
data points.

Table 3. Analysis of stress with sleeping hours of students.

Sleep (Hours) Highly Stressed Manageable No Stress

<=4 23 3 0

5 17 6 4

6 23 35 5

7 12 24 11

>=8 6 11 17

The following figures and tables focus on how screen time plays an integral part in
determining the stress levels of students. Figure 3 shows a donut graph that displays the
percentage of students exposed to screen time on their phones or laptops.
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Table 4 compares the screen time of the students and the number of weekly assign-
ments they receive, and from it, we can see that many people who obtain more than five
weekly assignments have an alarming screen time of more than 8 h a day.

Table 4. Screen time on a daily basis vs. weekly assignments.

Weekly Assignments (Count)/Screen
Time (Hours) 1 h 2 h 3 h 4 h 5+ h

2 1 0 2 0 1

3 0 7 1 1 2

4 4 8 9 3 1

5 5 8 21 5 1

6 3 6 9 11 10

7 2 2 5 9 11

8+ 3 7 7 10 22

It is evident that the amount of screen time has shot up considerably, considering that
the classes for the students have shifted online, and nearly 160 students have screen time
greater than or equal to 5 h. Table 5 shows how the stress levels are impacted with respect
to the number of weekly assignments given to the students with respect to each stress
level classification.

Table 5. Impact of assignments on stress levels of the students.

Assignments Highly Stressed Manageable No Stress

1 8 4 6

2 14 10 14

3 5 36 12

4 19 18 2

5+ 34 11 3

It can be inferred that most of the students manage stress as long as the assignments per
week are fewer than or equal to 3, and it as goes beyond 4, the stress levels become higher,
indicating that the students find it difficult to manage the workload of the academics.
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Table 6 shows the representation of how sleep hours are affected with respect to the
productive time period of each student.

Table 6. Analyzing impact of sleep hours on the productivity of a student.

Sleep (Hours) Early Morning Risers Late-Night Workers

4 4 21

5 5 22

6 27 36

7 21 26

8+ 23 11

It is clearly visible that the students who sit up late at night tend to sleep for fewer
hours than the ones who are productive early in the morning. The late-night workers tend
to sleep as little as 4 h, while the ones who wake up early in the morning obtain at least a
minimum of 6 h of sleep. Figure 4 shows which methods students adopt when it comes
to studying, and more than half the responses state that the students study occasionally
rather than regularly.
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5.2. Data Preprocessing

After the exploratory analysis is completed, data preprocessing is performed to prepare
the data for use in training machine learning models. Symbols such as +, <, and > are
removed by using the inbuilt libraries and packages in R, as explained in the algorithm
section. An important step in the process is to remove the imbalance in the dataset. Table 7
shows the number of responses under each class of stress level.

Table 7. Classification of stress levels in initial data response.

Highly Stressed Manageable No Stress

81 79 37

Since there is a large number of responses for “Highly stressed” and “Manageable”
stress levels, the oversampling method has been used to bring the count of the “No
stress” class closer to the count of the other two majority classes. The count of each class
after applying the oversampling method is shown in Table 8. Figure 5 shows the visual
representation of responses before and after applying the oversampling technique.
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Table 8. Classification of stress-level responses after oversampling.

Highly Stressed Manageable No Stress

81 79 70
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5.3. Evaluation Metrics

To evaluate the performance of each algorithm we have used by the same methods,
we have chosen confusion matrices as the best way to move forward as they directly
provide a numerical representation of what was predicted compared to its actual value. In
a classification consisting of more than two predictable values, the confusion matrix is a
k × k matrix, where k is the number of possible predictable values. The main diagonal of
the confusion matrix shows the count of the right predictions, and the other elements show
the wrong predictions. Consider the k × k confusion matrix to be X and each element of
the matrix to be xij. The accuracy of the algorithm can be calculated as in Equation (12).

Accuracy =

k
∑

i=0
xii

N
(12)

where N represents the total number of predicted values, and xii are the true positives,
i.e., the values in the main diagonal. Accuracy can also be represented as the following
Equation (13):

Accuracy =
True Positives + True Negatives

True Positives + False Negatives + True Negatives + False Positives
(13)

The other metric that is useful to analyze the performance of an algorithm is the F1
score, which is defined as the harmonic mean of precision and recall. Here, precision
quantifies the number of positive class predictions that actually belong to the positive class,
and recall quantifies the number of positive class predictions formulated out of all positive
examples in the dataset, and these are described in Equations (14)–(16).

Recall =
True Positives

True Positives + False Negatives
(14)

Precision =
True Positives

True Positives + False Positives
(15)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(16)
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6. Results
6.1. Statistical Test Results

Two statistical tests, the analysis of variance (ANOVA) and the Tukey test, have been
implemented and analyzed on the data. The purpose of the tests is to check if the statistical
analysis proceeds to show that there exists a difference between the means of different
populations, i.e., the stress-level classes in this scenario. The numerical variables, namely
the sleep hours, the number of assignments, and the average screentime of students, have
been taken into consideration for the tests to check the impact of the factors. A one-way
ANOVA test was initially conducted using the three parameters, keeping the stress-level
classes as the factors. Table 9 shows the F score for each parameter with respect to the
factor variable.

Table 9. F-score value for each parameter in a one-way ANOVA test.

Parameter F Score

Sleep 16.25

Assignments 17.09

Screentime 8.48

It was inferred that there was a significant difference between the population at the
0.05 significance level when tested with all three numeric parameters. Following the one-
way ANOVA test, a Tukey test was conducted on the dataset to analyze the difference in
means for the parameters with respect to the factor variable.

When tested with the sleep hour parameter, it was inferred that there was a significant
mean difference in those who were highly stressed but no difference between those who
managed the stress well or were under no stress. Tables 10 and 11 show the Tukey test
mean comparisons by taking the sleep hours parameter into consideration.

Table 10. Tukey test mean comparison grouping letters table with respect to sleep hours.

Stress Level Mean Groups

Highly stressed 3.19753 A

No stress 2.37838 B

Manageable 2.10127 B

When the test was conducted using the assignment parameter, it was inferred that
there existed a significant difference between all three groups. Tables 12 and 13 show the
Tukey test mean comparison by taking the assignment parameter into consideration.

Table 11. Tukey test mean comparison with respect to sleep hours.

Category MeanDiff SEM q Value Prob Alpha Sig LCL UCL

Manageable/Highly Stressed 0.91186 0.17409 7.40733 <0.0001 0.05 1 0.50068 1.32304

No Stress/Highly Stressed 1.58959 0.21846 10.29021 <0.0001 0.05 1 1.07362 2.10556

No Stress/Manageable 0.67773 0.21933 4.36997 0.00647 0.05 0 0.15971 1.19574

Table 12. Tukey test mean comparisons grouping letters table with respect to assignments.

Stress Level Mean Groups

No stress 3.86486 A

Manageable 3.20253 B

Highly stressed 2.34568 C
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Table 13. Tukey test mean comparison with respect to assignments.

Category MeanDiff SEM q Value Prob Alpha Sig LCL UCL

Manageable/Highly Stressed −0.42522 0.192 3.13214 0.07121 0.05 1 −0.87869 0.02824

No Stress/Highly Stressed −1.19019 0.24093 6.9863 <0.0001 0.05 1 −1.75922 −0.62116

No Stress/Manageable −0.76497 0.24188 4.47257 0.00514 0.05 1 −1.33625 −0.19368

When tested with the screen-time parameter, it was inferred that there was a significant
mean difference in those who were highly stressed but no difference between those who
managed the stress well or were under no stress. Tables 14 and 15 show the Tukey test
mean comparison by taking the sleep hours parameter into consideration.

Table 14. Tukey test mean comparison grouping letters table with respect to screen time.

Stress Level Mean Groups

No stress 3.75676 A

Manageable 3.34177 A

Highly stressed 2.53086 B

Table 15. Tukey test mean comparison with respect to screen time.

Category MeanDiff SEM q Value Prob Alpha Sig LCL UCL

Manageable/Highly Stressed −0.90999 0.24621 5.22682 8.29298 × 10−4 0.05 1 −1.4915 −0.32847

No Stress/Highly Stressed −1.33934 0.30896 6.13056 <0.0001 0.05 1 −2.06906 −0.60962

No Stress/Manageable −0.42935 0.31019 1.95753 0.35117 0.05 0 −1.16196 0.30326

6.2. Experimental Results

The data are split into 80% training data and 20% testing data and provided to various
ML algorithms to classify the stress levels. From the decision tree obtained, it was observed
that those who study regularly are under no stress—even more so when the assignments
given to them per week are fewer than or equal to 4. As the assignments keep increasing,
the screen time increases and goes up to 7 or 8 h as well, and that, in turn, has led to the
prediction of the class to be “Highly stressed”, while other cases are mostly predicting
manageable stress levels. Table 16 shows the confusion matrix obtained for the decision
tree classifier, and Figure 6 shows the accuracy in terms of the classification percentage.

Table 16. Confusion matrix for decision tree algorithm.

Label Highly Stressed Manageable No Stress

Highly Stressed 15 3 2

Manageable 2 10 2

No Stress 1 1 10
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For the most part, the algorithm has predicted correctly, except for a few cases of the
high-stress class for which it predicted “Manageable” and “No Stress”. A classification
accuracy of 76.09% and an F1 score of 75.67% were obtained upon applying the decision
tree classification algorithm. Table 17 shows the confusion matrix obtained for the random
forest algorithm, and Figure 7 shows the accuracy in terms of the classification percentage.

Table 17. Confusion matrix for random forest algorithm.

Label Highly Stressed Manageable No Stress

Highly Stressed 17 2 1

Manageable 1 12 1

No Stress 0 1 11

Diagnostics 2023, 13, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 6. Confusion matrix accuracy for decision tree classifier. 

For the most part, the algorithm has predicted correctly, except for a few cases of the 
high-stress class for which it predicted “Manageable” and “No Stress”. A classification 
accuracy of 76.09% and an F1 score of 75.67% were obtained upon applying the decision 
tree classification algorithm. Table 17 shows the confusion matrix obtained for the random 
forest algorithm, and Figure 7 shows the accuracy in terms of the classification percentage. 

Table 17. Confusion matrix for random forest algorithm. 

Label Highly Stressed Manageable No Stress 
Highly Stressed 17 2 1 

Manageable 1 12 1 
No Stress 0 1 11 

 
Figure 7. Confusion matrix accuracy for random forest classifier. 

The random forest algorithm performs better in comparison to the decision tree. No-
ticeable wrong predictions are in the high and manageable stress classes. An accuracy of 
86.96% and an F1 Score of 86.67% were obtained, which implies that the random forest 
model has more true positives and true negatives when it classifies and a smaller number 
of false positives and false negatives than the decision tree model that we obtained. Table 
18 shows the confusion matrix obtained for the gradient boost algorithm, and Figure 8 
shows the accuracy in terms of the classification percentage. 
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The random forest algorithm performs better in comparison to the decision tree.
Noticeable wrong predictions are in the high and manageable stress classes. An accuracy
of 86.96% and an F1 Score of 86.67% were obtained, which implies that the random forest
model has more true positives and true negatives when it classifies and a smaller number of
false positives and false negatives than the decision tree model that we obtained. Table 18
shows the confusion matrix obtained for the gradient boost algorithm, and Figure 8 shows
the accuracy in terms of the classification percentage.
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Table 18. Confusion matrix for gradient boost algorithm.

Label Highly Stressed Manageable No Stress

Highly Stressed 13 4 3

Manageable 2 10 2

No Stress 2 3 7
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The gradient boost algorithm has some imperfections in predicting all three classes.
The gradient boost model was trained with the multinomial loss function, and an accuracy
of 65.22% and an F1 score of 64.3% were obtained. Table 19 shows the confusion matrix
obtained for the AdaBoost algorithm, and Figure 9 shows the accuracy in terms of the
classification percentage.

Table 19. Confusion matrix for AdaBoost algorithm.

Label Highly Stressed Manageable No Stress

Highly Stressed 11 6 3

Manageable 3 10 1

No Stress 0 1 11
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The AdaBoost algorithm performs a little better than the gradient boost algorithm.
The algorithm yielded results with an accuracy of 69.57% and an F1 score of 70.3%.
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6.3. Comparison of Algorithms

After analyzing the performance of each model individually, a combination of models
was used to predict the stress level. The ensemble learning methods were judged by the
combined performance of accuracy, precision, F1 score, and recall. Tables 20 and 21 consist
of the results of the performance metrics of the decision models and ensemble learning
models, respectively, and Figure 10 shows the visual comparison of the evaluation metrics
of each combination of ensemble models.

Table 20. Performance metrics of decision models.

S. No Algorithm Accuracy F1 Score

1. Decision Tree 76.09% 75.67%

2. Random Forest 86.96% 86.67%

3. Gradient Boost 65.22% 64.3%

4. AdaBoost 69.57% 70.3%

Table 21. Performance metrics of ensemble models.

S. No Ensemble Combination Accuracy Precision F1 Score Recall

1. RF + DT 88.34% 85.12% 87.26% 90.67%

2. XGB + RF 86.57% 82.35% 84.55% 92.34%

3. AB + RF 87.96% 86.61% 87.26% 90.14%

4. RF + GB + DT 82.90% 82.17% 84.39% 88.96%

5. XGB + GB + AB 78.67% 79.29% 80.54% 86.34%

6. DT + XGB + AB 86.57% 83.65% 85.89% 91.47%

7. DT + RF + AB 93.48% 92.99% 93.14% 93.30%

8. XGB + AB + RF 90.23% 88.32% 90.11% 93.76%
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In the table, DT—decision tree, RF—random forest, XGB—XG boost classifier, and
AB—AdaBoost classifier. The combination of DT + RF + AB provided the best results
with an accuracy of 93.48%. The confusion matrix of this is listed below in Table 22. This
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essentially highlights the importance of using ensemble methodology to improve the overall
performance. Fivefold cross-validation was performed on the individual models and the
ensemble model, and the results are described in Table 23 and visualized in Figure 11.

Table 22. Confusion matrix of ensemble algorithm DT + RF + AB.

Label Highly Stressed Manageable No Stress

Highly Stressed 18 1 0

Manageable 0 13 1

No Stress 0 1 12

Table 23. Fivefold cross-validation accuracies.

Algorithm Fivefold Validation Accuracy

Decision Tree 80.31%

Random Forest Classifier 88.96%

Gradient Boosting 70.43%

AdaBoost Algorithm 72.1%

Ensemble Learning (DT + RF + AB) 93.45%
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The receiving operating characteristic (ROC) curve has been plotted for the efficient en-
semble learning algorithm (DT + RF + AB), which provided the best results. Figures 12–14
show an area under the curve (AUC) for each predicted class. The high-stress and
manageable-stress categories had true-positive rates of 91%, while the no-stress category
had a rate of 98%.
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The efficient ensemble learning stress classifier developed in this paper has been
compared with the various state-of-the-art algorithms. Table 24 shows the comparisons
of algorithms incorporated by various authors in the classification of stress and is being
compared to the ensemble learning academic stress classifier implemented in this paper.
Figure 15 shows the visual representation of the same. The parameters of comparison are
accuracy and F1 score.
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Table 24. Comparison results of proposed work and other works.

S. No. Work Algorithm Accuracy F1 Score

1. Acikmese, Y., et al. (2019) [6] LSTM 63% 63%

2. Shaw, A. (2019) [7] CALM-Net 65% 59%

3. Raichur, N., et al. (2017) [9] Theano Deep Learning Model 60% 60%

4. Reddy, U. S., et al. (2018) [10] Boosting 75% 65%

5. Gamage, S. N., et al. (2022) [11] Cat Boost 85% 81%

6. Rahman, A. A., et al. (2022) [12] Logistic Regression 79% 75%

7. Rois, R., et al. (2021) [15] Random Forests 80% 76%

8. Jaques, N., et al. (2015) [16] Support Vector Machines 70% 65%

9. Flesia, L., et al. (2020) [17] Naïve Bayes Classifier 72% 63%

10. Li, H., et al. (2022) [18] Elastic Net Regularization 75% 78%

11. Bisht, A., et al. (2022) [20] K Nearest Neighbours 78% 80%

12. Ensemble Learning Academic
Stress Classifier DT + RF + AB 93.48% 93.14%
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7. Discussion and Future Work

This paper analyzes surveyed data in order to classify the stress levels of a student
based on different machine learning models. To remove the imbalance in the minority class,
an oversampling method was used to sample responses with “no stress” classification.
To measure the performance of the models, confusion matrix, accuracy, precision, recall,
and the F1 score was used. Based on the results, the ensemble learning academic stress
classifier provided the best results with an accuracy of 93.48% and an F1 score of 93.14%.
Fivefold cross-validation was also performed, and an accuracy of 93.45% was achieved. The
individual machine learning models also provided good results with random forest alone
achieving an accuracy of 88.96%. This highlights the importance of enhanced prediction
using the ensemble learning techniques. As a result of this analysis, students are able to
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gain insights into where their daily habits can be improved in order to maintain a stress-free
academic lifestyle.

Importantly, this research extends beyond the immediate results and paves the way
for further exploration in the field of stress prediction and mitigation. Previous studies
have delved into stress prediction across various domains, offering valuable insights into
the broader landscape of human well-being. However, our work distinguishes itself by
focusing exclusively on students and their academic stressors, shedding light on a crucial
facet of stress prediction. By narrowing the scope to academic factors, we bridge the gap in
existing research, ensuring that the unique stressors faced by students are comprehensively
addressed. The future work involves analyzing patterns of the responses across different
classes in terms of the stress level and developing a personalized assistant where students
can enter the value for each attribute and obtain strategies that may help them improve
their academic performances based on the predictions that the model provides, and the
model will be able to learn from the responses of the students with lower stress levels. It
is also possible to perform conventional statistical analysis with the dependent variable
as stress and keeping the predictors as other variables. Analyses such as binary logistic
regression, method enter, and method backward conditional can be performed. With the ad-
vancement of technology, electronic devices have become an integral part of our daily lives,
providing an opportunity to gather valuable information without direct user involvement.
By incorporating sensors or logging mechanisms into electronic devices such as smart-
phones or smartwatches, it is possible to passively collect data on various factors related to
student stress levels, such as physical activity, screen time, location, and communication
patterns. This passive data-collection approach eliminates the need for manual data entry
through forms, reducing the potential for self-reporting biases and enhancing the ecological
validity of the dataset. In this way, students can receive better insights into how to advance
academically while keeping stress levels in check. The broader implications of this work
resonate with the concept of predictive analytics for stress management, not only within the
academic realm but also across diverse domains. Our findings underscore the potential for
a personalized assistant that allows students to input their attributes and receive tailored
strategies to enhance their academic performances, leveraging the predictive capabilities of
our model. This approach presents an innovative paradigm in stress mitigation, one that
learns from the experiences of students with lower stress levels, thereby contributing to the
development of more effective stress management techniques.

Author Contributions: Conceptualization, R.V.A. and A.Q.M.; formal analysis, A.Q.M. and R.V.A.;
funding acquisition, S.U.; investigation, A.Q.M., R.V.A., A.C., S.U. and M.A.A.; methodology, A.Q.M.
and S.U.; project administration, S.U.; validation, A.Q.M., M.A.A. and S.M.; writing—original draft,
A.Q.M. and R.V.A.; writing—review and editing, S.U. and S.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Princess Nourah bint Abdulrahman University Re-
searchers Supporting Project Number (PNURSP2023R79), Princess Nourah bint Abdulrahman Uni-
versity, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Number (PNURSP2023R79), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Diagnostics 2023, 13, 3455 24 of 25

References
1. Wang, X.; Hegde, S.; Son, C.; Keller, B.; Smith, A.; Sasangohar, F. Investigating Mental Health of US College Students During the

COVID-19 Pandemic: Cross-Sectional Survey Study. J. Med. Internet 2020, 22, e22817. [CrossRef]
2. Bedewy, D.; Gabriel, A. Examining perceptions of academic stress and its sources among university students: The Perception of

Academic Stress Scale. Health Psychol. Open 2015, 2, 2055102915596714. [CrossRef]
3. Kulkarni, S.; O’Farrell, I.; Erasi, M.; Kochar, M.S. Stress and hypertension. WMJ Off. Publ. State Med. Soc. Wis. 1998, 97, 34–38.
4. Chemers, M.M.; Hu, L.T.; Garcia, B.F. Academic self-efficacy and first year college student performance and adjustment. J. Educ.

Psychol. 2001, 93, 55. [CrossRef]
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