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Abstract: The impaired suppressive function of regulatory T cells is well-understood in systemic
lupus erythematosus. This is likely due to changes in Foxp3 expression that are crucial for regu-
latory T-cell stability and function. There are a few reports on the correlation between the Foxp3

altered expression level and single-nucleotide polymorphisms within the Foxp3 locus. Moreover,
some studies showed the importance of Foxp3 expression in the same diseases. Therefore, to ex-
plore the possible effects of single-nucleotide polymorphisms, here, we evaluated the association of
IVS9+459/rs2280883 (T>C) and −2383/rs3761549 (C>T) Foxp3 polymorphisms with systemic lupus
erythematosus. Moreover, through machine-learning and deep-learning methods, we assessed the
connection of the expression level of the gene with the disease. Single-nucleotide polymorphisms of
Foxp3 (IVS9+459/rs2280883 (T>C) and −2383/rs3761549 (C>T)) were, respectively, genotyped using
allele-specific PCR and direct sequencing and polymerase chain reaction-restriction fragment length
polymorphism, in 199 systemic lupus erythematosus patients and 206 healthy age- and sex-matched
controls. The Statistical Package for the Social Sciences version 19 and Fisher’s exact and chi-square
tests were used to analyze the data. Moreover, six machine-learning models and two sequential
deep-learning models were designed to classify patients from normal people in the E-MTAB-11191
dataset through the expression level of Foxp3 and its correlated genes. The allele and genotype
frequencies of both polymorphisms in question were found to be significantly associated with an
increased risk of systemic lupus erythematosus. Furthermore, both of the two single-nucleotide
polymorphisms were associated with some systemic-lupus-erythematosus-related risk factors. Three
SVM models and the logistic regression model showed an 81% accuracy in classification problems.
In addition, the first deep-learning model showed an 83% and 89% accuracy for the training and
validation data, respectively, while the second model had an 85% and 79% accuracy for the training
and validation datasets. In this study, we are prompted to represent the predisposing loci for systemic
lupus erythematosus pathogenesis and strived to provide evidence-based support to the application
of machine learning for the identification of systemic lupus erythematosus. It is predicted that the
recruiting of machine-learning algorithms with the simultaneous measurement of the applied single
nucleotide polymorphisms will increased the diagnostic accuracy of systemic lupus erythematosus,
which will be very helpful in providing sufficient predictive value about individual subjects with
systemic lupus erythematosus.

Keywords: systemic lupus erythematosus; polymorphism; Foxp3; rs2280883; rs3761549; machine
learning; deep learning

1. Introduction

To avoid responsiveness against self-antigens and reduce autoimmunity risk, the
immune system has evolved immunological tolerance mechanisms which are categorized
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as central and peripheral tolerance. The primary deletion of autoreactive T or B cells
take place by central tolerance, within the primary (thymus and bone marrow) lymphoid
organs. Nevertheless, central tolerance is imperfect and self-reactive cells continuously
escape into the periphery. Peripheral tolerance is the inactivation key of autoantigen-
recognizing T or B cells which appear in the periphery [1,2]. A unique subset of CD4

+ T cells,
known as regulatory T (Treg) cells, are essential mediators of peripheral tolerance to self-
antigens. These specialized lymphocytes, with regulatory functions in restraining immune
responses [3–5], arise during thymic-derived T-cell maturation and are characterized by
the expression of the interleukin-2 receptor alpha (IL-2Rα) chain (CD25), and the forkhead
box P3 (Foxp3) transcription factor [6]. The master forkhead/winged-helix transcription
factor of Foxp3 controls the regulation, differentiation, and suppressor function of Treg
cells. In contrast, function-impaired Treg cells develop systemic autoimmune diseases
which have been found to be associated with mutations on the Foxp3 gene (located on the
X chromosome in the Xp11.23 position) [7–10]. A common one includes systemic lupus
erythematosus (SLE) with prevalence rates varying between 3.7/100,000 person-years [11].
SLE is a multisystem, complex, autoimmune disease involving progressive organ damage
with the direct contribution of auto-antibodies and self-reactive T cells to its pathologic
changes [12,13]. Impaired immune system function in SLE has recently been reported to
be associated with single nucleotide polymorphisms (SNPs) in the Foxp3 gene which can
alter its expression level and impair the suppressive function of Tregs [3]. Two promoter
(−2383/rs3761549 (C>T)) and intronic (IVS9+459/rs2280883 (T>C)) polymorphisms of
Foxp3 have been reported to be associated with autoimmune disease risk [14].

Furthermore, gene expression analysis advances our understanding about the under-
lying molecular mechanisms of SLE. Nowadays, machine learning is a developing area
that is known as a revolution in science. Machine learning and its more developed field
called deep learning could be represent a solution for the big data interpretation challenge,
and used to obtain understandable knowledge from massive gene expression data and
facilitate the ability to predict changes in SLE disease [15]. There are various machine-
learning methods designed to solve classification problems. One of them is called logistic
regression, which uses a sigmoid unit to classify each piece of data based on some inputs
as features. The performance of a logistic regression is evaluated by a parameter called
loss. A more extended logistic regression with various units and several layers is called a
neural network, which is the basic unit of a deep-learning model [16]. Therefore, a logistic
regression model is also known as the simplest deep-learning model. For the time being,
neural networks are suggested as the best way to solve big data classification problems,
while machine-learning models are better for datasets with a small size. Recently, some
studies have used these models to perform classifications based on gene expression data in
biological challenges [17].

The core finding from the present functional study may fill the existing gaps in our
understanding about genetic factors predisposing to SLE and provide a promising way to
utilize genetic computational methods for the prediction of risk for SLE.

To shed new light on the molecular mechanism underlying the development of SLE,
the present study aimed to realize the probable association of IVS9+459/rs2280883 (T>C)
and −2383/rs3761549 (C>T) Foxp3 polymorphisms and also the association of the expres-
sion of Foxp3 with SLE through in vitro and machine-learning methods.

2. Methods
2.1. Experimental Design

For our study, 199 SLE blood samples were collected from patients whose disease had
been diagnosed by rheumatologist (based on the proper constellation of clinical (butterfly
rash, oral ulcers, single urine: protein/creatinine ratio or 24 h urine protein, >0.5 g, seizures,
psychosis, myelitis, and leukopenia) findings and immunological evidence (including ANA
level, anti-dsDNA antibodies, and low complement) at Hafez Hospital Lupus Clinic (Shiraz,
Iran). Blood samples were also collected from 206 age- and sex-matched healthy subjects
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(controls) from the organization of the blood transfusion (Shiraz, Iran). All samples were
kept in the Autoimmune Diseases Research Center of Shiraz University of Medical Sciences
(Shiraz, Iran) until experimental analysis. Subjects with other co-occurrent autoimmune
and underlying diseases were excluded. The study protocol was approved by the Ethics
Committee of the Islamic Azad University—Kazerun Branch (IR.IAU.KAU.REC.1398.044)
and written informed consent was provided to gain consent of research participation.

2.2. DNA Isolation and Quality Control

Genomic DNA was extracted from a total blood sample volume of 200 µL using the
DNP™ DNA Extraction kit (DNP Extraction Kit, Sinagen Company, Tehran, Iran) and was
stored frozen at −20 ◦C for later use. NanoDrop ND-2000 (Thermo, Wilmington, NC, USA)
was used for DNA concentration and quality assessment.

2.3. Genotyping

Selected polymorphic sites (IVS9+459/rs2280883 (T>C) and −2383/rs3761549 (C>T))
were genotyped by two independent PCR methods.

The −2383/rs3761549 (C>T) polymorphism was amplified by restriction fragment
length polymorphism (RFLP) technique. Amplification program, primers, restriction
enzyme, and product sizes are shown in Table 1. A total of 10 µL of PCR product was
added to 0.5 µL BseNI (BsrI) restriction enzyme, 2.5 µL buffer, and 18µL nuclease-free water.
The mixture then incubated for 4 h at 65 ◦C. Next, 15 µL of each digested PCR product
containing a 3 µL loading buffer was loaded into a lane of the 3% agarose gel. The DNA
bands were then visualized on the UV transilluminator and images were taken with a gel
documentation system (UVITEC, UK). Finally, the genotypes of −2383/rs3761549 (C>T)
SNP were determined.

Table 1. Amplification program, primers, restriction enzyme, and product sizes used for genotyping
of rs3761549 SNP, and amplification program and primers used for genotyping of rs2280883 SNP.

rs3761549 (Promoter Region)

Type of polymorphism Single-base C>T
Site of polymorphism −2383

PCR primers
Forward: 5′-CTGAGACTTTGGGACCGTAGAC-3′

Reverse: 5′-ACACCACGGAGGAAGAGAAGAG-3′

PCR conditions
Denaturation: 94 ◦C, 5 min

Annealing: 64 ◦C, 30 s
Extension: 72 ◦C, 7 min

No. of cycles: 35
Restriction enzyme: BseNI (BsrI)

Restriction Enzymes Product Size (bp):
CC (183, 128, and 61 bp)

CT (311, 183, 128, and 61 bp)
TT (311 and 61 bp)

rs2280883 (Intronic region)
Type of polymorphism Single-base T>C
Site of polymorphism IVS9+459

PCR primers
T Allele

Forward: 5′-ACCACCATCCAGGCCAGAG-3′

Reverse: 5′-GTGTGGCGCTAGGATGAAGG-3′

C Allele
Forward: 5′-AATACACCCCCAACTGGGCA-3′

Reverse: 5′-GTGTGGCGCTAGGATGAAGG-3′

PCR conditions
Denaturation: 95 ◦C, 5 min

Annealing: 58 ◦C, 1 min
Extension: 72 ◦C, 3 min

No. of cycles: 30

Product Size (bp): T (368 bp)
C (136 bp)
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IVS9+459/rs2280883 (T>C) was genotyped through allele-specific PCR (AS-PCR)
(amplification program, primers, and product sizes are shown in Table 1) and direct
sequencing method. Direct sequencing of PCR products recovered by the GEL/PCR
Purification Kit (Favorgen Biotech Corp., Ping-Tung, Taiwan) was performed using Genetic
Analyzer 3130× (Applied Biosystems, Waltham, MA, USA). Sequences were analyzed with
the CodonCode Aligner V.5.1.5 software (CodonCode Corporation, Centerville, MA, USA).

2.4. Data Collection and Preprocessing

We searched for microarray expression datasets in the ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/) and GEO (https://www.ncbi.nlm.nih.gov/geo) databases on
7 July 2022, in the current study. Various datasets were selected as our first-level candidates;
among them, we chose the E-MTAB-11191 dataset from the ArrayExpress database. The
selection criteria were based on the number of samples, study design, and the platform
in use. The platform in use in the current study was Affymetrix Human Genome U133
Plus 2.0 Array. We first downloaded raw CEL files and then generated the expression
matrix through the RMA method in the affy package in the R environment. The package
is developed to generate and modify expression matrices from the Affymetrix platform
series. The data values were then normalized and scaled into log2 + 1 format. The matrix
was then annotated with Ensembl IDs, Gene Symbols, and Entrez IDs. We did not remove
any genes through typical methods such as CPM (counts per million) because we had a
specific target gene to study.

2.5. Machine-Learning Model Design

First of all, we extracted the expression level of the Foxp3 gene from the expression
matrix. The gene had 3 probe IDs; therefore, we considered all of them in our model. The
data was first transformed in a way that columns were considered our features (genes), and
rows were our labels (patients and normal). We had 101 samples; among them, 17 were
normal, and 84 were patients. The data were first scaled between zero and one (a common
method in machine-learning models) by the following formula:

Gi−min(G))/(max(G)−min(G)

in which G represents the expression value of the gene in the patients i, and min and max
values of G are the minimum and maximum values of the gene among all patients.

Six machine-learning models were created to classify them based on the expression
level of the Foxp3 gene, including linear regression (LR), support vector machine (SVM)
with RBF (SVM_1), linear (SVM_2), and poly (SVM_3) kernels, decision tree (DT), and
extra-tree classifier (ETC). To train the models, we shuffled and divided 70% of the data
into the training datasets and 30% into the testing datasets. For that purpose, we used the
train_test_split function from the sklearn library in Python. Each model was first trained
on the training dataset and then evaluated on the test datasets.

2.6. Co-Expression Network

In order to find genes associated to Foxp3, the co-expression network analysis was
performed. The expression matrix of Foxp3 was extracted. Afterwards, the Pearson correla-
tion test was executed between the gene and all other genes in the main expression matrix.
Those genes with a correlation coefficient (CC) > 0.8 and CC < −0.8 were selected.

2.7. Deep-Learning Model

Two deep-learning models were designed. We used both the Keras and the TensorFlow
libraries in the Python environment. Keras is a branched library from TensorFlow that is
developed for deep-learning usages. It generally supports two types of models, including
sequential and functional models. In the current study, both models were sequential models.
In the first model, we only considered Foxp3 probe IDs as our features. The model had
2 hidden layers with 10 and 5 units, respectively. Moreover, there was another output layer

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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with one unit. The activation function for hidden layers was carried out then, and the
output layer was sigmoid. Bias for all layers was considered zero at the first epoch, and
the weights were random numbers. Adam was considered as the model optimizer, and,
because it was a binary classification, we considered binary cross-entropy to calculate our
loss. Moreover, the learning rate was set at a 0.0001 value. The model was trained with
2000 epochs, and the validation dataset was considered 0.25 of the total number of train
samples. In addition, at the end of the training, the model was evaluated by the test dataset.

For the second model, we considered all genes with a correlation coefficient >0.8 or
<−0.8 with Foxp3. We had three hidden layers in the second model with 25, 25, and 12 units,
respectively. Other parameters were similar to the first model. However, in this model,
because of the large number of features, we did not consider the test dataset, and only
the validation dataset with 33% of total samples was considered. We utilized this method
because, if the number of samples became less than the number of features, the model
could not classify very well.

2.8. Software and Statistics

All statistical analysis for the genotyping part was performed in SPSS Statistics 19
software. The significance differences in genotype and allelic frequencies between two
groups were verified by the Hardy–Weinberg (HW) equilibrium and chi-square test. Bon-
ferroni corrections were applied to correct for multiple comparisons, and the threshold
for statistical significance was set at ≤0.05. In the machine-learning part, all mathematical
and statistical calculations were performed in R and Python environments. We applied
R version 4.0.1 and R Studio for data preparation and basic statistical tests. We applied
Python for deep learning, machine learning, and model evaluation in the Google Colab
(https://colab.research.google.com/) environment on 15 July 2022. The runtime was set
on TPU, which is developed for better execution of machine-learning projects. Moreover,
figures were depicted using Python and the matplotlib library.

3. Results

The basic demographic data of all the SLE patients are summarized in Table 2.

Table 2. Demographic characteristics of participants in two groups.

Variables Controls Patients p-Value

N = (206) N = (199)
Age, years 40.46 ± 10.4 34.59 ± 10.9 0.223

Range 19–61 14–71 -
Sex

Male 15 (7.7%) 16 (8%)
0.134Female 191 (92.3%) 183 (92%)

The results showed that the statistical power in our study were: (1) the associations
between both Foxp3 (IVS9+459/rs2280883 (T>C) and −2383/rs3761549 (C>T)) gene poly-
morphisms and SLE risk, and (2) the 81% accuracy of the three SVM models and the
logistic regression model when performing classifications based on gene expression data in
biological challenges about genetic factors predisposing to SLE.

The −2383/rs3761549 (C>T) genotype distribution was in accordance with the Hardy–
Weinberg equilibrium (control group, X2 = 3.2, df = 2, HWE p-value = 0.201; and patient
group, X2 = 4.7, df = 2, HWE p-value = 0.095). The CC, CT, and TT genotype of the
−2383/rs3761549 (C>T) polymorphism is shown in Figure 1. As the genotypic and allelic
distribution of Foxp3 rs3761549 SNP is summarized in Table 3, the CT- and TT-genotype
frequencies were significantly higher in the SLE patients than controls. Moreover, our
results indicate that the T allele of rs3761549 is a risk allele for SLE development (Table 3).
Regarding the association of rs3761549 (C>T) polymorphism with SLE risk factors such
as antinuclear antibody (ANA), anti-double-stranded DNA (anti-dsDNA), complement

https://colab.research.google.com/
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(C3/C4), and white blood cell count (WBC), only a significant relationship was found
between CT-genotype carriers and anti-dsDNA (Table 4).

Figure 1. Agarose gel electrophoresis of rs3761549 polymorphism and its restricted fragments
obtained by BseNI (BsrI) digestion.

Table 3. Genotype and allele frequency distribution of rs3761549 and rs2280883 polymorphisms in
SLE patients and controls.

Gene SNP Controls
(n = 206)

Patients
(n = 199) OR (95% CI) Uncorrected p Corrected p

Foxp3

rs3761549
CC 145 (66.1%) 91 (46.7%) 1 <0.001 <0.003
CT 61 (33.9%) 107 (52.8%) 2.2 (1.4–3.3)
TT (0) 1 (0.5%) -
C 299 (83.1%) 285 (47.5%) 1
T 61 (16.9%) 315 (52.5%) 2.2 (1.4–3.3) <0.001 <0.007

rs2280883
TT 117 (56.4%) 77 (45.6%) 1 0.037 0.045
CT 89 (43.6%) 122 (54.4%) 0.6 (0.4–0.9)
CC 0 (0) 0 (0) -
T 260 (72%) 289 (66%) 1
C 143 (28%) 89 (34%) 0.5 (0.4–0.7) <0.001 <0.005

Note: Corrected p-values were calculated by using Bonferroni’s correction.

Table 4. Association of rs3761549 and rs2280883 polymorphisms and the SLE developmental
risk factors.

rs3761549
Genotypes (%)

OR (95% CI) p-Value
CC CT

ANA
Negative
Positive

C3
Normal

Decrease
Increase

C4
Normal

Decrease
Increase

Anti-ds DNA
No
Yes

WBC
Normal

Decrease

28
63

52
25
7

66
10
9

47
44

85
4

29
76

58
31
7

76
14
6

39
66

95
10

1
1.16 (0.6–1.2)

1
1 (0.5–2.1)

0.8 (0.2–2.7)

1
1.2 (0.5–2.9)
0.5 (0.19–1.7)

1
1.8 (1.03–3.1)

1
2.2 (0.6–7.5)

0.6

0.7
0.8

0.6
0.3

0.04

0.17
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Table 4. Cont.

rs2280883
Genotypes (%)

OR (95% CI) p-Value
TT CT

ANA
Negative
Positive

C3
Normal

Decrease
Increase

C4
Normal

Decrease
Increase

Anti-ds DNA
No
Yes

WBC
Normal

Decrease

33
73

69
24
6

83
9
8

50
56

99
7

25
65

43
31
8

61
14
7

38
52

83
7

1
1.17 (0.6–1.3)

1
2 (1.07–3.9)
2 (0.6–6.9)

1
2 (0.8–5.2)

1.19 (0.3–3.4)

1
1.2 (0.6–2.1)

1
0.7 (0.4–3.2)

0.6

0.02
0.18

0.1
0.7

0.4

0.7

An evaluation of the Hardy–Weinberg equilibrium for the rs2280883 polymorphic
loci showed a nonsignificant deviation in both the control and patient population (control
group, X2 = 1.4, df = 2, HWE p-value = 0.496; and patient group, X2 = 1.6, df = 2, HWE
p-value = 0.449). Figure 2 demonstrated the CT and TT genotype confirmed by direct
PCR sequencing. The relationships between the rs2280883 risk genotypes and alleles, and
susceptibility to SLE were analyzed (Table 3). We found a significantly increased risk for
SLE associated with the rs2280883 polymorphism CT genotype and C allele. Except for C3,
no statistically significant difference was observed between rs2280883 SNP and various
SLE risk factors (Table 4). After Bonferroni correction, both SNPs remained significant.
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3.1. Foxp3 Expression Level Might Efficiently Classify People with or without Lupus
Erythematosus through Machine-Learning Methods

We applied six machine-learning models to classify normal people from patients.
The results are shown in Table 5. Overall, it is evident that all SVM models and logistic
regression could indicate similar outcomes with an accuracy of 81%. On the other hand,
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decision tree and ETC models were 68% and 74% accurate in the classification problem. All
the classification models were designed based on only one gene as our feature. None of
the models showed a macro average F1-score of more than 45%. However, the weighted
average F1-score of all models was in a similar range between 65% and 72%. The four
models listed at first showed the highest metrics based on all methods.

Table 5. Machine-learning results for FOXP3-based model.

Logistic
Regression SVM_1 SVM_2 SVM_3 Decision

Tree ETC

Accuracy 0.81 0.81 0.81 0.81 0.68 0.74
Macro Avg 0.45 0.45 0.45 0.45 0.40 0.43

Weighted Avg 0.72 0.72 0.72 0.72 0.65 0.69

3.2. A Deep-Learning Model with More Features: Similar Results to the Model with One Feature

We designed two deep-learning models to assess the performance of neural networks
in the classification with such a number of samples. The training history of both models is
shown in Figure 3A,B. As the first model had only one feature (Foxp3), we only considered
two layers but a more extensive training time for that (2000 epochs). The model showed
an 83% and 89% accuracy for the training and validation datasets, respectively. The loss
for both datasets was at the minimum level of its function, and the training was precisely
stopped at this point. On the other hand, for the second model, we considered 76 genes that
had the highest CC with Foxp3 (Supplementary Table S1). The expression level of all genes
was normalized and scaled between zero and one then. We designed the model with three
hidden layers, as the number of features was larger. However, we reduced the number
of epochs to achieve better results. The model showed an 85% accuracy for the training
set, which is larger than the previous model. However, the validation accuracy could only
reach 79%. Therefore, the first model with Foxp3 as its only feature revealed better results
compared to the second model with correlated genes. This fact reveals that, despite the low
number of samples available for this deep-learning modelling, Foxp3 could classify patients
and normal people very well.
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4. Discussion

It has long been suggested that genetic factors not only enhance the risk for the devel-
opment of SLE, but also are able to play important roles in the pathogenesis of this disease.
However, the exact cause of SLE remains elusive [18] and further experiments are still
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needed. Thus, in this study, we aimed to prove whether the Foxp3 expression and mutation
are crucial in lupus erythematosus, through computational modelling and experimental
approaches. Despite the success of SNP analyses in the context of assessing the associa-
tion between genetic determinants and complex diseases, disease-risk SNPs are usually
neglected. On the other hand, although the SNP discovery holds great promise, SNPs may
not be the single mediator for the relation between genetics and disease. Gene expression
information can also increase the power of detecting the overall effect of genetics on disease
risk [19]. In this paper, we combined the information of SNPs and gene expression to
introduce Foxp3 as a mediator which highlights the clinical significance of our findings.

In the present study, the role of Foxp3 polymorphisms has attracted attention in
the SLE pathogenesis. Our main findings suggest that the T allele of Foxp3−2383 C>T
(rs3761549) could be a risk allele and the CT and TT genotypes were associated with
developing SLE. Other findings are in agreement with our result; for example, in a Brazil-
ian population, the rs2232368 polymorphism T allele was found to have an association
with endometriosis-related infertility [20]. The association between the “CT” genotype of
−2383 C/T (rs3761549) polymorphism and Hashimoto’s thyroiditis and Graves’ disease
is also reported in the South Indian population [21]. Moreover, we found a significant
relationship between CT-genotype carriers and the positive anti-dsDNA antibody. It sug-
gests that the rs3761549 could be considered as a genetic risk factor for SLE susceptibility.
Likewise, observing the association of the CT genotype and C allele of IVS9+459 T>C
(rs2280883) polymorphism with an increased risk for SLE in our study implies the effect of
rs2280883 SNP’s predisposition to SLE. There is also a report indicating the associations
between the rs2280883 SNP and psoriasis in a Han Chinese population [22]. The rs2280883
SNP is also linked to an increased risk of Graves’ disease (Tan et al., 2021). Addition-
ally, the association of the TC genotype of Foxp3 rs2280883 was found with the risk of
connective-tissue-disease-associated ILD [23]. Findings in other studies, together with the
Foxp3-polymorphism-associated genetic effect on the risk of SLE identified in this study,
confirm our hypothesis that Foxp3 polymorphisms might be a proper candidate for use in
autoimmune disease screening, including for SLE. However, no evidence for the Foxp3 gene
polymorphism association with Graves’ disease and autoimmune Addison’s disease has
been found in the UK population [24]. It is clearly the case that there is inconsistency be-
tween different ethnic populations concerning the polymorphisms responsible for disease
susceptibility. We suggest that the association between such identified true susceptibility
loci and SLE and other autoimmune diseases should be evaluated in every population.

On the other hand, in the current study, the potential of the Foxp3 gene expression
level in patient classification was evaluated. Our present result is similar to the findings
of a previous study which indicate machine-learning algorithms could potentially be
applied to identify the gene expression features and subjects with higher degrees of disease
activity [25]. Moreover, there are reports about the importance of this gene expression
activity in SLE in the Egyptian population [26]. The dataset in use in this study was selected
among more than 20 candidate datasets. Unfortunately, we could not select any microarray
dataset with a larger number of samples because of the type of study and the platform in
use. Therefore, we only considered 101 samples: 17 were without the disease and the others
were patients. This means that around 17% of our samples were grouped as control, which
is acceptable for a small machine-learning project. However, with the small number of
samples, the outcomes showed that the Foxp3 expression levels might classify both groups
considerably. A comparison among the deep-learning and machine-learning models shows
that the first deep-learning model had the best performance with about 90% accuracy. In
this model, we only considered Foxp3 as our feature. We believe that the better performance
of the model is due to the number of samples, as the rules of deep learning say the number
of features should be much less than the sample number to obtain the best result. On the
other hand, among machine-learning models, logistic regression and all support vector
machine models showed the same result with an accuracy of 81%. Here, again, we think
that the same results are because of the number of control samples. Definitely, if we increase
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this number, the results would be changed. Therefore, we cannot decide which one of the
machine-learning models could classify better. Considering a larger sample size to evaluate
the association between these polymorphisms in question with SLE in future studies will
resolve the present study’s limitation. Likewise, further studies on patients in a variety
of ethnic populations are still required to increase our knowledge base for this gene. It is
advantageous that other genetic association studies evaluate other potential mediators,
such as DNA methylation.

5. Conclusions

To date, although the role of Foxp3 in autoimmunopathies have attracted interest
in numerous genetic studies, the present study has been attempted to detect Foxp3 gene
expression features and its related polymorphisms as more plausible genetic risk factors
for SLE. The present data provide an approach to considering the Foxp3 gene as a strong
genetic component with high clinical significance for SLE which could potentially be used
to identify the subjects with higher disease susceptibility.
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