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Róbert Stollmayer 1, Ildikó Kalina 1, Gabriella Győri 1, Viktor Bérczi 1, Klára Werling 2, Pál Maurovich-Horvat 1,
Anikó Folhoffer 3 and Krisztina Hagymási 2

1 Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University,
Korányi S. u. 2., 1083 Budapest, Hungary; zsombor.zita@stud.semmelweis.hu (Z.Z.);
ronaszeki.aladar.david@semmelweis.hu (A.D.R.); budai.bettina@med.semmelweis-univ.hu (B.K.B.);
csongrady.barbara@stud.semmelweis.hu (B.C.); stollmayer.robert@stud.semmelweis.hu (R.S.);
kalina.ildiko@semmelweis.hu (I.K.); gyori.gabriella@semmelweis.hu (G.G.);
berczi.viktor@semmelweis.hu (V.B.); maurovich-horvat.pal@med.semmelweis-univ.hu (P.M.-H.)

2 Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University,
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Abstract: We aimed to develop a non-linear regression model that could predict the fat fraction of the
liver (UEFF), similar to magnetic resonance imaging proton density fat fraction (MRI-PDFF), based on
quantitative ultrasound (QUS) parameters. We measured and retrospectively collected the ultrasound
attenuation coefficient (AC), backscatter-distribution coefficient (BSC-D), and liver stiffness (LS) using
shear wave elastography (SWE) in 90 patients with clinically suspected non-alcoholic fatty liver
disease (NAFLD), and 51 patients with clinically suspected metabolic-associated fatty liver disease
(MAFLD). The MRI-PDFF was also measured in all patients within a month of the ultrasound scan.
In the linear regression analysis, only AC and BSC-D showed a significant association with MRI-
PDFF. Therefore, we developed prediction models using non-linear least squares analysis to estimate
MRI-PDFF based on the AC and BSC-D parameters. We fitted the models on the NAFLD dataset and
evaluated their performance in three-fold cross-validation repeated five times. We decided to use the
model based on both parameters to calculate UEFF. The correlation between UEFF and MRI-PDFF
was strong in NAFLD and very strong in MAFLD. According to a receiver operating characteristics
(ROC) analysis, UEFF could differentiate between <5% vs. ≥5% and <10% vs. ≥10% MRI-PDFF
steatosis with excellent, 0.97 and 0.91 area under the curve (AUC), accuracy in the NAFLD and with
AUCs of 0.99 and 0.96 in the MAFLD groups. In conclusion, UEFF calculated from QUS parameters
is an accurate method to quantify liver fat fraction and to diagnose ≥5% and ≥10% steatosis in both
NAFLD and MAFLD. Therefore, UEFF can be an ideal non-invasive screening tool for patients with
NAFLD and MAFLD risk factors.

Keywords: attenuation coefficient; backscatter-distribution coefficient; liver stiffness; quantitative
ultrasound; non-alcoholic fatty liver disease; metabolic-associated fatty liver disease; hepatic steatosis;
ultrasound-estimated fat fraction; proton density fat fraction

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and potentially serious
condition affecting up to 30% of the population, and it is also the most common cause
of chronic liver disease (CLD) worldwide [1]. NAFLD is characterized by the pathologic
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accumulation of fat in the liver with a proton density fat fraction, which can be detected
with MRI (MRI-PDFF) in excess of 5.6% or the accumulation of lipid droplets in more than
5% of hepatocytes and detected with liver biopsy [2]. It can range from simple, benign fatty
liver disease (FLD) to non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis and
liver failure. NAFLD is also a diagnosis of exclusion that can be applied only to patients
without known chronic liver disease, or a recent history of alcohol abuse. Meanwhile, in
addition to demonstrating hepatic steatosis, the diagnosis of metabolic-associated fatty liver
disease (MAFLD) is based on positive criteria, such as the presence of obesity, metabolic
dysregulation, and type 2 diabetes. The exclusion of other disease etiologies is not a
prerequisite of the MAFLD diagnosis [3].

Accurate diagnosis and monitoring of fatty liver disease are crucial for early inter-
vention and prevention of complications. While liver biopsy has traditionally been the
gold standard for diagnosis, it is invasive, carries risks, and samples only a small portion
of the liver [4]. Non-invasive techniques are increasing in popularity for the detection of
hepatic steatosis. Although very precise and recommended as a reference method for fat
quantification, MRI-PDFF is expensive, and its availability is also limited [5]. Quantitative
ultrasound (QUS) has emerged as a promising non-invasive technique for the diagnosis of
fatty liver disease [6,7]. Artificial intelligence (AI) aided the diagnosis of hepatic steatosis
with an automated measurement of the hepatorenal brightness index (HRI), which has also
become available [8].

Among the QUS parameters, the ultrasound attenuation coefficient (AC) and backscatter-
distribution coefficient (BSC-D) have been extensively validated for the detection of hepatic
steatosis in NAFLD [9–11]. The AC attenuation coefficient measures the rate at which ultra-
sound waves weaken as they propagate through liver tissue [12]. The BSC-D quantifies the
amount of ultrasound energy that is scattered back toward the transducer after interacting with
tissues [13]. Both methods have been able to detect grade 1 and grade 2 steatosis with good to
excellent accuracy, mitigating the need for a liver biopsy or other more expensive imaging
methods [10,14]. On the other hand, a significant drawback is that, due to technical variations,
QUS parameters developed by different vendors may have different diagnostic thresholds,
making a direct comparison between measurements at multiple sites difficult [15,16]. Also,
both AC and BSC-D suffer from the exponential loss of signal in higher grades of steatosis,
resulting in the saturation of the dynamic range and a non-linear relationship between QUS
parameters and the liver fat fraction [8,17,18]. In a couple of recently published studies,
multivariable regression models were tested for the prediction of MRI-PDFF from QUS
parameters [17,18]. The conversion of QUS parameters to the fat fraction also improves
comparability in a clinical setting.

In this study, we aimed to perform a systematic evaluation of the relationship between
AC, BSC-D, liver stiffness (LS), and steatosis measured with MRI-PDFF. We have developed
a new prediction model using non-linear least squares analysis to calculate the ultrasound-
estimated fat fraction (UEFF) based on a combination of AC and BSC-D parameters. To the
best of our knowledge, we are the first to demonstrate that UEFF can be used for diagnosing
NAFLD-related and MAFLD-related hepatic steatosis with similar accuracy.

2. Materials and Methods
2.1. Patient Selection

This single-center retrospective study was approved by the Institutional and Regional
Science and Research Ethics Committee of our university. The patients provided written
informed consent for QUS and MRI scans. All procedures and data processing were per-
formed in compliance with the World Medical Association Declaration of Helsinki, revised
in Edinburgh in 2000. We retrospectively collected data on patients with suspected fatty
liver disease who had QUS, shear wave elastography (SWE), and quantitative MRI scans
between July 2020 and May 2023 from our institution’s picture archiving and communica-
tion system (PACS). The patients’ demographics, the results of laboratory tests, and medical
history were collected from electronic medical reports (Table 1).



Diagnostics 2023, 13, 3353 3 of 15

Table 1. Demographics and etiology of the patient groups.

NAFLD (n = 90) MAFLD (n = 51)

Sex

female (%) 44 (48.9%) 26 (51.0%)

male (%) 46 (51.1%) 25 (49.0%)

Age (years)

mean (±SD) 55.1 (13.3) 54.3 (13.4)

range 23–78 21–82

BMI (kg/m2)

mean (±SD) 29.3 (4.4) 26.6 (3.9)

range 18.6–45.3 19.7–35.3

T2DM (%) 24 (35.3%) 1 (2.7%)

Etiology of chronic liver disease (%)

AIH 5 (9.8%)

alcoholic 3 (5.9%)

chr. HBV 3 (5.9%)

chr. HCV 7 (13.7%)

hemochr. 6 (11.8%)

hepatotoxic med. 15 (29.4%)

PBC/PSC 8 (15.7%)

Wilson’s disease 4 (7.8%)

none 91 (100%)
AIH: autoimmune hepatitis, BMI: body mass index, chr.HBV: chronic hepatitis B, chr.HCV: chronic hepatitis C,
hemochr.: hemochromatosis, med.: medication, PBC: primer biliary cholangitis, PSC: primer sclerosing cholangitis,
T2DM: type 2 diabetes mellitus.

The inclusion criteria in the NAFLD group were 18 years or older, signed informed
consent, valid QUS, SWE, and MRI-PDFF measurements, and clinical findings consistent
with NAFLD according to the European Association of Studying the Liver (EASL) guide-
lines [2]. The MAFLD group contained patients with clinical findings consistent with
MAFLD according to the international expert consensus, excluding the NAFLD group [3].
Patients in the NAFLD group did not report significant—over 20 g (2 drinks) for females or
30 g (3 drinks) for males—daily alcohol consumption in the previous two years and did not
have a known history of chronic liver disease. Meanwhile, patients in the MAFLD group
had at least one of the three conditions: obesity, type 2 diabetes, metabolic dysregulation,
and known chronic liver disease. Three patients in the MAFLD group reported significant
ongoing or recent alcohol consumption. Patients with acute liver failure, acute-on-chronic
liver failure, and extrahepatic biliary obstruction were excluded from this study. We also
excluded four patients with hemochromatosis whose high hepatic iron content impaired
the MRI-PDFF measurement.

The liver status was assessed with QUS or SWE in 284 patients during the study period.
After excluding 91 subjects with incomplete or invalid ultrasound scans and 52 patients
who did not have a valid quantitative MRI scan, the final study cohort included 90 patients
with clinically suspected NAFLD and 51 patients with suspected MAFLD.

2.2. Ultrasound

Patients fasted at least four hours before the ultrasound scan. All ultrasound ex-
aminations were performed with a Samsung RS85 Prestige (Samsung Medison Co., Ltd.,
Hongcheon, Republic of Korea) scanner and a CA 1-7S curvilinear probe. Patients were
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scanned in a supine position with an elevated right arm. The probe was placed into a
right intercostal space perpendicular to the liver capsule, and measurements were acquired
during breath holds with shallow inspirations. All scans were performed by one of three
experts with at least five years of experience in liver ultrasounds. The examiners were
blinded from the patients’ medical history and the MRI-PDFF results.

The QUS protocol included tissue attenuation imaging (TAITM) and tissue scatter
distribution imaging (TSITM) for measuring AC and BSC-D, respectively. During QUS,
regions of interest (ROIs) were positioned by the examiner in the right lobe of the liver
at a depth of approximately 2 cm below the liver capsule, avoiding large vessels. TAI
values with R2 < 0.6 were considered non-reliable and were discarded. TAI and TSI were
calculated as the average of five valid measurements. TAI was reported in dB/cm/MHz
and TSI in arbitrary units.

A 2D SWE was performed simultaneously with QUS, as it has been described previ-
ously [19]. For the LS measurement, the Shear-Wave ImagingTM application was selected.
A fan-shaped measurement window was positioned by the examiner in the right liver lobe
at least 2 cm below the liver capsule, avoiding large vessels. The software automatically
generated two color-coded maps, which displayed the distribution of LS and the reliable
measure index (RMI) within the window. LS was measured within circular ROIs manually
positioned in areas with the highest RMI. Measurements with an RMI <0.4 were considered
non-reliable and were discarded. LS was calculated as the average of at least five valid
measurements with an interquartile range/median (IQR/med.) ratio of <30%. LS was
reported in kPa units. Patients were also classified into fibrosis grades using cutoff values
for F2 at ≥5 kPa, for F3 at ≥9 kPa, and for F4 at ≥13 kPa based on the “rule of four”
recommendation [20].

2.3. Magnetic Resonance Imaging

We used quantitative MRI as the reference standard of the fat fraction quantification.
MRI was performed within one month of QUS. All patients were scanned with a 1.5 T
Philips IngeniaTM MRI scanner (Philips Healthcare, Amsterdam, The Netherlands) and
a Q-Body coil. A 2D multi-echo gradient echo sequence was acquired at the level of the
porta hepatis, with 12 evenly spaced echoes with echo time (TE) starting from 1.2 msec and
increasing by 1.2 msec, repetition time (TR) of 120 msec, flip angle (FA) of 20 degrees, pixel
bandwidth (Bw) of 2712 Hz, a field of view of typically 400 × 350 mm, a reconstruction
matrix of 128 × 116 pixels, slice thickness and an interslice gap of 10 mm. Three circular
ROIs were selected in the right lobe of the liver on the magnitude images with the MRQuan-
tif (https://imagemed.univ-rennes1.fr/en/mrquantif (accessed on 16 September 2022))
software [21]. The software calculated the R2* and the MRI-PDFF of the liver by fitting an
exponential signal decay model corrected for signal variations caused by the six main fat
peaks described by Hamilton et al. [22]. Patients were classified into four severity grades
using thresholds at 5%, 10%, and 20% MRI-PDFF, which have been previously used in
multiple studies to diagnose mild, moderate, and severe steatosis [14,17,23].

2.4. Statistical Analysis

The distribution parameters were calculated for clinical and imaging variables in the
dataset. Continuous variables were reported as means ± standard deviation (SD), and
categorical variables as a number and percentage. We used the Kruskal–Wallis test to
compare MRI-PDFF values and QUS parameters between different grades of liver fibrosis
and to compare LS and BMI values between MRI-PDFF-defined steatosis grades.

We constructed univariable and multivariable linear regression models to identify
ultrasound and clinical biomarkers significantly associated with the severity of fatty liver
disease in the NAFLD and MAFLD groups. In the multivariable models, AC, BSC-D, LS,
and BMI were included as independent variables, while MRI-PDFF was the dependent
variable. In the univariable models, AC, BSC-D, LS, and BMI were separately tested against
MRI-PDFF.

https://imagemed.univ-rennes1.fr/en/mrquantif
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We created three non-linear regression models to predict MRI-PDFF based on AC,
BSC-D, or the combination of both in the NAFLD dataset. The models were optimized
with a least squares analysis using the following formula for each of the QUS parameters:
MRI-PDFF = β1 × exp(β2 × QUS) + β3. The fitted models were validated in a k-fold (k = 3)
cross-validation repeated five times on the NAFLD dataset and were also tested on the
MAFLD dataset. We compared the models’ performance by calculating the coefficients of
determination (R2), which were adjusted for the number of independent variables, and
root mean square errors (RMSE) during cross-validation. We used the least squares model
that combined AC and BSC-D to calculate UEFF.

Pearson’s correlation coefficients (ρ), together with the 95% confidence intervals (CI),
were calculated between UEFF and MRI-PDFF in the NAFLD and MAFLD datasets. We
also determined the intercept ©, regression slope (β), and significance of a simple linear
model that used UEFF to predict MRI-PDFF.

We compared the predicted UEFF between the steatosis grades with the Kruskall–
Wallis test. We performed a post hoc analysis with Dunn’s test, and we adjusted p-
values with Holm’s method to prevent false discoveries from multiple comparisons.
We constructed box plots to visually examine the distribution of UEFF across the four
steatosis grades.

The diagnostic performance of the UEFF in between <5% vs. ≥5%, as well as between
<10% vs. ≥10% MRI-PDFF, was evaluated with receiver operating characteristics (ROC)
analyses. We calculated the area under the curve (AUC), together with the CI, and deter-
mined the “best” diagnostic threshold with the highest J value (J = true positive rate—false
negative rate). We also calculated the sensitivity (SN), specificity (SP), negative predictive
value (NPV), positive predictive value (PPV), and total accuracy (TA) for the classifications.
We performed a power analysis for each binary classification problem to ensure that the
sample size is large enough to keep the type 2 error <10%.

We applied a p < 0.05 cutoff for all statistical tests to declare significance. The data
analysis was performed in the R version 4.2.3 (www.r-project.org, accessed on 20 April
2023) statistical computing environment.

3. Results
3.1. Demographics and Characteristics of Patient Groups

We examined 141 patients with QUS and SWE to determine the severity of fatty liver
and fibrosis in suspected diffuse liver disease. The etiology of the liver disease based on
the clinical background was NAFLD in 90 cases and MAFLD in 51 cases. All participants
had an MRI scan within one month of the US examination for measuring MRI-PDFF. All
participants were of European descent.

The patients were classified into steatosis grades using cutoff values at 5%, 10%, and
20% MRI-PDFF. In the NAFLD group, 19 (21.1%) patients had <5%, 22 (24.4%) 5–10%,
34 (37.8%) 10–20%, and 15 (16.7%) ≥20% MRI-PDFF (Table 2). The distribution of patients
in the MAFLD group among the same steatosis grades was 28 (54.9%), 8 (15.7%), 10 (19.6%),
and 5 (9.8%), respectively. The SWE indicated significant liver fibrosis with LS ≥ 9 kPa in
14 (15.6%) NAFLD and 21 (41.2%) MAFLD patients.

The MRI-PDFF and the QUS parameters were not significantly different between the
fibrosis grades in either etiology. Similarly, patients in MRI-PDFF-defined steatosis grades
did not have significantly different LS.

The BMI was significantly different between <5% (mean ± SD, 26.5 ± 4.43) vs. >5–10%
(29.9 ± 4.17, p < 0.01), 10–20% (29.4 ± 4.56, p < 0.008), and ≥20% (30.7 ± 3.44, p < 0.001)
MRI-PDFF in the NAFLD group. However, BMIs did not show significant differences
among the 5–10%, 10–20%, and ≥20% grades.

www.r-project.org
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Table 2. Distributions of the imaging parameters.

NAFLD (n = 90) MAFLD (n = 51)

AC (dB/cm/Mhz)

mean ± SD 0.83 ± 0.15 0.73 ± 0.17

range 0.55–1.22 0.49–1.26

BSC-D (arbitrary unit)

mean ± SD 100.54 ± 9.6 92.68 ± 11.87

range 60–116.62 62.52–110.38

LS (kPa)

mean ± SD 7.24 ± 3.2 11.26 ± 8.9

range 3.2–21.8 3.9–39.7

MRI-PDFF (%)

mean ± SD 12.1 ± 8.86 7.8 ± 7.7

range 0.2–44.6 0.4–30.1

UEFF (%) 1

mean ± SD 12.06 ± 7.23 7.08 ± 7.86

range −1.25–35.3 −1.99–37.03

Steatosis grade 2

<5% 19 (21.1%) 28 (54.9%)

5–10% 22 (24.4%) 8 (15.7%)

10–20% 34 (37.8%) 10 (19.6%)

≥20% 15 (16.7%) 5 (9.8%)

Fibrosis grade 3

F0/F1 12 (13.3%) 5 (9.8%)

F2 64 (71.1%) 25 (49.1%)

F3 8 (8.9%) 12 (23.5%)

F4 6 (6.7%) 9 (17.6%)
1 The UEFF was calculated with the least squares model that combined AC and BSC-D to predict MRI-PDFF.
2 The steatosis grade was calculated from MRI-PDFF using cutoff values at 5%, 10%, and 20%. 3 The fibrosis
grade was determined from LS using thresholds according to the “rule of four” at 5 kPa, 9 kPa, and 13 kPa [20].
AC: attenuation coefficient, BSC-D: backscatter-distribution coefficient, LS: liver stiffness, MAFLD: metabolic-
associated fatty liver disease group, MRI-PDFF: magnetic resonance imaging-detected fat fraction, NAFLD:
non-alcoholic fatty liver disease group, UEFF: ultrasound-derived fat fraction.

3.2. Regression Models

The regression analysis identified AC as a strong independent predictor of MRI-PDFF
in both NAFLD and MAFLD groups (Table 3). BSC-D was not an independent predictor
in the multivariable analysis but showed a significant association with MRI-PDFF in the
univariable analysis. AC and BSC-D were better predictors of MRI-PDFF in both NAFLD
and MALD than BMI, which was only weakly associated with MRI-PDFF in the univariable
analysis. Meanwhile, LS did not show a significant association with liver fat.
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Table 3. Results of the regression analysis.

Univariable Analysis Multivariable Analysis

adj. R2 F Stat. ß p-Value adj. R2 F Stat. ß p-Value

NAFLD

AC 0.504 91.47 43.04 <0.001 0.485 18.65 36.16 <0.001

BSC-D 0.31 14.01 0.52 <0.001 0.485 18.65 0.18 0.118

LS 0.0009 1.08 0.3 0.3 0.485 18.65 0.06 0.781

BMI 0.078 7.36 0.63 0.008 0.485 18.65 0.07 0.696

MAFLD

AC 0.748 149.2 40.19 <0.001 0.775 34.49 44.82 <0.001

BSC-D 0.235 16.38 0.32 <0.001 0.775 34.49 0.07 0.298

LS 0.049 3.57 −0.22 0.065 0.775 34.49 0.05 0.521

BMI 0.23 12.65 1.07 0.001 0.775 34.49 −0.21 0.38
AC: attenuation coefficient, adj.: adjusted, BMI: body mass index, BSC-D: backscatter-distribution coefficient,
F stat.: F statistics, LS: liver stiffness, MAFLD: metabolic-associated fatty liver disease group, NAFLD: non-
alcoholic fatty liver disease group.

We constructed scatter plots to visualize the correlation between QUS biomarkers and
MRI-PDFF (Figure 1). The relationship between AC, BSC-D, and MRI-PDFF was non-linear,
with measurements gradually plateauing above a 20% fat fraction. This effect was more
pronounced in the case of BSC-D than AC. The distribution of the QUS parameters with
respect to the fat fraction was similar in the NAFLD and MAFLD groups.
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Figure 1. Scatter plots showing the correlation between quantitative ultrasound (QUS) biomarkers
and MRI-PDFF. (a) We observed a non-linear distribution of the attenuation coefficient (AC) and
(b) the backscatter-distribution coefficient (BSC-D) in relation to MRI-PDFF, in both the non-alcoholic
fatty liver disease (NAFLD, empty circle) and the metabolic-associated fatty liver disease (MAFLD,
gray square) groups. We fitted a non-linear least squares model (dashed line) onto the NAFLD
dataset using a combination of AC and BSC-D values to compensate for the saturation effect at higher
fat fractions.
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3.3. Non-Linear Least Squares Models

We developed three models using a non-linear least squares analysis for the prediction
of MRI-PDFF based on QUS. The model parameters were fitted on either AC or BSC-D or
both in the NAFLD group, and the accuracy of the three models was validated in a three-
fold cross-validation repeated five times. The AC model was the best fit for the validation
set (mean ± SD, adj. R2 = 0.498 ± 0.046) with a mean RMSE of 6.415% ± 0.561% in the
cross-validation (Table 4). The combined AC and BSC-D model yielded only a slightly lower
coefficient of determination (adj. R2 = 0.446 ± 0.152) and RMSE (RMSE = 7.347% ± 3.105%).
The BSC-D model performed the worst with a mean adj. R2 of 0.318 ± 0.075 and RMSE of
7.687% ± 0.696%

Table 4. Performance of the non-linear least squares-fitted prediction models.

NAFLD Group 1 MAFLD Group 2

Model adj. R2 RMSE Cor. Coef. p-Value adj. R2 RMSE Cor. Coef. p-Value

AC 0.498
± 0.046

6.415
± 0.561

0.716
0.6–0.8 <0.001 0.733 3.911 0.859

0.76–0.92 <0.001

BSC-D 0.318
± 0.075

7.687
± 0.696

0.581
0.43–0.7 <0.001 0.253 6.608 0.518

0.28–0.69 <0.001

AC +
BSC-D

0.446
± 0.152

7.347
± 3.105

0.735
0.62–0.82 <0.001 0.673 4.574 0.828

0.72–0.9 <0.001

1 The adj. R2 and RMSE are calculated as the mean ± standard deviation in the validation set in a three-fold
cross-validation repeated five times. 2 The model parameters were fitted on the NAFLD group, and trained models
were tested on the MAFLD group. AC: attenuation coefficient, adj. R2: adjusted coefficient of determination,
BSC-D: backscatter-distribution coefficient, Cor. coef.: the Pearson’s correlation coefficient between the predicted
fat fraction and MRI-PDFF, and the 95% confidence intervals, MAFLD: metabolic-associated fatty liver disease,
NAFLD: non-alcoholic fatty liver disease, RMSE: root mean square error.

We also evaluated the same three models in the MAFLD dataset (Table 4). The AC
model (adj. R2 = 0.733) was the best fit, followed by the combined (adj. R2 = 0.673) and the
BSC-D (adj. R2 = 0.253) models. The RMSE of the AC, combined, and BSC-D models were
3.911%, 4.574%, and 6.608%, respectively.

3.4. Correlation between UEFF and MRI-PDFF

We chose the combined model to predict UEFF in both the NAFLD and MAFLD
datasets. The mean and SD of the UEFF (12.06% ± 7.23%) were similar to the metrics
calculated for MRI-PDFF. The correlation between UEFF and MRI-PDFF for all of cases in
the NAFLD group was strong (ρ = 0.735, CI = 0.622–0.817, p < 0.001) (Figure 2). However,
the correlation was the strongest (ρ = 0.886, CI = 0.81–0.933, p < 0.001) in the range of
0–12.2% MRI-PDFF. The slope of the regression line between UEFF and MRI-PDFF was
β = 0.9 with a significance of p < 0.001, and the intercept was at c = 1.238%.

In the MAFLD dataset, the mean and SD of UEFF (7.08% ± 7.86%) were nearly identical
to those calculated for MRI-PDFF. The UEFF was in a very strong correlation (ρ = 0.828,
CI = 0.716–0.899, p < 0.001) with MRI-PDFF, peaking (ρ = 0.902, CI = 0.813–0.95, p < 0.001)
between 0.7% and 14.5%. The regression slope was β = 0.81 (p < 0.001) with a regression
intercept of c = 2.06%.

Meanwhile, when only patients with severe steatosis (≥20% MRI-PDFF) were exam-
ined, the correlation between the UEFF and MRI-PDFF was not significant in either the
NAFLD (ρ = 0.227, CI =−0.323–0.662, p < 0.416) or the MAFLD (ρ = 0.091, CI = −0.9–0.86,
p < 0.884) group.
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Figure 2. Correlation between UEFF and MRI-PDFF. The ultrasound-estimated fat fraction (UEFF)
was predicted with a combined least squares model fitted on the attenuation coefficient (AC) and
backscatter-distribution coefficient (BSC-D). (a) The correlation between UEFF and MRI-PDFF was
strong (Pearson’s r = 0.73, 95% confidence interval (CI) = 6.22–0.817) in the non-alcoholic fatty liver
disease (NAFLD) group. (b) We found a very strong correlation between UEFF and MRI-PDFF
(r = 0.828, CI = 0.716–0.899) by applying the same model to the metabolic-associated fatty liver
disease (MAFLD) group. The slope and the offset of the correlation line (dashed line) were 0.9 and
1.24% in the NAFLD and 0.81 and 2.06% in the MAFLD dataset. The x = y identity line (continuous
gray line) is shown as a reference.

3.5. Comparison of UEFF between Steatosis Grades

We divided patients into four grades (none (<5%), mild (5–10%), moderate (10–20%),
and severe (≥20%)) based on the severity of steatosis measured with MRI-PDFF. We
calculated the mean and SD of the UEFF predicted using the combined least squares model
for each grade. In the NAFLD group, the UEFF was significantly different between <5%
(2.70% ± 2.48%, p < 0.0048) and 5–10% (10.1% ± 4.03%), as well as between 5–10% and
10–20% (15.3% ± 4.45%, p < 0.006) MRI-PDFF steatosis (Figure 3). In the MAFLD group,
the UEFF was significantly different between none (1.65% ± 2.04%, p < 0.001) and mild
(9.12% ± 3.6%) steatosis; meanwhile, the difference was non-significant between mild and
moderate (14.1% ± 5.3%) and between moderate and severe (20.3% ± 10.1%) steatosis.

3.6. Diagnosis of Different Grades of Steatosis with UEFF

The ROC analysis showed that UEFF could separate ≥5% from <5% MRI-PDFF, with
excellent accuracy (AUC = 0.971, CI = 0.942–1) in the NAFLD group. The best cutoff was
at 6.36%, achieving a sensitivity of 0.92, specificity of 1, NPV of 0.76, PPV of 1, and TA of
0.93 (Table 5). The UEFF was similarly successful in differentiating between mild (≥5%
MRI-PDFF) vs. no steatosis (AUC = 0.99, CI = 0.973–1) in MAFLD (Figure 4). The sensitivity,
specificity, NPV, PPV, and TA of the classification were all 0.96, when using a diagnostic
threshold of 5.22% (Figure 4).
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Figure 3. Distribution of UEFF across steatosis grades. Patients were classified into four steatosis
severity grades based on MRI-PDFF using cutoff values at 5%, 10%, and 20% fat fractions. The
box plots represent the median (thick line), the range between 25% and 75% percentiles (box), and
the minimum and maximum values (whiskers) of UEFF predicted with the combined least squares
model for patients in each grade. Two sets of box plots were calculated, one for non-alcoholic fatty
liver disease (NAFLD, light gray), and another for metabolic-associated fatty liver disease (MAFLD,
dark gray).
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Figure 4. Diagnostic performance of UEFF in separating steatosis grades. (a) The receiver oper-
ating characteristics (ROC) analysis showed that UEFF could separate <5% from ≥5% MRI-PDFF
steatosis with excellent area under the ROC curve (AUC) accuracy in both non-alcoholic fatty liver
disease (NAFLD, AUC = 0.97, continuous line) and metabolic-associated fatty liver disease (MAFLD,
AUC = 0.99, dashed line). (b) The UEFF proved to be just slightly less successful in differentiating
between <10% vs. ≥10% MRI-PDFF with an AUC of 0.91 in NAFLD (continuous line) and an AUC
of 0.96 in MAFLD (dashed line).
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Table 5. Diagnostic performance of UEFF in separating MRI-PDFF-defined steatosis grades.

<5% vs. ≥5% MRI-PDFF 10% vs. ≥10% MRI-PDFF

NAFLD Group MAFLD Group NAFLD Group MAFLD Group

Cutoff 6.36% 5.22% 11.64% 8.74%

AUC 0.97 0.99 0.91 0.96

SN 0.92 0.96 0.86 0.93

SP 1 0.96 0.88 0.94

PPV 1 0.96 0.89 0.88

NPV 0.76 0.96 0.84 0.97

TA 0.93 0.96 0.87 0.94

Power 1 1 1 1
AUC: area under the curve from receiver operating curve analysis, MAFLD: metabolic-associated fatty liver
disease, NAFLD: non-alcoholic fatty liver disease, NPV: negative predictive value, PPV: positive predictive value,
SN: sensitivity, SP: specificity, TA: total accuracy.

For detecting ≥10% MRI-PDF in NAFLD, the AUC for UEFF was 0.91 (CI = 0.848–0.972),
and sorting with an 11.64% threshold yielded a sensitivity, specificity, NPV, PPV, and TA of
0.86, 0.88, 0.89, 0.84, and 0.87, respectively. Meanwhile, in the MAFLD group, the AUC for
diagnosing ≥10% MRI-PDFF was 0.961 (CI = 0.913–1). The optimal UEFF cutoff was at 8.74,
which could predict moderate/severe steatosis with a sensitivity, specificity, NPV, PPV, and
TA of 0.93, 0.94, 0.88, 0.97, and 0.94, respectively.

4. Discussion

We fitted a model using non-linear least squares analysis to predict UEFF based on AC
and BSC-D parameters as the input, and MRI-PDFF as the reference standard in 90 NAFLD
cases. We found that the correlation between the predicted UEFF and MRI-PDFF was strong
(ρ = 0.735), and that the UEFF model was able to diagnose ≥5% (AUC = 0.97) and ≥10%
MRI-PDFF (AUC = 0.91) steatosis with an excellent accuracy in NAFLD. We have also
validated our UEFF model in multiple ways. We performed a three-fold cross-validation
that was repeated five times on the NAFLD dataset, which showed that the AC, combined
AC, and BSC-D models were the best fit on the NAFLD dataset, producing nearly identical
mean coefficients of determination (adj. R2 = 0.498 vs. 0.446). We also tested our models
on a dataset collected from patients with MAFLD with various etiologies of CLD. Our
results show that the UEFF model developed for patients with NAFLD can also be applied
to predict steatosis in MAFLD with good accuracy. The coefficient of determination for
the UEFF model trained on the NAFLD dataset did not decrease in the MAFLD dataset
(adj. R2 = 0.673). The predicted UEFF very strongly correlated with MRI-PDFF (ρ = 0.828)
and could detect patients with ≥5% (AUC = 0.99) and ≥10% (AUC = 0.96) MRI-PDFF with
nearly perfect accuracy. Thus, our results suggest that a UEFF model can be implemented
for diagnosing low- and moderate-grade hepatic steatosis with similar accuracy to MRI-
PDFF in both NAFLD and MAFLD.

A handful of studies have already reported prediction models for estimating the
hepatic fat fraction based on a selection of QUS parameters [14,17]. Another approach to
developing an ultrasonic fat fraction estimator is to use convolutional neural networks
(CNNs) trained on either radiofrequency or image data [24,25]. The correlation between
the predicted fat fraction and MRI-PDFF (ρ = 0.76–0.87) and the classification accuracy
for low-grade (≥5% MRI-PDF) steatosis (AUC = 0.89–0.98) reported for these models was
similar to the results of our model. Notably, thresholds for diagnosing ≥5% (6.36% vs.
6.34%) and ≥10% (11.64% vs. 11.7%) MRI-PDFF with the UEFF model in NAFLD were
almost identical to the cutoff values reported for the UDFF model [17]. The novelty of our
approach was that we applied a non-linear least squares analysis in AC measured with
the TAI and BSC-D measured with the TSI applications. This is important since BSC-D
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measured with a different technique had a higher coefficient of determination in a least
squares analysis compared to TSI (R2 = 0.76 vs. R2 = 0.32) [17]. In addition, all prior studies
were performed in a single-center setting and only analyzed the QUS data from patients
with NAFLD without an external validation set, which may raise concerns about overfitting
the models. We tested the UEFF model on the data collected from the patients with MAFLD
and did not see a drop in the model’s performance, suggesting that our model does not
overfit on the NAFLD dataset.

Previous studies have already demonstrated the saturation of QUS parameters in
high-grade steatosis [17,24,25]. The correlation between MRI-PDFF and the predicted fat
fraction was linear and below 18% MRI-PDFF; outside this range, the correlation decreased,
and the prediction models underestimated the severity of steatosis [24,25]. We found
that the correlation between UEFF and MRI-PDFF was the highest (ρ = 0.89) in the range
of <12.2% MRI-PDFF in the NAFLD group. Meanwhile, the overall correlation between
UEFF and MRI-PDFF was also strong in both the patients with NAFLD (ρ = 0.735) and
MAFLD (ρ = 0.828), which is an advantage of our method compared to CAP, showing a
lower overall correlation (ρ = 0.44–0.577) with MRI-PDFF in previous studies [23,26]. The
higher correlation and better prediction accuracy observed in the MAFLD group can also
be explained, in part, by the saturation effects as the percentages of patients with ≥10%
(16.7% vs. 37.8%) and ≥20% (9.8% vs. 19.6%) MRI-PDFF were lower compared to the
NAFLD group. When the correlation was calculated selectively for the patients with severe
(≥20% MRI-PDFF) steatosis, it was not significant in either the NAFLD or the MAFLD
group. A similar loss of correlation was reported for CAP at ≥331 dB/m, corresponding
to ≥21.4% MRI-PDFF [26]. In our opinion, this finding does not significantly impact the
clinical application of our method since the primary task of UEFF is to diagnose liver
steatosis in an early stage and identify patients with moderate- or higher-grade steatosis
(≥10% MRI-PFF) who have an increased risk of mortality rather than providing exact
measurements of the liver fat fraction at ≥20%.

We also examined whether liver fibrosis had a confounding effect on QUS or MRI-
PDFF. We did not see that LS had a significant influence on either MRI-PDFF or other
QUS parameters. LS was not significantly different between MRI-defined steatosis grades;
also, MRI-PDFF, AC, and BSC-D did not differ between the fibrosis grades. Further-
more, LS was not a significant predictor of MRI-PDFF in a linear regression. AC has
been extensively investigated as an imaging biomarker of hepatic steatosis in a multi-
tude of publications [12,27]. A recent prospective study has reported that, in a cohort of
124 patients, a QUS-derived fat fraction was more accurate for diagnosing NAFLD-related
hepatic steatosis than the controlled attenuation parameter (CAP) [23]. Another study,
which used a 2D CNN to predict the fat fraction in 173 NAFLD patients, also found that
the accuracy of the CNN model was superior to AC for the detection of steatosis [25].
Interestingly, among the least squares models built from our QUS data, the simple AC
model had a slightly better mean coefficient of determination (adj. R2 = 0.498 vs. 0.446)
and lower RMSE (6.42% vs. 7.35%) in the cross-validation than the combined model. The
goodness-of-fit was also better with the AC model in the MAFLD group (adj. R2 = 0.73
vs. 0.67). These results may imply that a solely AC-based model does not significantly
underperform the combined model while being less susceptible to overfitting due to the
higher number of trainable parameters; thus, it could be more generalized. Meanwhile, the
addition of a second variable, such as BSC-D, to the model may improve the robustness of
the prediction by compensating for the noise in the measurements. These questions should
be further addressed in large-scale multi-center studies.

Our study had several limitations. First, the data collection was retrospective, and
relatively small patient cohorts with clinically suspected NAFLD (90 cases) and MAFLD
(51 cases) were examined in a single center. Therefore, our results cannot be generalized to
large patient populations. Second, there was a selection bias towards steatosis, as high-risk
patients were preselected during clinical screening. Therefore, the percentage of negative
cases in the NAFLD (21.2%) and MAFLD (54.9%) groups does not represent the general
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population. Third, AC and BSC-D were measured with the TAI and TSI applications, which
might have slightly different technical specifications compared to similar QUS parameters
available from different vendors.

5. Conclusions

With the recent advancements in image analysis, new algorithmic- and artificial
intelligence-based methods have become available for the objective assessment of both
diffuse and focal liver disease [28]. The prevalence of FLD is steadily increasing worldwide,
which necessitates the introduction of new quantitative imaging techniques that can be used
for an objective and early diagnosis of hepatic steatosis [1]. In this study, we have developed
a new, easily interpretable biomarker, UEFF, for the quantification of steatosis based on
QUS parameters. We have demonstrated that UEFF is capable of diagnosing NAFLD
with an accuracy similar to MRI-PDFF. Moreover, the UEFF also showed a high degree of
agreement with MRI-PDFF in patients with MAFLD. Thus, UEFF may be an ideal screening
tool for FLD; however, it requires further validation in large-scale, multi-center studies.
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