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Abstract: The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the
highest rates of HCV in the world. The high prevalence is linked to several factors, including the use
of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This
paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier
to predict HCV disease in Egypt. The model’s accuracy is enhanced by optimizing hyperparameters
with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling
the dataset values and using the forward selection (FS) wrapped method to identify essential features.
The dataset used in the study contains 1385 instances and 29 features and is available at the UCI
machine learning repository. The authors compare the performance of five machine learning models,
including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier
(RC), and bagging classifier (BC), with the hyOPTGB model. The system’s efficacy is assessed
using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model
outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also
compared the hyOPTGB model against other models proposed by authors who used the same dataset.
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1. Introduction

Hepatitis C virus (HCV) is a blood-borne virus that primarily affects the liver, causing
inflammation and potentially leading to cirrhosis, liver failure, and liver cancer [1,2]. HCV
can be classified based on different factors, including the genotype, viral load, and disease
stage. Genotype classification is based on the genetic makeup of the virus [3]. There are
six major genotypes of HCV, each with several subtypes, and their distribution varies
geographically. Genotype is essential in determining the course of treatment, as some
genotypes are more responsive to certain medications than others. Viral load classification
refers to the amount of virus in the blood [4]. High viral loads are associated with a
greater risk of liver damage and may indicate a more aggressive disease course. Disease
stage classification is based on the extent of liver damage caused by HCV. The disease
can progress from a mild form of liver inflammation (chronic hepatitis) to more severe
conditions of liver disease, such as cirrhosis and liver cancer. The stage of the disease
is determined by evaluating liver function tests, imaging studies, and liver biopsy [5].
Overall, HCV disease classification plays a vital role in determining the appropriate course
of treatment and monitoring disease progression. Early detection and treatment can help
prevent or delay the development of severe liver complications associated with HCV
infection [6]. In contrast to developed countries in Europe and North America, there is
a higher incidence of hepatitis C virus (HCV) infection in the impoverished developing
nations of Asia and Africa.

Moreover, countries like Pakistan, China, and Egypt have a larger population of
individuals who suffer from chronic HCV infections [7,8]. The classification of HCV in
Egypt is based on different factors, including genotype, viral load, and disease stage [7].
Genotype classification is based on the genetic makeup of the virus, and in Egypt, the most
prevalent genotype is genotype 4. Viral load classification is based on the amount of virus
present in the blood, and a high viral load is associated with a greater risk of liver damage.
Disease stage classification is based on the extent of liver damage caused by HCV and can
range from mild inflammation to severe liver diseases such as cirrhosis and liver cancer [9].
Healthcare workers in Egypt, who frequently interact with patients, are at an increased
risk of HCV infection and other blood-borne diseases. Thus, it is crucial to understand the
classification of HCV in Egypt to prevent and treat the disease effectively. Early detection
and treatment of HCV can help prevent the development of severe liver complications
associated with the disease [9].

There is a pressing need for accurate and dependable, non-invasive technology for the
detection of HCV. Machine learning (ML) algorithms have effectively analyzed clinical data
and identified intricate and nonlinear relationships in medical conditions. Classification
techniques using ML algorithms can be employed to create models for diagnosing HCV
by detecting infected individuals. However, unsuitable attributes in the attribute set can
compromise the classifier’s accuracy [10,11]. Hyperparameter tuning is a crucial step in
building a machine learning model. It involves selecting the optimal values for the hyper-
parameters that determine the algorithm’s behavior during training. Hyperparameters
control various aspects of the model, such as the learning rate, regularization, number of
layers, and number of nodes in each layer [12]. Choosing the right hyperparameters can
significantly impact the model’s performance, accuracy, generalization, and convergence
speed. An appropriate selection of hyperparameters can improve the model’s ability to
generalize and make accurate predictions on unseen data. Conversely, inappropriate hy-
perparameters can lead to poor performance, overfitting, or underfitting. By optimizing
the hyperparameters, we can improve the performance of the machine learning model,
making it more accurate, robust, and efficient [13].

The term “optimization” refers to a vital instrument that is utilized in a variety of
fields, one of which is the field of medicine, where it plays an important part. The goal
of optimization is to arrive at the most advantageous results or choices attainable given a
particular set of circumstances by making use of a variety of factors and predetermined
standards. In the field of medicine, optimization is put to use in a wide variety of contexts,
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including the following: the prediction and classification of monkeypox disease [14–16],
the feature selection and classification in diagnosed breast cancer [17], the classification
of diabetes [18], and the classification of COVID-19 in chest X-ray pictures [19]. The
application of optimization in the field of medicine helps to improve the overall outcomes
for patients and makes the most efficient use of the available resources.

The dataset used in this study is available at the UCI machine learning repository [20].
The dataset includes 1385 instances and 29 features, where 28 are predictors, and one is the
target feature. The multi-class target feature, representing the baseline histological staging,
contains instances with different values. Specifically, the values are portal fibrosis without
septa, few septa, many septa without cirrhosis, and cirrhosis—the number of instances
associated with values of 336, 332, 355, and 362, respectively.

Feature selection is a critical step in building a machine learning model. It involves
selecting the most relevant and informative features from the available dataset to train
the model. The goal of feature selection is to reduce the dimensionality of the dataset,
simplify the model, and improve its accuracy and generalization ability [21]. Feature
selection is essential for several reasons. First, it can improve the accuracy and efficiency
of the model. By removing irrelevant or redundant features, we can reduce the noise in
the dataset, improve the model’s signal-to-noise ratio, and reduce overfitting. This, in turn,
can improve the model’s performance on new, unseen data. Second, feature selection can
simplify the model and make it more interpretable. By removing irrelevant or redundant
features, we can reduce the complexity of the model and make it easier to understand
and explain. This is particularly important in applications where model interpretability
is critical, such as healthcare, finance, and legal domains. Third, feature selection can
reduce the cost and time required to train the model. Reducing the number of features
can decrease the computational resources needed for training, testing, and deploying the
model [22,23]. Numerous studies have proposed various methods for predicting HCV
disease, and we have developed our system, hyOPTGB, which utilizes the gradient boosting
(GB) model and OPTUNA hyperparameter tuning to make these predictions [24,25]. The
GB model has become increasingly popular for classification problems due to its strong
performance [26,27].

Efficient hyperparameter tuning is essential to improve the performance of any system.
A hyperparameter is a configuration setting that is not learned from the data but is set
prior to the training of a machine learning model. These settings are essential because they
control various aspects of the model’s training process and architecture, influencing its
ability to learn and make predictions. Hyperparameters are distinct from model parameters,
which are learned from the training data. Model parameters are the internal values that the
machine learning algorithm adjusts during training to optimize the model’s performance
for a specific task. A good set of hyperparameters can significantly impact the prediction
system’s accuracy [28]. To achieve this, we chose to use OPTUNA for hyperparameter
optimization, a widely used method that provides better optimization results. Each model
has a unique set of hyperparameters and the goal is to find the best combination among
them, a task known as hyperparameter optimization [29]. There are several ways to tackle
this problem, including manual search, random search, grid search, and OPTUNA, which
are considered the most effective. Manual tuning for a significant hyperparameter value
is not recommended as it could be more efficient and effective [30]. Here are the key
contributions of this paper:

1. We presented a robust hyOPTGB system, which utilizes optimized GB and OPTUNA
to predict HCV disease.

2. The system’s performance was enhanced through data preprocessing techniques,
feature selection, and hyperparameter tuning.

3. GB is a distributed machine learning model based on trees renowned for its fast and
efficient performance compared to other classification algorithms.

4. OPTUNA is an automated technique used for hyperparameter tuning, which helped
optimize our system’s performance.



Diagnostics 2023, 13, 3439 4 of 24

The paper’s structure is organized as follows: Section 2 will provide an overview of
the related work carried out by other researchers. Section 3 will elaborate on the materials
and methods employed in this study. Section 4 will analyze the results obtained. Lastly,
Sections 5 and 6 will discuss and conclude the paper by summarizing the findings and
proposing future research directions.

2. Related Work

Accurately determining the stage of liver fibrosis in patients with chronic hepatitis C
(CHC) is critical for monitoring the disease, predicting treatment response, determining
prognosis, and identifying the optimal treatment timing. However, a liver biopsy could
be better due to its invasiveness, sampling errors, and high costs. To overcome these
limitations, clinical information such as age, gender, body mass index (BMI), and non-
invasive blood serum markers like alanine transaminase (ALT), aspartate transaminase
(AST), glucose, hemoglobin (HGB), white blood cell (WBC) count, and red blood cell (RBC)
count can be used to predict fibrosis stage. Various machine learning classification models
have been applied in previous studies for HCV prediction, and this section discusses
their results.

In a study by Tsvetkov et al. [24], a machine learning model was proposed to diagnose
the stage of liver fibrosis in patients. The authors analyzed 1240 patient records with chronic
viral hepatitis C and developed machine learning models using data from 689 patients
classified by the stage of liver fibrosis. They identified critical predictors from nine widely
used prognostic factors and obtained an accuracy of 80.56%. Akella et al. [25] conducted a
study to create clinical risk models using machine learning algorithms to predict the extent
of fibrosis in patients with chronic hepatitis C. They built nine ML algorithms using patient
demographic information and standard serum laboratory values on an Egyptian cohort
dataset. The extreme gradient boosting model achieved 81% precision in estimating fibrosis.
The authors also found that most of their models performed better than existing diagnostic
options in this patient group for assessing fibrosis.

The study conducted by Nandipati et al. [31] aimed to compare the performance of
multiclass and binary class labels in predicting the hepatitis C virus using a dataset of
Egyptian patients. They focused on identifying the essential features crucial in predicting
the disease using different analytical tools. The results showed that a random forest
using Python, and KNN using R had the highest precision rates of 54.56% and 51.06%,
respectively, for both binary class and multiclass labels. Abd El-Salam et al. [32] used
machine learning techniques to analyze a group of 4962 HCV patients in Egypt from 2006
to 2017. The study aimed to identify the presence or absence of esophageal varices in
2218 patients using 24 clinical laboratory variables. The researchers employed six popular
classifiers: SVM, RF, C4.5, MLP, NB, and BN. The data were obtained from the Egyptian
National Committee to Combat Viral Hepatitis, which manages the national treatment
program for viral hepatitis patients in Egypt, overseen by the Ministry of Health. The study
achieved accuracies ranging from 65.6% to 68.9% for the six classifiers.

Hashem et al. [33] utilized machine learning techniques to predict the development of
hepatocellular carcinoma in patients with chronic liver disease due to HCV. They initially
identified a group of input variables and then applied LR, DT, and CART algorithms to
determine the optimal subset of variables. The findings revealed that the LR, DT, and
CART algorithms achieved 96%, 99%, and 95.5% accuracy rates, respectively. Sartakhti
et al. [34] proposed a new machine learning method that combines support vector machine
(SVM) with simulated annealing (SA). They used a dataset from the UCI machine learning
database and evaluated the classification accuracy using 10-fold cross-validation. The
study found that the proposed approach achieved a high classification accuracy of 96.25%,
surpassing other classification methods used for the same problem.

Vikas et al. [35] described a diagnostic system for identifying the presence of the
hepatitis C virus (HCV). This system uses case-based reasoning (CBR) and correlation
lift metrics to create a predictive model for detecting HCV. The proposed method can
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accurately predict whether a patient’s record shows HCV indications or not and can help
reduce the risk factors associated with HCV in humans. Additionally, the system can
differentiate between patient records of living and deceased individuals. Overall, this
approach is highly effective in detecting HCV and can potentially decrease the virus’s
prevalence in the population. Zaki et al. [36] discussed how a rough set of data were
examined to identify attribute dependency and to create a reduced set of attributes. The
primary objective of the dataset was to predict whether HCV was present or absent. The
analysis revealed that the proposed methodology was exact and achieved high accuracy in
predicting HCV’s presence or absence.

KayvanJoo et al. [37] conducted a study to predict the presence of HCV using machine
learning techniques that analyze viral nucleotides. The research involved four approaches,
DT, SVM, NB, and NN, to predict the response to interferon-alpha (IFN-alpha) and ribavirin
(RBV) therapy based on processed features. The authors selected ten attribute weighting
models from an initial dataset of 76 attributes, such as chi-square, Gini index, deviation,
info-gain, info-gain ratio, SVM, PCA, uncertainty, relief, and rule. Finally, SVM, NB, NN,
and DT were utilized for the classification process, with an average accuracy rate of 85%.

Until now, several methods have been employed to predict HCV disease prediction
such as machine learning algorithms, feature selection methods, and deep learning methods.
However, these methods have yet to be very effective in producing accurate predictions.
To address this issue, this paper introduced a new model, hyOPTGB, which utilizes the
GB model in combination with the trending hyperparameter optimization technique,
OPTUNA. OPTUNA was chosen for its speed, efficiency, and proven success as one of the
best available hyperparameter optimization techniques. Lai et al. [38] employed Optuna
algorithm to optimize hyperparameters for forecasting models in this study. The findings
of this investigation demonstrated that the utilization of Optuna in conjunction with
five different tree-based machine learning models yielded highly satisfactory forecasting
accuracy. Tonmoy et al. [39] introduced Optuna, an automated hyperparameter tuning
algorithm, utilized to identify the best configurations for the dataset under investigation.
The research introduces the architecture of the Optuna-Optimized GAN (OOG) method
and showcases remarkable results, achieving accuracy, precision, recall, and F1 score.

Previous research studies failed to obtain good results due to their lack of hyperparam-
eter optimization techniques. The hyOPTGB model aims to provide improved predictions
for HCV disease prediction.

3. Materials and Methods

In this paper, we aim to improve the accuracy of predicting HCV disease among
healthcare patients in Egypt by developing the hyOPTGB model. The system is designed
to distinguish between HCV-infected patients and non-infected patients. Min-Max normal-
ization is used to normalize the data; also, the forward selection (FS) wrapped method is
used to select the most important features to increase the accuracy and efficiency of the
classification process. To optimize the performance of the gradient boosting model, we
fine-tuned its hyperparameters and then trained it using the resulting optimal parameters.
We relied on the OPTUNA framework to carry out the hyperparameter tuning process.
To evaluate the performance of our approach, we used a k-fold cross-validation (k = 15)
method on the training data. Our optimization goal is to improve the model’s accuracy
with each iteration. We have provided a visual representation of our proposed hyOPTGB
model in Figure 1.

3.1. Dataset

The dataset used in this study is available at the UCI machine learning repository [20].
The dataset includes 1385 instances and 29 features, where 28 are predictors, and one is the
target feature. The multi-class target feature, representing the baseline histological staging,
contains instances with different values. Specifically, the values are portal fibrosis without
septa, few septa, many septa without cirrhosis, and cirrhosis—the number of instances
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associated with values of 336, 332, 355, and 362, respectively. The description of the features
is demonstrated in Table 1.
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Table 1. Features description.

No. Description No. Description

1 Age 16 ALT 1 (Alanine transaminase in 1 week)
2 Gender 17 ALT 4 (Alanine transaminase in 4 weeks)
3 BMI (Body mass index) 18 ALT 12 (Alanine transaminase in 12 weeks)
4 Fever 19 ALT 24 (Alanine transaminase in 24 weeks)
5 Nausea/Vomiting 20 ALT 36 (Alanine transaminase in 36 weeks)
6 Headache 21 ALT 48 (Alanine transaminase in 48 weeks)
7 Diarrhea 22 ALT after 24 w (Alanine transaminase after 24 weeks)
8 Fatigue & generalized bone ache 23 Base RNA (Ribonucleic acid)
9 Jaundice 24 RNA 4 (Ribonucleic acid in 4 weeks)
10 Epigastric pain 25 RNA 12 (Ribonucleic acid in 12 weeks)
11 WBC (White blood cell) 26 RNA EOT (Ribonucleic acid end of treatment)
12 RBC (Red blood cell) 27 RNA EF (Ribonucleic acid elongation factor)
13 HGB (Hemoglobin) 28 Baseline histological grading
14 Plat (Platelets) 29 Baseline histological staging (target feature)
15 AST 1 (Aspartate transaminase)

The heatmap analysis for the dataset features is given in Figure 2. The heatmap
analysis is a valuable tool for visualizing the correlation matrix of a dataset, where each
element in the matrix represents the correlation coefficient between two variables. In
machine learning, a heatmap can be used to identify which features in a dataset are strongly
correlated with the target variable and each other. Figure 3 displays the box plot for
the dataset features. A box plot, also known as a box-and-whisker plot, is a graphical
representation of the distribution of a dataset. It displays the median, quartiles, and outliers
of the data. In machine learning, a box plot can be used to identify outliers, visualize the
spread of the data, and compare the distributions of different features.

3.2. Min-Max Normalization

Min-Max normalization is a widely used data preprocessing method in machine
learning that normalizes the values of a feature to a specific range (typically between 0 and
1) by subtracting the minimum value and dividing it by the range of the data [40]. This
technique aims to ensure that all features are uniformly scaled and enhance the specific
algorithm’s accuracy. The steps for Min-Max normalization are as follows:

For a given feature of x:



Diagnostics 2023, 13, 3439 7 of 24

1. Calculate the minimum value (min (x)) and maximum value (max (x)) of x across
the dataset;

2. Subtract the minimum value from each value of x (x −min (x));
3. Divide the result by the range of the data (max (x) −min (x)).

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 26 
 

 

element in the matrix represents the correlation coefficient between two variables. In 
machine learning, a heatmap can be used to identify which features in a dataset are 
strongly correlated with the target variable and each other. Figure 3 displays the box plot 
for the dataset features. A box plot, also known as a box-and-whisker plot, is a graphical 
representation of the distribution of a dataset. It displays the median, quartiles, and 
outliers of the data. In machine learning, a box plot can be used to identify outliers, 
visualize the spread of the data, and compare the distributions of different features. 

 
Figure 2. Heatmap analysis for the dataset features. Figure 2. Heatmap analysis for the dataset features.

3.3. Forward Selection

Forward selection is a feature selection technique in machine learning where features
are added to the model iteratively based on their performance until a stopping criterion
is met [41,42]. The basic algorithm for forward selection can be expressed in the follow-
ing steps:

1. Initialize the set of selected features S to be empty;
2. For each feature X not in S, train a model with the features in S union X and compute

the model’s performance;
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3. Select the feature X that yields the best performance on the model trained with S
union X, and add it to the set S;

4. Repeat steps 2 and 3 until a stopping criterion is met (e.g., a predetermined number
of features have been selected, the performance improvement falls below a certain
threshold, etc.).

Upon conducting forward selection on the dataset utilized in this study, a set of
13 features were chosen. These features include BMI, fever, diarrhea, epigastric pain, WBC,
HGB, plat, ALT 1, ALT 4, ALT 24, base RNA, RNA 4, and RNA EF.
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3.4. K-Fold Cross-Validation

K-fold cross-validation is a machine learning method used to assess a model’s perfor-
mance with a small amount of data [43]. It works by splitting the data into k subsets of
equal size or “folds”, using k − 1 of them to train the model and holding out the remaining
fold for validation. This process is repeated k times, with each fold used once for validation
and the remaining folds used for training the model [44].

The steps involved in k-fold cross-validation are as follows:

1. Shuffle the dataset randomly;
2. Split the dataset into k groups of equal size;
3. For each group, select it as the validation set and use the remaining groups as the

training set;
4. Train the model using the training set and evaluate it using the validation set;
5. Calculate the evaluation metric (e.g., accuracy, precision, recall, and F1-score.) for

the model;
6. Repeat steps 3–5 k times, using a different group as the validation set each time;
7. Calculate the average evaluation metric over the k repetitions.
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K-fold cross-validation helps to reduce the risk of overfitting the model to the training
data by allowing the model to be tested on different subsets of the data. It also helps to
reduce the variance of the evaluation metric since it uses multiple validation sets rather
than a single one.

3.5. OPTUNA Optimization

To improve the performance of machine learning models, proper hyperparameter
tuning is necessary. This step is crucial in creating effective models as it significantly
impacts the model’s output. However, many individuals rely on trial and error, developing
hyperparameters and testing them repeatedly over several hours or days. This approach
could be more efficient and can be time-consuming. OPTUNA is a tool that automates the
hyperparameter optimization process, eliminating the need for repetitive manual testing
and saving valuable time and effort. OPTUNA is a tool that seeks to unify optimization
paradigms by following a philosophy built upon four fundamental pillars.

3.5.1. Design-by-Run API

The design-by-run API feature of OPTUNA enables the optimization of hyperparame-
ters during the training process, eliminating the need for separate optimization runs and
making the process more efficient. Design-by-run is a concept commonly used in deep learn-
ing to facilitate the dynamic programming of deep networks according to their intended
function. However, in the context of optimization, this idea is utilized to create the search
space dynamically. This means that design-by-run enables us to build the search space
based on the optimization goals, allowing for a more flexible and customized approach to
optimization [45]. OPTUNA defines hyperparameter optimization as optimizing an objec-
tive function by selecting an appropriate set of hyperparameters to achieve the best possible
validation score [46]. To achieve this, OPTUNA employs a trailing object to construct the
objective function and dynamically creates the search space as the objective function runs
using the trail object’s methods. In other words, OPTUNA optimizes hyperparameters by
iteratively refining the search-space based on the objective function’s output.

3.5.2. Sampling

Sampling is a crucial part of the optimization process in OPTUNA, a hyperparameter
optimization framework. OPTUNA supports both independent sampling and relational
sampling [38]. In independent sampling, each hyperparameter is sampled independently
of other hyperparameters. OPTUNA has several separate sampling algorithms, such as
random search, grid search, and the Tree-structured Parzen Estimator (TPE). Relational
sampling, on the other hand, considers the correlations between hyperparameters. OP-
TUNA supports relational sampling through the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), a derivative-free optimization algorithm that can effectively explore
high-dimensional and non-linear search spaces. The choice of sampling method in OP-
TUNA depends on the specific optimization task and the characteristics of the search space.
Generally, independent sampling methods like TPE are more computationally efficient and
work well for low-dimensional search spaces. In contrast, relational sampling methods like
CMA-ES are better suited for high-dimensional search spaces with complex correlations be-
tween hyperparameters. OPTUNA also provides the flexibility to define custom sampling
methods, allowing users to experiment with different sampling algorithms and tailor the
optimization process to their needs.

3.5.3. Pruning

Pruning is a technique used in hyperparameter optimization to reduce the compu-
tational resources needed for the optimization process [46]. OPTUNA provides several
pruning algorithms to help users achieve faster and more efficient optimization. One of
the most commonly used pruning algorithms in OPTUNA is successive halving, a type
of early stopping technique [38]. In this method, the search space is split into multiple
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groups of hyperparameters, and each group is evaluated in parallel. The worst-performing
half of the groups are eliminated, and the process is repeated until only one group of
hyperparameters remains [39]. This reduces the number of trials needed to find the optimal
hyperparameters. OPTUNA also supports asynchronous successive halving, which allows
trials to run in parallel and dynamically allocates more resources to promising trials while
cutting resources for less promising ones. Overall, pruning algorithms in OPTUNA help
to reduce the computational cost of hyperparameter optimization while improving the
efficiency and effectiveness of the search for optimal hyperparameters.

3.5.4. Easy-to-Setup

By default, OPTUNA employs its memory data structure as a storage location; thus,
making it effortless to use for simple purposes, which is an essential prerequisite for a con-
temporary hyperparameter optimization framework. OPTUNA offers numerous advanced
capabilities, such as performing independent and relational sampling and providing vari-
ous pruning algorithms, making it a superior framework for hyperparameter tuning. The
architecture of OPTUNA is depicted in Figure 4. In OPTUNA, each worker in every sample
executes the objective function (OF) once. The OF is executed through OPTUNA APIs, and
when the moment API is called, it accesses the storage and retrieves any relevant data from
previous samples stored in memory [39]. The workers operate independently, and they use
the repository to track the results of the current study.
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3.6. Gradient Boosting

Gradient boosting (GB) is a commonly used machine learning approach for classifica-
tion and regression tasks. It is an ensemble learning method that combines multiple weak
learners (basic models) into a stronger one [47,48]. The basic idea of gradient boosting is
to iteratively add new vulnerable learners to the model, with each new learner trained
to correct the mistakes made by the previous ones [49]. Gradient boosting typically uses
decision trees to make predictions [50]. The loss-function quantifies the difference be-
tween predicted and actual output and is frequently utilized as the objective function for
gradient boosting classifiers. The most commonly used loss functions for classification
problems are cross-entropy and exponential loss. The cross-entropy loss is defined as given
in Equation (1):

L(y, f (x)) = −∑K
i=1 yi log( fi(x)) (1)

where yi ∈ [0, 1] is the true label for class i, K is the number of classes, and fi(x) ∈ [0, 1] is
the predicted probability of class i. The exponential loss is defined as given in Equation (2):

L(y, f (x)) = exp(−y f (x)) (2)

where y ∈ [−1, 1] is the true label and f (x) ∈ R is the predicted output of the model.
The objective function for gradient boosting is typically defined as the sum of the

loss function over all the training examples, with the addition of a regularization term to
prevent overfitting and given by Equation (3):

obj(θ) = ∑n
i=1 L(yi, ∑m

j=1 f j(xi, θ)) + ∑m
j=1 Ω

(
f j
)

(3)

where n is the number of training examples, m is the number of trees in the ensemble,
f j(xi, θ) is the output of the j − th tree for the i − th training example, and Ω

(
f j
)

is a
regularization term that penalizes complex trees. The regularization term can take different
forms, such as the L1 or L2 norm of the tree weights. The parameters θ of the objective
function are the parameters of the trees in the ensemble.

The gradient boosting classifier aims to minimize the objective function with respect
to the tree parameters θ using gradient descent. At each iteration, a new tree is added to the
ensemble to reduce the residual error of the previous trees. The gradient of the objective
function with respect to the model’s predicted output is used to train the new tree. The
mathematical algorithm for gradient boosting can be described in Algorithm 1:

Algorithm 1: Gradient Boosting Classifier

Step 1: Initialize the model by setting the initial predicted output of the model to be a constant
value, such as the mean of the target variable.
Step 2: For m = 1 to M

(a) Compute the negative gradient of the loss function with respect to the predicted output of
the model for each training example:

rim = − ∂L(yi, f (xi))

∂ f (xi)

∣∣∣∣
f (x)= fm−1(xi)

where L(yi, f (xi) is the loss function, yi is the true label for the i− th training example, f (xi)
is the predicted output of the model for the i− th training example, and fm−1(xi) is the
predicted output of the model up to the m− 1− th iteration.

(b) Fit a decision tree hm(x) to the negative gradient values rim:

hm(x) = argminh

n

∑
i=1

[rim − h(xi)]
2

where h(x) is the output of the decision tree, and hm(x) is the output of the m− th decision
tree.
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Algorithm 1: Cont.

(c) Compute the step size γm by minimizing the following objective function

γm = argminγ

n

∑
i=1

L(yi, fm−1(xi) + γhm(xi))

where fm−1(xi) is the predicted output of the model up to the m− 1− th iteration, and
fm(xi) = fm−1(xi) + γmhm(xi) is the predicted output of the model after the m− th
iteration.

(d) Update the predicted output of the model:

fm(x) = fm−1(x) + γmhm(x)

where fm−1(x) is the predicted output of the model up to the m− 1− th iteration, hm(x) is
the output of the m− th decision tree, and γm is the step size.

Step 3: Output the final predicted output of the model:

fM(x) =
M

∑
m=1

γmhm(x)

where fM(x) is the final predicted output of the model, M is the number of iterations, γm is the
step size at the m− th iteration, and hm(x) is the output of the m− th decision tree.

3.7. Proposed hyOPTGB Model

After Min-Max normalization and feature selection, we utilized the OPTUNA opti-
mization to optimize the hyperparameters of the gradient boosting model. We opted for
eight specific hyperparameters: loss, learning_rate, n_estimators, subsample, criterion,
min_samples_split, min_samples_leaf, and max_depth. Following the tuning process, we
trained the gradient boosting model using the optimized hyperparameters. The hyper-
parameter called loss is the loss function that will be optimized, which is employed for
binomial and multinomial deviance. This function is especially beneficial for classification
tasks that require probabilistic outputs. Learning_rate reduces the impact of each tree
during the training process. N_estimators determine the number of boosting rounds to
execute in gradient boosting. Gradient boosting is typically resistant to overfitting, so
increasing the number of rounds often leads to improved performance. Subsample refers to
the proportion of the total training samples to be utilized for training each base learner. Cri-
terion refers to the metric used for evaluating the effectiveness of a split. Min_samples_split
is a hyperparameter that sets the minimum number of data points that must be present in a
decision tree node to permit a split. Min_samples_leaf is a hyperparameter that defines
the minimum number of instances that should be present in a leaf node of a tree. The
Max_depth hyperparameter sets the maximum depth a tree can reach by limiting the
number of nodes. Tuning this parameter is crucial for achieving optimal performance, and
the ideal value depends on how the input features interact. If set to “none”, the tree will
keep growing until all leaf nodes become pure or have fewer than the “min_samples_split”
samples. Table 2 demonstrates the hyperparameters for the gradient boosting model using
the default hyperparameters, and Table 3 illustrates the hyperparameters for the gradient
boosting model using OPTUNA.

3.8. Machine Learning Classification Models

This section employs five different machine learning classification models, namely,
decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier
(RC), and bagging classifier (BC), to evaluate and compare their performance with the
proposed hyOPTGB model. Min-Max normalization and 15-fold cross-validation are
performed for the five machine learning models using their default hyperparameters. The
architecture for the five machine learning models is in Figure 5.
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Table 2. Default hyperparameters for the gradient boosting model.

No. Parameters Default

1 Loss Log_loss
2 Learning_rate 0.1
3 N_estimators 100
4 Subsample 1
5 Criterion Friedman_mse
6 Min_samples_split 2
7 Min_samples_leaf 1
8 Max_depth 3

Table 3. Optimized hyperparameters for the gradient boosting model using OPTUNA.

No. Parameters Default

1 Loss Deviance
2 Learning_rate 0.7
3 N_estimators 582
4 Subsample 0.4
5 Criterion Squared_error
6 Min_samples_split 9
7 Min_samples_leaf 7
8 Max_depth 12
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3.8.1. Decision Tree

A decision tree (DT) is a machine learning algorithm that builds a tree-like model
of decisions and their possible consequences [51]. It is a popular approach for solving
classification problems in which the input data is classified into multiple classes based on a
set of rules derived from the training data. The decision tree algorithm recursively splits
the data into subsets based on the features that best discriminate between the classes until
a stopping criterion is met [52]. The resulting tree can classify new data by following the
path from the root to a leaf node corresponding to the predicted class.

3.8.2. Support Vector Machine

Support vector machine (SVM) is a classification algorithm used in machine learning.
It finds the optimal hyperplane that separates different classes in the input data [53]. In a
two-class classification problem, SVM chooses the hyperplane that maximizes the margin
between the two closest data points from different classes. The hyperplane is defined by
the support vectors, which are the data points lying on the margin. SVMs can also handle
non-linearly separable data by mapping it to a higher dimensional space using a kernel
function [54]. This allows SVM to find the optimal hyperplane in the transformed space.
SVMs are suitable for high-dimensional datasets and have widespread applications.
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3.8.3. Dummy Classifier

A dummy classifier (DC) is a classification algorithm used as a baseline model to
compare the performance of other more advanced classifiers [55]. It is a simple algorithm
that makes predictions by following a pre-defined rule, such as always predicting the
most frequent class in the training data or randomly selecting a class based on the class
distribution. A dummy classifier is used to evaluate whether a more complex classifier can
outperform this basic algorithm [56]. Dummy classifiers are helpful in situations where
the class distribution is imbalanced or when the performance of a classifier needs to be
compared against a simple baseline.

3.8.4. Ridge Classifier

A Ridge classifier (RC) is a linear classification algorithm that uses ridge regression
to classify input data into multiple classes [57]. It works by finding the linear decision
boundary that separates the different classes while minimizing the sum of the squared
weights of the features. The regularization parameter, the ridge penalty, is added to the
objective function to prevent overfitting of the model on the training data [58]. The ridge
classifier is a variant of logistic regression that is particularly useful when dealing with
high-dimensional datasets.

3.8.5. Bagging Classifier

A bagging classifier (BC) is an ensemble learning algorithm that combines multiple
base classifiers to improve the overall classification performance [59]. It works by gener-
ating multiple bootstrap samples of the training data, and each sample is used to train a
different base classifier. The base classifiers can be any type of classifier, such as decision
trees or SVMs [60]. During the prediction phase, the bagging classifier aggregates the
predictions of all base classifiers using a majority voting scheme to make the final predic-
tion. Bagging reduces the model’s variance and improves its generalization performance,
especially when dealing with unstable base classifiers.

4. Results and Discussion

The Jupyter Notebook version 6.4.6 was utilized to carry out the experiments. It is
a tool commonly employed for data analysis and visualization using Python. Jupyter
Notebook offers a comprehensive environment to write, run, and document code and
results, in addition to generating visual representations of data. This tool supports several
programming languages, Python 3.8 included, and runs on a web browser. The experiments
were executed on a computer that operates on Microsoft Windows 10, with an Intel Core
i5 CPU and 16 GB of RAM. To assess the effectiveness of our models, we employed
several metrics, including accuracy, recall, precision, and F1-score [61,62]. These metrics
were used to evaluate and measure the model’s performance in different aspects, such as
correctly identifying true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1-score =
2 ∗ Recall ∗ Precision

Recall + Precision
(7)

Our machine learning classifier for the model was the gradient boosting model. Ini-
tially, we optimized the hyperparameters of the gradient boosting model using the OP-
TUNA framework. Once the hyperparameters were tuned, we used them to analyze the
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model’s performance. OPTUNA used a distinct set of hyperparameters for the gradient
boosting model during the tuning phase, which helped enhance performance on 15-fold
cross-validation. Also, Min-Max normalization and forward selection were applied to
the dataset. These features selected by forward selection include BMI, fever, diarrhea,
epigastric pain, WBC, HGB, plat, ALT 1, ALT 4, ALT 24, base RNA, RNA 4, and RNA EF.
We assessed and contrasted the performance of five machine learning classification models,
specifically the decision tree (DT), support vector machine (SVM), dummy classifier (DC),
ridge classifier (RC), and bagging classifier (BC), against the proposed hyOPTGB model.
We used Min-Max normalization and 15-fold cross-validation for the five machine learning
models to conduct this evaluation using their default hyperparameters. Table 4 displays
the accuracy, F1-score, recall, and precision results of the five machine learning models and
the proposed hyOPTGB model for performance evaluation.

Table 4. Performance of the five classification models and the proposed hyOPTGB model.

Models Accuracy F1-Score Recall Precision

DT 83.9% 83.5% 83.2% 82.9%
SVM 84.4% 84.1% 83.5% 83.2%
DC 81.3% 80.7% 80.4% 80.2%
RC 84.6% 84.4% 83.7% 83.3%
BC 83.6% 83.2% 82.8% 82.5%

hyOPTGB 95.3% 94.8% 94.5% 94.1%

As seen in Table 4, the hyOPTGB model outperformed all other models, achieving an
accuracy of 95.3%, F1-score of 94.8%, recall of 94.5%, and precision of 94.1%. The RC model
comes in second place, with high metrics scores. Its accuracy, F1-score, recall, and precision
are 84.6%, 84.4%, 83.7%, and 83.3%, respectively. The SVM model comes in third place; its
accuracy, F1-score, recall, and precision are 84.4%, 84.1%, 83.5%, and 83.2%, respectively.
The SVM model comes in fourth place; its accuracy, F1-score, recall, and precision are
83.9%, 83.5%, 83.2%, and 82.9%, respectively. The accuracy, F1-score, recall, and precision
are 83.6%, 83.2%, 82.8%, and 82.5%, respectively, for the BC model, which comes in fifth
place. The DC model obtains the worst results; its accuracy, F1-score, recall, and precision
are 81.3%, 80.7%, 80.4%, and 80.2%, respectively. Figure 6 displays the accuracy of the five
classification models and the proposed hyOPTGB model.
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To ensure the strength and validity of the proposed model, we applied 10-fold cross-
validation and 20-fold cross-validation on the hyOPTGB model and compared the results
when using 15-fold cross-validation. Table 5 demonstrates the performance of the proposed
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hyOPTGB model using 10-fold cross-validation, 15-fold cross-validation, and 20-fold cross-
validation, respectively.

Table 5. Performance of the proposed hyOPTGB model using different k-fold cross-validation.

K-Fold Cross-Validation Accuracy F1-Score Recall Precision

k = 10 93.5% 93.1% 92.8% 92.7%
k = 15 95.3% 94.8% 94.5% 94.1%
k = 20 91.2% 90.9% 90.6% 90.2%

As seen in Table 5, the best results are obtained when (k = 15); its accuracy, F1-score,
recall, and precision are 95.3%, 94.8%, 94.5%, and 94.1%, respectively. The worst results
are obtained when (k = 20); its accuracy, F1-score, recall, and precision are 91.2%, 90.9%,
90.6%, and 90.2%, respectively. The accuracy, F1-score, recall, and precision are 93.5%,
93.1%, 92.8%, and 92.7%, respectively, when (k = 10). Figure 7 demonstrates the accuracy
percentage for the proposed hyOPTGB model using 10-fold cross-validation, 15-fold cross-
validation, and 20-fold cross-validation, respectively. Table 6 displays a comparative study
that used the same dataset in this paper.
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Table 6. Comparative study of this work with another study used the same dataset.

Studies Model Accuracy

Ref. [27] Random Forest Using Python 54.56%
Ref. [27] KNN Using R 51.06%

Proposed model hyOPTGB Gradient boosting using OPTUNA 95.3%

As shown in Table 6, the proposed hyOPTGB model achieved better performance in
terms of accuracy than the previous study. Figure 8 displays the accuracy percentage for
the proposed hyOPTGB model, and previous studies used the same dataset.

When evaluating the results of the hyOPTGB model, accuracy is the criterion that is
applied. Table 7 presents the results of twenty separate iterations of the hyOPTGB model.
There is information supplied regarding these runs’ minimal, median, maximum, and
mean accuracy. These data, taken from a large number of different model runs, enable
an evaluation of the consistency and efficiency of the hyOPTGB model. Because of this
explanation’s level of depth, you are able to evaluate the performance and dependability of
the model.
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Figure 8. Accuracy percentage for the proposed hyOPTGB model, and previous studies used the
same dataset [27].

Table 7. A description of the hyOPTGB model that was proposed as well as the results of other
models based on the accuracy factor.

Random Forest KNN MLP LSTM hyOPTGB

Number of values 20 20 20 20 20
Minimum 0.5256 0.5006 0.7489 0.8976 0.953
25% Percentile 0.5456 0.5106 0.7589 0.9076 0.953
Median 0.5456 0.5106 0.7589 0.9076 0.953
75% Percentile 0.5456 0.5106 0.7589 0.9076 0.953
Maximum 0.5756 0.5306 0.7989 0.9276 0.973
Range 0.05 0.03 0.05 0.03 0.02
Mean 0.5468 0.5116 0.7614 0.9086 0.955
Std. Deviation 0.01012 0.005525 0.0102 0.005525 0.005231
Std. Error of Mean 0.002264 0.001235 0.00228 0.001235 0.00117
Sum 10.94 10.23 15.23 18.17 19.1

The results of the hyOPTGB and comparison model ANOVA are presented in Table 8.
The purpose of this statistical study is to investigate and explain model differences. The
results of an ANOVA can demonstrate whether or not there is statistical variation in model
performance. The Wilcoxon signed-rank test is used to make a comparison between the
hyOPTGB model and the models that are being tested in Table 9. The results of this non-
parametric test are compared based on matching data, such as how well a model performed
on the same dataset. The Wilcoxon signed-rank test as well as ten distinct iterations of
each model make it possible to make accurate comparisons, which in turn increases the
reliability of the study. The hyOPTGB model is evaluated in an objective manner using
these statistical tests, in comparison to the other models. The analysis of variance (ANOVA)
and the Wilcoxon signed-rank test (Wilcoxon p-values) are both useful tools for determining
whether or not differences in model performance are statistically significant. These findings
help explain why the hyOPTGB model is more effective than other models and why it can
be applied to this particular job or dataset.

Table 8. The ANOVA test for the presented hyOPTGB model and other models.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 3.291 4 0.8227 F (4, 95) = 13,952 p < 0.0001
Residual (within columns) 0.005602 95 5.9 × 10−5 - -
Total 3.297 99 - - -
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Table 9. The Wilcoxon signed-rank test for the presented hyOPTGB model and other models.

Random Forest KNN MLP LSTM hyOPTGB

Theoretical median 0 0 0 0 0
Actual median 0.5456 0.5106 0.7589 0.9076 0.953
Number of values 20 20 20 20 20
Wilcoxon signed-rank test
Sum of signed ranks (W) 210 210 210 210 210
Sum of positive ranks 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.5456 0.5106 0.7589 0.9076 0.953

The comparison of the hyOPTGB model with other accuracy-based models in Figure 9
provides a valuable visual representation of each model’s performance in terms of accuracy.
This comparison can offer several insights and benefits:

1. Model Performance Assessment: The plot allows readers to quickly assess the per-
formance of various models in a single view. This is particularly important when
evaluating machine learning models, as accuracy is a common metric for measuring
predictive performance.

2. Model Ranking: By plotting the accuracy achieved by each model, it becomes apparent
which model outperforms the others and to what extent. This ranking can help identify
the most effective model for the specific task or dataset under consideration.

3. Identification of the Best Model: It aids in the identification of the best-performing
model, which can be crucial for decision-making in practical applications.

4. Comparative Analysis: The plot enables a side-by-side comparison of the hyOPTGB
model with other models, hyOPTGB model excels in terms of accuracy.

5. Validation of Results: Plots of model accuracy provide visual evidence of the research
findings, making it easier for readers and reviewers to validate the reported results
and conclusions.
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The histograms of accuracy values displayed in Figure 10 provide a valuable visual
representation of the dispersion and concentration of the model performance results, both
for the hyOPTGB model and the comparative models. Histograms are effective tools for
understanding the distribution of accuracy values. They reveal how the performance of
each model is dispersed across different accuracy levels. This can help identify the range
and variability of the results.
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Figure 10. Histogram of accuracy for the presented hyOPTGB model and other models.

The inclusion of residual plots, homoscedasticity plots, QQ (Quantile–Quantile) plots,
and heat maps for the hyOPTGB model and comparative models in Figure 11 offers a
comprehensive assessment of the model performance and various aspects of the models.
Here’s why these visualizations are significant:

1. Residual Analysis: Residual plots allow for the examination of the differences between
observed values and model predictions. They help identify patterns or deviations in
the model’s errors, such as systematic biases or outliers.
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Figure 11. The residual plots, homoscedasticity plots, QQ plots and the heat maps used to compare
and display the presented hyOPTGB model to other models.

2. Homoscedasticity Assessment: Homoscedasticity plots are used to check the constant
variance of model residuals across different levels of the predictor variable. They help
ensure that the model’s errors have consistent variance and do not exhibit a trend.

3. QQ Plots for Normality: QQ plots are particularly useful for assessing whether the
residuals follow a normal distribution. Deviations from the expected straight line in a
QQ plot can indicate departures from normality in the residuals.

4. Heat Maps for Correlation: Heat maps provide a visual representation of the cor-
relation between variables. In the context of machine learning, they can illustrate
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the correlation between features, residuals, or model predictions, helping to identify
multicollinearity or patterns in the data.

The comparison of ROC curves presented in Figure 12 is a crucial element in evaluating
and understanding the performance of binary classification models, specifically the hy-
OPTGB model and the LSTM model. Here’s why these ROC curves are significant:

1. Assessment of Binary Classification: ROC curves are a standard tool for assessing
the performance of binary classification models. They help to understand how well a
model can discriminate between the positive class and the negative class by varying
the classification threshold.

2. Sensitivity and Specificity Trade-off: The ROC curve graphically depicts the trade-off
between sensitivity (the true positive rate) and specificity (the true negative rate)
as the threshold for classification changes. It shows how different decision criteria
can affect the balance between correctly identifying positive cases (sensitivity) and
correctly identifying negative cases (specificity).

3. Model Comparison: By comparing the ROC curves of two different models, such as
the hyOPTGB model and the LSTM model, one can assess and visually contrast their
classification performance. This comparison can provide insights into which model
performs better at different operating points and threshold settings.

4. Area Under the Curve (AUC): The area under the ROC curve (AUC) is often used as a
single summary measure of a model’s overall performance. A higher AUC indicates a
better model, as it represents a larger area under the ROC curve and suggests a better
balance between sensitivity and specificity.
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5. Discussion

The novelty of the study can be summarized in several key aspects:

1. Targeted Research Area: The paper focuses on hepatitis C virus (HCV) infection in
Egypt, a region with one of the highest HCV prevalence rates globally. This specific
geographic context is significant, as it addresses a pressing health issue in a region
with distinct risk factors and challenges.

2. Unique Dataset: The study employs a dataset containing 1385 instances and
29 features related to HCV in Egypt, sourced from the UCI machine learning repository.
This dataset is a valuable resource and forms the basis of the research, contributing to
the understanding of HCV in this context.

3. Development of hyOPTGB Model: A novel predictive model called hyOPTGB, which
leverages an optimized gradient boosting (GB) classifier. The novelty here lies in the
development of this specific model tailored to predict HCV disease in Egypt. The
optimization of hyperparameters with the OPTUNA framework further enhances the
model’s performance.
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4. Feature Selection and Preprocessing: The paper applies Min-Max normalization as a
preprocessing step for scaling the dataset values and utilizes the forward selection
(FS) wrapped method for identifying essential features. These techniques are integral
to the model’s performance and contribute to the overall methodology’s uniqueness.

5. Comparative Analysis: This paper conducts a comprehensive comparison of the
hyOPTGB model against five other machine learning models, including decision tree
(DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and
bagging classifier (BC). This comparative analysis helps demonstrate the superiority
of their proposed model.

6. High Accuracy Rate: One of the key findings is that the hyOPTGB model outper-
formed the other machine learning models with a remarkable 95.3% accuracy rate.
Such a high accuracy rate in the prediction of HCV in Egypt is a notable contribution,
indicating the efficacy of their model.

7. Comparison with Other Studies: The paper also compares the hyOPTGB model with
models proposed by different authors who used the same dataset. This compar-
ative analysis helps establish the superiority of their model within the context of
existing research.

6. Conclusions and Future Work

This research paper presents hyOPTGB, a model that employs an optimized gradient
boosting (GB) classifier to predict HCV disease in Egypt. The model’s accuracy is enhanced
using hyperparameter tuning with the OPTUNA framework, while the essential features
in the dataset are identified using the forward selection (FS) wrapped method. Also, the
Min-Max normalization preprocessing technique is used to scale the values of a dataset
to a fixed range. The UCI machine learning repository provided the dataset containing
1385 instances and 29 features. The study compares hyOPTGB with five other machine
learning models, namely, decision tree (DT), support vector machine (SVM), dummy
classifier (DC), ridge classifier (RC), and bagging classifier (BC). It evaluates their efficiency
using accuracy, recall, precision, and F1-score. The five machine learning models used their
default hyperparameters. The hyOPTGB model outperforms the other machine learning
models, achieving a 95.3% accuracy. The paper also conducts a comparative study of
the proposed hyOPTGB model against those used by other researchers who employed
the same dataset, and the results depicted that the proposed model achieved the best
results. Some potential future directions for HCV disease prediction can be conducted in
the future as (1) using genetic information; this can inform the development of models
that incorporate genetic information to predict HCV infection risk. This approach can help
identify genetic markers associated with HCV susceptibility, which can inform targeted
prevention and intervention efforts. (2) Integrating multiple data sources by combining
data from multiple sources, such as electronic health records, public health surveillance
data, and social media, can improve the accuracy of predictive models and identify novel
risk factors for HCV infection.
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