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1 Department of Orthopedics and Traumatology, Elazig Fethi Sekin City Hospital, Elazig 23280, Turkey
2 Vocational School of Technical Sciences, Firat University, Elazig 23119, Turkey
* Correspondence: oguzkayamd@gmail.com (O.K.); btasci@firat.edu.tr (B.T.)

Abstract: The musculoskeletal system plays a crucial role in our daily lives, and the accurate diagnosis
of musculoskeletal issues is essential for providing effective healthcare. However, the classification
of musculoskeletal system radiographs is a complex task, requiring both accuracy and efficiency.
This study addresses this challenge by introducing and evaluating a pyramid deep feature extraction
model for the automatic classification of musculoskeletal system radiographs. The primary goal of this
research is to develop a reliable and efficient solution to classify different upper extremity regions in
musculoskeletal radiographs. To achieve this goal, we conducted an end-to-end training process using
a pre-trained EfficientNet B0 convolutional neural network (CNN) model. This model was trained on
a dataset of radiographic images that were divided into patches of various sizes, including 224 × 224,
112 × 112, 56 × 56, and 28 × 28. From the trained CNN model, we extracted a total of 85,000 features.
These features were subsequently subjected to selection using the neighborhood component analysis
(NCA) feature selection algorithm and then classified using a support vector machine (SVM). The
results of our experiments are highly promising. The proposed model successfully classified various
upper extremity regions with high accuracy rates: 92.04% for the elbow region, 91.19% for the finger
region, 92.11% for the forearm region, 91.34% for the hand region, 91.35% for the humerus region,
89.49% for the shoulder region, and 92.63% for the wrist region. These results demonstrate the
effectiveness of our deep feature extraction model as a potential auxiliary tool in the automatic
analysis of musculoskeletal system radiographs. By automating the classification of musculoskeletal
radiographs, our model has the potential to significantly accelerate clinical diagnostic processes and
provide more precise results. This advancement in medical imaging technology can ultimately lead
to better healthcare services for patients. However, future studies are crucial to further refine and
test the model for practical clinical applications, ensuring that it integrates seamlessly into medical
diagnosis and treatment processes, thus improving the overall quality of healthcare services.

Keywords: musculoskeletal radiographs; Efficientb0; upper extremity; pyramid model; SVM; NCA

1. Introduction

Bones, as a fundamental component of the human skeletal system, are metabolically
active and structurally dynamic [1]. They also play significant roles in the metabolic,
endocrine, and hematological systems while providing a mineral-containing connective
tissue that supports the vital organs of the body and enables the mobility of the skeletal
system [2,3]. Bones play a crucial role in transforming the forces generated by muscle
contractions into body movements through a lever system [4]. A fracture refers to a
condition in which the integrity of bones is disrupted due to internal or external factors [5].
Fractures not only affect bones but can also impact surrounding tissues and lead to systemic
complications, making them a general traumatological event [6]. The healing of bone
fractures involves a complex series of cellular and molecular events, including a specific
wound-healing process [7]. Bone is one of the rare tissues that can heal without forming
fibrous scar tissue, and the healing process can occur directly or indirectly [8]. Bone fractures
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are among the most common reasons for hospital admissions, especially in cases of high-
energy trauma such as falls from heights or traffic accidents [9]. Factors like advanced age
and osteoporosis can increase the risk of fractures, making them more prevalent in the
elderly population [10]. This situation can elevate the cost of fracture treatment and extend
the healing process. Therefore, the treatment of these patients becomes a significant issue
in terms of both cost and effectiveness [11,12].

Today, artificial intelligence, which has made significant advances in the field of
medicine, has also had noteworthy effects on the healthcare sector. One of these effects
is the advancements in the diagnosis and treatment of orthopedic traumas such as bone
fractures. Artificial intelligence algorithms, with their ability to rapidly and accurately
analyze information obtained from radiological images, assist in making more precise and
early diagnoses related to bone fractures. In the literature, numerous studies have been
conducted in the fields of orthopedics and artificial intelligence. Some of these studies are
provided below. In this manner, it becomes possible to alleviate the workload of healthcare
professionals, utilize time more efficiently, and enhance diagnostic accuracy [13–15]. The
development of computer-aided diagnostic systems holds particular significance for less
developed and developing countries where there is an inadequacy of specialized experts.

Studies in the literature addressing the detection of orthopedic abnormalities using
deep learning are enumerated below.

Sezer and colleagues [16] utilized a total of 219 shoulder bone MR images, comprising
91 edematous cases, 49 Hill–Sachs lesions, and 79 normal cases. Texture information ob-
tained through the gray level co-occurrence matrix (GLCM) algorithm was combined with
features obtained using gradient histogram pyramid algorithms for classification purposes.
In these classification processes, a kernel-based support vector machine (SVM) achieved
an 88% success rate. Additionally, by employing extreme learning machines (ELM), a
94% success rate was achieved. Wu and colleagues [17] examined the results obtained
by using the feature ambiguity reduction operator (FAMO) model, which is employed
in bone fracture detection, in conjunction with a 101-layer ResNeXt and feature pyramid
network (FPN) on a dataset containing 9040 radiographic images. This study determined
an average precision value of 77.40% for fracture detection. Ma and colleagues [18] utilized
a dataset comprising 1052 bone images, of which 526 were fractured and the remainder
were intact. The images were analyzed using Faster R-CNN and, as a result of this analysis,
a crack-sensitive convolutional neural network (CrackNet) model achieved an accuracy
of 90.11% for fracture detection on the entire dataset. Gan and colleagues [19] performed
fracture detection by determining the position of the distal radius using anteroposterior
wrist X-ray images. They developed a system for this purpose using Faster R-CNN and
Inception-v4 architectures. The dataset consisted of 2340 images, with training and test
sets containing 2040 and 300 images, respectively. The system’s performance with Faster
R-CNN was evaluated at 0.87 based on the IoU success criterion. Inception-v4 was assessed
based on metrics such as overall accuracy, sensitivity, specificity, Youden’s index, and AUC
score, achieving classifier performances of 93%, 90%, 96%, 0.86, and 0.96, respectively.
Furthermore, the system was compared with radiologists and orthopedic specialists, with
radiologists demonstrating superior performance. Sezer and colleagues [20] proposed a
computer-aided diagnosis (CAD) system based on Capsule Network (CapsNet) for the
diagnosis of rotator cuff lesions in shoulder MR images. In this study, traditional meth-
ods such as CNN, AlexNet, GoogLeNet, and gray level co-occurrence matrix (GLCM)
achieved overall accuracy rates of 93.21%, 88.45%, 87.63%, and 85.20%, respectively. The
recommended CapsNet model outperformed these models, achieving an accuracy rate
of 94.75%. On the other hand, Beyaz et al. [21] aimed to develop a convolutional neural
network (CNN) model for classifying fractured and non-fractured femoral necks in frontal
pelvic X-ray images. They curated a dataset consisting of 234 images from 65 patients
and augmented it to 2106 images. Of these, 1341 were fractured femoral necks and 765
were non-fractured. The CNN architecture included five blocks with batch normalization,
ReLU activation, and dropout layers, followed by a softmax classification layer. Training
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employed an Adam Optimizer, a learning rate schedule, and regularization to mitigate
overfitting. The model was trained with various image resolutions (50 × 50, 100 × 100,
200 × 200, and 400 × 400) and hyperparameters were optimized using a genetic algorithm.
An accuracy of 79.30% was achieved with the proposed method. Tobler and colleagues [22]
investigated the performance of a deep convolutional neural network (DCNN) in detecting
and classifying distal radius fractures, metal objects, and casts in radiographs using report-
based labels. Their study included 15,775 radiographs and utilized a ResNet18 DCNN.
With the 18-layer ResNet (ResNet-18) model, fracture detection achieved an accuracy of
94%. Tanzi and others [23] proposed a deep learning-based tool aimed at improving the
diagnosis of bone fractures, with a focus on AO/OTA classification. The research used
a large dataset consisting of proximal femur images and employed a multi-stage CNN
architecture with InceptionV3 CNN. Image interpretation was performed using Grad-CAM,
and the CNN’s performance was evaluated using various metrics. In fracture classification
tasks, the InceptionV3 model achieved an accuracy of 87% for three classes and 78% for
five classes. Guan and colleagues [24] conducted a study aimed at detecting the location of
arm fractures using X-ray images. In this research, they focused on modifying a previously
used CNN architecture to emphasize the normal convolution process. Pixel transformation
preprocessing was applied to reduce noise and enhance brightness in the images. Using a
feature pyramid architecture, features were extracted from the preprocessed images, and
five feature maps at different scales were generated. These feature maps were used to
identify regions of interest, resulting in a total of 256 regions of interest to determine the lo-
cations of fractures. Additionally, the detection area was expanded to detect small fractures.
As a result, bounding boxes containing fractures were predicted using the obtained feature
vectors. The dataset consisted of 4004 X-ray images, with training and test sets containing
3392 and 612 images, respectively. Expert radiologists were involved in drawing bounding
boxes containing fractures. The performance of this study, as measured by the average
precision criterion, was evaluated at 62.04%. Awan et al. [25] used a multi-scale guided
attention-based context collection method to detect anterior cruciate ligament tears. The
dataset used included 917 knee MRI images. As a result, 98.63% accuracy was achieved.

1.1. Motivation and Our Model

This study has emerged as a significant outcome of the notable advancements in
the field of medicine, particularly in the diagnosis and treatment of musculoskeletal sys-
tem radiographs. Presently, rapid developments in digitalization and image processing
technologies in the field of radiology have enabled more precise and accurate analysis of
musculoskeletal system radiographs. This dataset comprises a substantial collection of
data obtained from Stanford Hospital, providing a foundation for research into the diagno-
sis and treatment of musculoskeletal disorders. This study aims to explore the potential
of machine learning algorithms and artificial intelligence techniques in the analysis of
such images using this valuable data source. To enhance the clinical applicability of the
model, we have utilized the MURA dataset. This dataset includes radiographic images
from various upper extremity regions such as the elbow, finger, forearm, hand, humerus,
shoulder, and wrist. Furthermore, the results of this research may contribute to improved
diagnoses and the development of new methods that can aid in the treatment of patients
in clinical applications. Therefore, the motivation behind this study is to contribute to
advancements in the diagnosis and treatment of musculoskeletal system radiographs and
to fill the knowledge gap in this field.

1.2. Novelties and Contributions

In this section, we will present the novelties and contributions of our study.
The novelties of our research are as follows:

• We propose a fixed-size patch division method for extracting local features during the
feature extraction phase. Unlike traditional methods, this new approach enables the more
effective processing of images, resulting in the extraction of more prominent features.



Diagnostics 2023, 13, 3317 4 of 16

• We conduct end-to-end training using only the images from the orthopedic MURA
dataset, utilizing the suggested patch division method and a pre-trained EfficientB0
CNN model. This presents a distinct approach compared to previous studies and
ensures effective results while preserving the uniqueness of the dataset.

• Deep features are generated using the retrained EfficientB0 CNN network. These
features capture and render the significant information contained within the images
for further analysis.

• Neighborhood component analysis (NCA) is employed, known for its ability to select
the most informative features. Subsequently, classification results are obtained by
deploying an SVM classifier using these selected features.

• We introduce a model incorporating deep features generated with our proposed patch
division method. This model provides a deep feature engineering approach based on
rectangular patch division, contributing to enhanced feature extraction.

The contributions of our model are as follows:

• We employ a novel approach to partitioning images into horizontal and vertical
segments. This approach facilitates multi-level deep feature extraction and offers an
effective means of extracting features located in the lower portions of the images.

• The deep feature extraction process is performed starting from the last fully connected
layer of the EfficientB0 network, known for its efficient network architecture. This
approach differs from prior studies and leads to more effective results.

• NCA is used to select the most distinctive features from the feature extraction results.
This enables the model to utilize more precise and distinctive features, contributing to
the improvement of results.

2. Material and Method
2.1. Dataset

The MURA dataset, which contains a sufficiently large dataset for anomaly detection
in musculoskeletal radiographs, was created by the Stanford University Machine Learning
Group [26]. It is noted that this dataset was manually labeled as normal/negative or ab-
normal/positive (fractured or with implants) by board-certified radiologists from Stanford
Hospital between the years 2001 and 2012. The dataset includes images of seven standard
upper extremities: elbow, finger, forearm, hand, humerus, shoulder, and wrist. Example
images from the dataset are shown in Figure 1.

MURA is a musculoskeletal radiography dataset comprising data from 12,173 patients,
14,656 studies, and over 40,000 radiographic images. The distribution of the number of
images and studies per class is illustrated in Figure 2.

2.2. Method

In the scope of this study, we propose a new deep feature extraction architecture for
classifying orthopedic images in the MURA dataset. We refer to this feature extraction
structure as ‘pyramid deep feature extraction,’ and the schematic representation of this
model can be observed in Figure 3. Our proposed model utilizes a pre-trained EfficientB0
CNN model that has been end-to-end trained with the MURA dataset. The primary objec-
tive of the model is to generate comprehensive features from orthopedic images. The block
diagram of the proposed model is presented in Figure 4. As shown in Figure 3, orthopedic
images from the colored MURA dataset were first resized to 224 × 224 dimensions.
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During the resizing process, we utilized a bilinear interpolation method. As a result
of this operation, the 224 × 224 sized image was divided into 64 segments of 28 × 28
dimensions. Subsequently, the retrained EfficientB0 CNN model was used for feature
extraction on these 64 segments. For a MURA orthopedic image, 64 × 1000 features were
extracted using EfficientB0. In the second step of the pyramid, the 224 × 224 RGB image
was resized to dimensions 56 × 56, yielding 16 image segments. Feature extraction was
performed on these 16 segments again using the EfficientB0 CNN model. For a MURA
orthopedic image, 16 × 1000 features were extracted using EfficientB0. In the third step of
the pyramid, the 224 × 224 RGB image was resized to dimensions 112 × 112, resulting in
4 image segments. From these 4 image segments, 4 × 1000 features were extracted using
EfficientB0. In the fourth step of the pyramid, 1 × 1000 features were extracted from the
original 224 × 224 RGB image using EfficientB0. The features obtained in the four stages of
the pyramid were combined, resulting in a total of 85,000 features extracted for orthopedic
images in the MURA dataset. The proposed pyramid model was applied to the EfficientB0
model. The concatenated features were selected using the NCA feature selection algorithm.
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Subsequently, the selected features were classified using 10-fold cross-validation and an
SVM classifier.
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The steps of the model are detailed below.
Here is a summary of the steps in your process:
Step 1: The EfficientB0 network was retrained using the images from the MURA

dataset, which contained 40,005 images.
Step 2: The 224 × 224 RGB image was divided into 64 segments of 28 × 28. Each

segment was resized back to 224 × 224. Using the MatMul fully connected layer of the
retrained network, 64,000 features were extracted.
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Step 3: The 224 × 224 RGB image was divided into 16 segments of 56 × 56 dimensions.
Each segment was resized back to 224 × 224. Using the MatMul fully connected layer of
the retrained network, 16,000 features were extracted.

Step 4: The 224 × 224 RGB image was divided into 4 segments of 112 × 112. Each
segment was resized back to 224 × 224. Using the MatMul fully connected layer of the
retrained network, 4000 features were extracted.

Step 5: Features obtained in Steps 2 to 4 were combined, resulting in a total of 85,000 features.
Step 6: From the 85,000 features obtained in Step 5, 1000 features were selected using

the neighborhood component analysis (NCA) algorithm.
Step 7: The selected 1000 features were classified using a 10-fold cross-validation and

an SVM classifier.

2.2.1. Efficient b0

EfficientNet is a convolutional neural network architecture that introduces a novel
scaling model using compound scaling coefficients [27]. Unlike conventional convolutional
neural networks that scale network dimensions such as width, depth, and resolution
randomly, in EfficientNet, each network dimension is scaled uniformly with a fixed scaling
coefficient. The compound scaling method has been found to improve model accuracy
and efficiency compared to traditional scaling methods. This method can determine that if
the input image is large, more layers and channels are needed to detect finer details in the
larger image.

The EfficientNet architecture is fundamentally based on the idea of a mobile inverted
bottleneck convolution. EfficientNetB0 in particular is a revision of the EfficientNet network
designed for mobile and embedded devices. EfficientNetB0 consists of 5.3 million param-
eters. In addition to the squeeze-and-excitation blocks, it also incorporates the inverted
bottleneck residual blocks used in the MobileNetV2 network. EfficientNet’s architecture
and scaling approach have shown significant improvements in performance across various
computer vision tasks, making it a popular choice for deep learning applications, especially
on resource-constrained platforms like mobile devices.

2.2.2. Feature Selection

Neighborhood component analysis (NCA) [28] is a supervised learning algorithm
employed in the classification process to select the most optimal features. This method
aims to maximize separability among different classes, i.e., it endeavors to identify the
features that best differentiate the classes from each other. The fundamental principle
of NCA is to assess how effectively each feature contributes to the separation between
classes. This evaluation is geared towards enhancing classification performance. In other
words, NCA selects the attributes that most effectively highlight the differences between
classes. The operational logic of NCA involves utilizing a feature vector for each item
or data point and optimizing these vectors to enhance classification performance. These
optimized vectors emphasize the features that assist in better distinguishing between
classes. Consequently, NCA is an approach employed for feature selection in classification
tasks, with its primary objective being the identification of attributes that optimize class
separation and improve classification performance. As a result, it enables the attainment of
superior classification outcomes.

2.2.3. Classification

Support vector machines (SVMs) [29] represent a novel technique suitable for binary
classification tasks that encompass parametric applied statistics, neural networks, and
machine learning. SVMs are a potent method for constructing classifiers, with the aim of
creating a decision boundary between two classes. They facilitate the prediction of labels
for one or more feature vectors. The fundamental concept behind SVMs is to maximize the
margin between the two classes, thereby obtaining a hyperplane. An SVM is a supervised
learning method that generates input–output mapping functions from a set of labeled



Diagnostics 2023, 13, 3317 8 of 16

training data. SVM models are closely related to artificial neural networks, and an SVM
utilizing a sigmoid kernel function is akin to a two-layer feedforward neural network. One
of the key assumptions of SVMs is that all examples in the training set are independently
and identically distributed [30]. SVMs can be applied to both classification and regression
problems. In SVM regression, the core idea is to find a linear separator function that closely
reflects the nature of the available training data, adhering to the principles of statistical
learning theory.

3. Experimental Results

The effectiveness of the provided pyramid deep feature extraction method was vali-
dated using seven different upper extremity images (elbow, finger, forearm, hand, humerus,
shoulder, and wrist) from the MURA dataset. This pyramid deep feature extraction model
was implemented using MATLAB (R2023a) software. Below, the configuration of the
desktop computer used for this process is provided. The PC utilized was equipped with
a 3.0 GHz 13th generation Intel(R) Core(TM) i9 processor and 128 GB of RAM and ran
on the Windows 11 Pro operating system. MATLAB (m) vfiles were employed to imple-
ment the recommended pyramid deep feature extraction and the NCA algorithm. The
Matlab Classification Learner Toolbox was used for classifying the results and a quadratic
support vector machine (SVM) classifier was employed to achieve the best classification
results. In this study, we first conducted a feature extraction process using 19 different
pre-trained models to determine the CNN (convolutional neural network) model that
would be used to classify images in the wrist class. These 19 pre-trained models were as
follows: Resnet18 [31], Resnet50 [31], Darknet19 [32], Mobilenetv2 [33], Darknet53 [32],
Xception [34], Efficientnetb0 [27], Shufflenet [35], Nasnetmobile [36], Nasnetlarge [36],
Densenet201 [37], Inceptionv3 [38], Inceptionresnetv2 [39], Googlenet [40], Alexnet [41],
Vgg16 [42], Vgg19 [42], and Squeezenet [43]. We then classified the extracted features using
an SVM (support vector machine) classifier. We evaluated the classification accuracy of
each model and we present these results in Figure 5. This graph helped us understand
which model performed best on the given dataset.
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Efficientnetb0 CNN network on the 40,005 images from the MURA dataset, which consists
of seven classes. The accuracy and loss curves obtained from this training are shown in
Figure 6.
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The performance results of different classifiers with the help of features obtained from
wrist images with the proposed method are compared in Figure 7. The SVM classifier
achieved higher accuracy than other classifiers.
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Figure 7. Classification results.

Subsequently, we used the end-to-end network we obtained to classify the images of
the seven classes within the MURA dataset separately, using the recommended method.
In this study, important performance metrics were employed to evaluate the success of a
model or algorithm. These metrics were calculated using confusion matrices, as shown in
Figure 8. Performance metric results for the entire dataset are tabulated in Table 1. Among
the performance metrics, accuracy, F1 score, recall, and precision were included.
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This article presents medical classification results for different body regions. The
results are detailed with various performance metrics measured for both negative and
positive classes across different regions such as the elbow, finger, forearm, hand, humerus,
shoulder, and wrist regions. The results indicate that the model demonstrates success in
accurately predicting positive results in regions with a high ability to do so (e.g., ‘wrist’ and
‘humerus’). Particularly, the ‘hand’ region is noted to have a lower capability in accurately
predicting positive results, which could have significant implications in clinical applications.
Therefore, it is recommended to enhance the model and make performance improvements
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specifically in the ‘hand’ region. These findings contribute to our understanding of the
potential and limitations of deep learning methods in radiological diagnostic applications.
Noteworthy aspects of these metrics include high recall values, which are effective in
correctly classifying the positive class and can thus make significant contributions to
clinical diagnosis and treatment planning.

Table 1. Performance metric results.

Classes Accuracy
(%)

Specificity
(%)

F1-Score
(%) Recall (%) Precision

(%)

Elbow
Negative

92.04
86.18 93.45 96.10 90.94

Positive 96.10 89.86 86.18 93.87

Finger Negative
91.19

87.45 92.88 93.53 92.24
Positive 93.53 88.44 87.45 89.45

Forearm
Negative

92.11
84.57 93.97 96.39 91.67

Positive 96.39 88.59 84.57 93.01

Hand
Negative

91.34
76.28 94.25 96.85 91.78

Positive 96.85 82.51 76.28 89.84

Humerus
Negative

91.35
88.15 92.02 94.21 89.93

Positive 94.21 90.57 88.15 93.12

Shoulder
Negative

89.49
87.81 89.70 91.14 88.31

Positive 91.14 89.26 87.81 90.75

Wrist
Negative

92.63
88.74 93.86 95.32 92.45

Positive 95.32 90.78 88.74 92.91

We achieved a classification accuracy ranging from 89.49% to 92.63% by utilizing
transfer learning-based models. To validate the effectiveness of our model, we adopted the
technique of generating heatmaps as explanatory results. Among various approaches for
obtaining such results, gradient-weighted class activation mapping (GradCAM) [44] stands
out prominently [45]. To investigate instances where our model made incorrect predictions,
we applied GradCAM to the relevant images, and one type of these instances is illustrated
in Figure 9. Based on Figure 9, it is evident that our proposed model did not effectively
focus on the region of interest (ROI). These images did not exhibit clear visual cues.
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4. Discussion

This study has introduced a novel deep feature extraction model called pyramid
deep feature extraction for the analysis of musculoskeletal radiographs. This model is
a recommended approach for classifying orthopedic images in the MURA dataset. The
proposed pyramid deep feature extraction model has proven to be successful in extracting
effective features from orthopedic images. Enabling feature extraction from images of
different dimensions provided an effective way to handle the diversity of the dataset. The
obtained results demonstrate that this approach is an effective tool for orthopedic image
classification (see Table 2).

Table 2. Comparison of our model with state-of-the-art methods.

Study Method The Results (%)

Karthik et al. [46] MSDNet CNN (Alexnet + Resnet) Accuracy: 82.69
Oh et al. [47] HyperColumn-CBAM Model-DenseNet16 Accuracy: 87.50
Lu et al. [48] Ada-ResNeSt101 Accuracy: 68.40

Liang et al. [49] DenseNet169, CapsNet, MSCNN

F1-Score Results
Finger: 79.20
Humerus: 86.20
Elbow: 84.80
Forearm: 81.40
Hand: 85.80
Shoulder: 85.70
Wrist: 96.80

Proposed model Exemplar Efficient b0, NCA, SVM

Accuracy:
Finger: 91.19
Humerus: 91.35
Elbow: 92.04
Forearm: 92.11
Hand: 91.34
Shoulder: 89.49
Wrist: 92.63

Karthik et al. [46] proposed the MSDNet, which combines features of the AlexNet
and ResNet CNN models, achieving an accuracy of 82.69%. However, they encountered
lower performance in imbalanced classes such as hand and wrist in the MURA dataset
they used in their study. Oh et al. [47] utilized 10 separate models for the identification and
classification of fractures in wrist X-ray images. By incorporating HyperColumn-CBAM
structures into the EfficientNet-B0 and DenseNet169 models, they achieved an accuracy of
87.50%. Lu et al. [48] developed a universal fracture detection system through deep CNN
methods. Initially, image enhancement techniques were applied to enhance image quality.
Subsequently, data augmentation was employed to expand the dataset’s scale. Eventu-
ally, the classification of fractured and healthy bones was performed using Ada-ResNeSt,
achieving a mean precision of 68.4%. Liang et al. [49] proposed a novel multi-network
architecture called MSCNN-GCN for the detection of musculoskeletal system abnormal-
ities. This architecture conducts the detection of abnormalities through musculoskeletal
radiographs, combining a multiscale convolutional neural network (MSCNN) with a fully
connected graph convolution network (GCN). The study obtained the following F1 score
results for different body regions: 79.20 for finger, 86.20 for humerus, 84.80 for elbow, 81.40
for forearm, 85.80 for hand, 85.70 for shoulder, and 96.80 for wrist. These results indicate the
effectiveness of the proposed approach in detecting musculoskeletal abnormalities. In this
study, we conducted a comprehensive evaluation of our proposed pyramid deep feature
extraction model in terms of its utility for medical experts. As demonstrated in Table 2,
our model exhibited superior performance compared to other models. These findings
underscore the effectiveness of the pyramid deep feature extraction model in detecting
images from the MURA dataset. Its high accuracy and performance make it a valuable tool
in the domain of disease diagnosis and analysis.
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Testing the Proposed Pyramid Deep Feature Extraction Model with an Alternative Dataset

In our study, we utilized the Kaggle dataset titled ‘Pediatric Radius Fracture’ [50] to
assess the performance of the pyramid deep feature extraction model we proposed. This
dataset consisted of two main classes: ‘fracture present’ and ‘fracture absent.’ The ‘fracture
present’ class contained a total of 121 images, while the ‘fracture absent’ class comprised
69 images. Sample images from the dataset are illustrated in Figure 10. To evaluate the
results obtained using our recommended approach, we employed a confusion matrix to
demonstrate the model’s performance, as depicted in Figure 11.
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In the scope of this study, we evaluated the performance of the pyramid deep feature
extraction model, and the results we obtained were quite promising. In the classification
process, our model achieved an accuracy rate of 95.26%, which reflects its high ability
to accurately classify the dataset. Furthermore, the F1 score was calculated as 96.27%,
indicating a balanced performance of the model in terms of both accuracy and precision.
Notably, our model exhibited an impressive recall capability in addition to precision, with
a recall rate of 95.87%, demonstrating its accurate classification of the ‘fracture present’ and
‘fracture absent’ classes. These findings indicate that our proposed method successfully
diagnosed fractures in the dataset.
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5. Conclusions

This study introduced and evaluated the pyramid deep feature extraction model for
the automatic classification of musculoskeletal radiographs. The experiments conducted
demonstrated that the proposed model can effectively classify various upper extremity
images. Furthermore, we showed that the model can be successfully used to obtain
customized classification results for different body regions. The end-to-end training process
with the pre-trained Efficientb0 CNN model enabled the accurate classification of various
upper extremity classes in the MURA dataset. This can be considered an important step
in the automatic analysis of musculoskeletal radiographs for clinical applications. The
results of this study include accuracy rates obtained for different upper extremity regions:
92.04% for elbow, 91.19% for finger, 92.11% for forearm, 91.34% for hand, 91.35% for
humerus, 89.49% for shoulder, and 92.63% for wrist. These results demonstrate that the
proposed model can successfully classify different upper extremity regions. This success
highlights its potential as an assistive tool in the automatic analysis of musculoskeletal
radiographs. Such automated analysis tools have the potential to expedite clinical diagnosis
processes and provide healthcare professionals with more precise results. In conclusion,
this study presents a deep feature extraction model that can be used for the automatic
analysis of musculoskeletal radiographs. Future research should focus on further testing
and refinement of this model in clinical applications. The integration of such technologies
into medical diagnosis and treatment processes holds the potential to enhance healthcare
services for patients. Additionally, it is anticipated that this study will be adapted to clinical
practice in the future. To accomplish this, a multicenter dataset comprising a substantial
number of diverse image classes will be assembled. Subsequently, an application suitable
for clinical use will be developed. This will enable faster and more accurate disease
diagnosis. The main limitation of our study is the instability of the number of images in the
dataset used for training the developed models.
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15. Ekmekyapar, T.; Taşcı, B. Exemplar MobileNetV2-Based Artificial Intelligence for Robust and Accurate Diagnosis of Multiple
Sclerosis. Diagnostics 2023, 13, 3030. [CrossRef]

16. Sezer, A.; Sigirci, I.O.; Sezer, H.B. Shoulder lesion classification using shape and texture features via composite kernel. In Proceed-
ings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017;
pp. 1–4.

17. Wu, H.-Z.; Yan, L.-F.; Liu, X.-Q.; Yu, Y.-Z.; Geng, Z.-J.; Wu, W.-J.; Han, C.-Q.; Guo, Y.-Q.; Gao, B.-L. The Feature Ambiguity
Mitigate Operator model helps improve bone fracture detection on X-ray radiograph. Sci. Rep. 2021, 11, 1589. [CrossRef]

18. Ma, Y.; Luo, Y. Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network. Inform.
Med. Unlocked 2021, 22, 100452. [CrossRef]

19. Gan, K.; Xu, D.; Lin, Y.; Shen, Y.; Zhang, T.; Hu, K.; Zhou, K.; Bi, M.; Pan, L.; Wu, W. Artificial intelligence detection of distal
radius fractures: A comparison between the convolutional neural network and professional assessments. Acta Orthop. 2019, 90,
394–400. [CrossRef]

20. Sezer, A.; Sezer, H.B. Capsule network-based classification of rotator cuff pathologies from MRI. Comput. Electr. Eng. 2019,
80, 106480. [CrossRef]

21. Beyaz, S.; Açıcı, K.; Sümer, E. Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm
approaches. Jt. Dis. Relat. Surg. 2020, 31, 175. [CrossRef]

22. Tobler, P.; Cyriac, J.; Kovacs, B.K.; Hofmann, V.; Sexauer, R.; Paciolla, F.; Stieltjes, B.; Amsler, F.; Hirschmann, A. AI-based detection
and classification of distal radius fractures using low-effort data labeling: Evaluation of applicability and effect of training set
size. Eur. Radiol. 2021, 31, 6816–6824. [CrossRef] [PubMed]

23. Tanzi, L.; Vezzetti, E.; Moreno, R.; Aprato, A.; Audisio, A.; Massè, A. Hierarchical fracture classification of proximal femur X-Ray
images using a multistage Deep Learning approach. Eur. J. Radiol. 2020, 133, 109373. [CrossRef]

24. Guan, B.; Zhang, G.; Yao, J.; Wang, X.; Wang, M. Arm fracture detection in X-rays based on improved deep convolutional neural
network. Comput. Electr. Eng. 2020, 81, 106530. [CrossRef]

25. Awan, M.J.; Rahim, M.S.M.; Salim, N.; Nobanee, H.; Asif, A.A.; Attiq, M.O. MGACA-Net: A novel deep learning based multi-scale
guided attention and context aggregation for localization of knee anterior cruciate ligament tears region in MRI images. PeerJ
Comput. Sci. 2023, 9, e1483. [CrossRef] [PubMed]

26. Rajpurkar, P.; Irvin, J.; Bagul, A.; Ding, D.; Duan, T.; Mehta, H.; Yang, B.; Zhu, K.; Laird, D.; Ball, R.L. Mura: Large dataset for
abnormality detection in musculoskeletal radiographs. arXiv 2017, arXiv:1712.06957.

27. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 1—15 June 2019; pp. 6105–6114.

28. Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. Adv. Neural Inf. Process. Syst.
2004, 17.

29. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13,
18–28. [CrossRef]

30. Kubat, M. Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994. Knowl. Eng. Rev. 1999, 13, 409–412.
[CrossRef]

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

32. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

33. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018;
pp. 4510–4520.

34. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

35. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018;
pp. 6848–6856.

36. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018; pp. 8697–8710.

37. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

https://doi.org/10.3111/13696998.2012.737391
https://www.ncbi.nlm.nih.gov/pubmed/23035626
https://doi.org/10.1007/s11042-023-16676-0
https://doi.org/10.3390/biomedicines11092441
https://doi.org/10.3390/diagnostics13193030
https://doi.org/10.1038/s41598-021-81236-1
https://doi.org/10.1016/j.imu.2020.100452
https://doi.org/10.1080/17453674.2019.1600125
https://doi.org/10.1016/j.compeleceng.2019.106480
https://doi.org/10.5606/ehc.2020.72163
https://doi.org/10.1007/s00330-021-07811-2
https://www.ncbi.nlm.nih.gov/pubmed/33742228
https://doi.org/10.1016/j.ejrad.2020.109373
https://doi.org/10.1016/j.compeleceng.2019.106530
https://doi.org/10.7717/peerj-cs.1483
https://www.ncbi.nlm.nih.gov/pubmed/37547408
https://doi.org/10.1109/5254.708428
https://doi.org/10.1017/S0269888998214044


Diagnostics 2023, 13, 3317 16 of 16

38. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

39. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

40. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

41. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

42. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
43. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
44. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep net-

works via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 618–626.
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