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Abstract: (1) Background: Non-invasive prostate cancer assessments using multi-parametric MRI
are essential to the reliable detection of lesions and proper management of patients. While current
guidelines call for the administration of Gadolinium-containing intravenous contrast injections,
eliminating such injections would simplify scanning and reduce patient risk and costs. However,
augmented image analysis is necessary to extract important diagnostic information from MRIs.
Purpose: This study aims to extend previous work on the signal to clutter ratio and test whether
prostate tumor eccentricity and volume are indicators of tumor aggressiveness using bi-parametric
(BP)-MRI. (2) Methods: This study retrospectively processed 42 consecutive prostate cancer patients
from the PI-CAI data collection. BP-MRIs (apparent diffusion coefficient, high b-value, and T2
images) were resized, translated, cropped, and stitched to form spatially registered BP-MRIs. The
International Society of Urological Pathology (ISUP) grade was used to judge cases of prostate
cancer as either clinically significant prostate cancer (CsPCa) (ISUP ≥ 2) or clinically insignificant
prostate cancer (CiPCa) (ISUP < 2). The Adaptive Cosine Estimator (ACE) algorithm was applied
to the BP-MRIs, followed by thresholding, and then eccentricity and volume computations, from
the labeled and blobbed detection maps. Then, univariate and multivariate linear regression fittings
of eccentricity and volume were applied to the ISUP grade. The fits were quantitatively evaluated
by computing correlation coefficients (R) and p-values. Area under the curve (AUC) and receiver
operator characteristic (ROC) curve scores were used to assess the logistic fitting to CsPCa/CiPCa.
(3) Results: Modest correlation coefficients (R) (>0.35) and AUC scores (0.70) for the linear and/or
logistic fits from the processed prostate tumor eccentricity and volume computations for the spatially
registered BP-MRIs exceeded fits using the parameters of prostate serum antigen, prostate volume,
and patient age (R~0.17). (4) Conclusions: This is the first study that applied spectral approaches to
BP-MRIs to generate tumor eccentricity and volume metrics to assess tumor aggressiveness. This
study found significant values of R and AUC (albeit below those from multi-parametric MRI) to fit
and relate the metrics to the ISUP grade and CsPCA/CiPCA, respectively.

Keywords: bi-parametric MRI; prostate cancer; spatial registration; tumor morphology; supervised
target detection; spectral analysis

1. Introduction

Accurate and reliable assessments of patients with prostate cancer are essential for
properly managing this highly prevalent and potentially lethal disease [1]. Conventionally,
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the prostate is sampled with biopsy needles [2] with the aid of an ultrasound or MRI [3]
and then processed and examined by a pathologist [4]. Biopsies are uncomfortable for the
patient and can lead to side effects such as infection, pain, and hemorrhage [5]. In addition,
possible incorrect placement of the needle [6] can lead to false negatives or underreport the
aggressiveness of the disease. To reduce the deficiencies in this approach, prostate tumor
assessments now routinely include a non-invasive multi-parametric MRI with analysis of
the images using the Prostate Imaging Reporting And Data System (PI-RADS) [7]. PI-RADS
relies on the subjective assessment of radiologists to properly identify and classify lesions.
Despite training and education, expertise varies among different radiologists [8] due to
the subjective character of the assessment. Instead, to achieve more consistent results,
quantitative approaches using an artificial intelligence (AI) program have been applied to
MRI [9]. An AI program computes textural features derived from the spatial analysis of the
outlined regions of interest denoting tumors. The AI program filters the large number of
features (hundreds to thousands) and, following training, combines them to predict which
lesions warrant a biopsy. Such an approach requires large training sets, and the results are
limited by restricted clinical conditions that govern the training sets.

More recently [10–16], a statistical spectral approach has been applied to spatially reg-
istered multi-parametric MRIs. This approach was adapted from analyzing hyperspectral
cubes, such as in remote sensing, defense and security applications, and environmen-
tal studies. Instead of a hypercube generated from dispersive lenses and push-broom
sensors, this approach resizes the MRIs to a common spatial resolution, translates them,
crops them to form a multi-spectral cube, and stitches the cubes to depict the entire three-
dimensional structure. Each voxel is a three-dimensional vector whose components are the
values in the bi-parametric MRI space (T2, ADC, High B Value). A tumor is characterized
as a three-dimensional signature vector that differs from the mean background (normal
prostate) vector. Second order statistics (co-variance matrix, mean vector) characterize the
background (normal prostate).

The earliest [10–15] spectral statistical studies examined multi-parametric MRIs of
26 prostate cancer patients from the National Institutes of Health. That data set included
the analysis of images using dynamic contrast enhancement techniques that depict the
tumor vasculature and summarize the evolution time of the contrast material. This earlier
work found that prostate tumor signatures could successfully characterize prostate tumors
and be transformed, and that the signal to clutter ratio and tumor volume correlate with the
Gleason score, which is a measure of prostate tumor aggressiveness. Similarly, the tumor
shape (eccentricity) is negatively correlated with tumor aggressiveness.

To further minimize patient discomfort, reduce the possibility of side effects, simplify
the clinical setup, minimize the scanning time [17], and reduce financial burden [18], there
is increasing interest in assessing patients using MR scans without injecting a contrast
material. This is referred to as bi-parametric MRI (BP-MRI) and is composed of T2 images
and diffusion weighted MRI scans, such as a high b-value scan and an apparent diffusion
coefficient (ADC) map [16]. Although clinically convenient, the reduction in clinical infor-
mation derived from the dynamic contrast enhancement (DCE) technique [19], specifically
with respect to tumor vasculature, is expected to reduce the predictive power of spectral
features studied in previous work. However, in the clinical realm, there is less reliance
on DCE MRI than previously [9,17,18]. In the case of signal to clutter ratio, its correlation
with tumor aggressiveness is strong and is, perhaps, sufficient. The current study examines
whether tumor volume and eccentricity is correlated with prostate tumor aggressiveness
using bi-parametric MRI.

2. Materials and Methods
2.1. Overview

Figure 1 schematically shows how this study compared metrics related to prostate
tumor aggressiveness. Specifically, the International Society of Urological Pathology (ISUP)
grade [20] clinically defines cases of prostate cancer as either clinically significant prostate
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cancer (CsPCa where ISUP = 2) or clinically insignificant prostate cancer (CiPCa where
ISUP < 2). The ISUP-defined cases of CsPCa and CiPCa were compared with metrics
(the tumor volume [11] and eccentricity [12]) derived from spatially registered BP-MRIs.
The patient BP-MRI data in this study were collected and archived as part of the PI-CAI
Challenge [21]. Pathology examinations [22] of the histopathology slides were used to
determine the ISUP grade. In the BP-MRI part [10–16], the MRI sequences, specifically the
ADC, HBV from the DWI, and T2 images were resized, finely translated, and cropped to
create a common spatial resolution and field of view. The individual cubes for each slice
were stitched together to depict the entire prostate and surrounding tissues to form a thin
hypercube. The normal prostate was manually outlined using the spatially registered hy-
percube. In-scene signatures were derived from the hypercube. The signatures and masked
normal prostate data provide input for the ACE computation [10–16]. Tumor eccentricity
and volume were fitted using a linear (logistical probability) regression analysis to the ISUP
grade (CsPCa/CiPCa), respectively. Correlation coefficients (R), p-values, the area under
the curve (AUC) and receiver operator characteristic (ROC) curve measurements [23] were
computed to evaluate the linear regression (logistic probability) fits.
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Figure 1. The schematic depicts assembly, relationship, and arrangement of spatially registered
cubes, tumor signature, and normal prostate mask input for ACE detection calculations, thresholding,
masking and prostate tumor eccentricity and volume calculations, and linear regression and logistic
probability fits. MRBx, SysBx, MRBx + SysBx, and RP were used in the PI-CAI histopathology
assessment. Direction of output data to be used as input denoted by arrows. Red arrows and box
indicate eccentricity calculations from bi-parametric MRI-based data; blue arrows and box denote
tumor volume estimate from bi-parametric MRI.

The Python 3 programming language was employed to spatially register and pro-
cess the bi-parametric data, compute the tumor volume and eccentricity, generate linear
regression fits, and determine the ROC curve, AUC, correlation coefficients, and p-values.

2.2. Study Design and Population

PI-CAI [21] archived the bi-parametric prostate tumor MRI data set. The PI-CAI pro-
vides public access to annotated multiple-center, multiple-vendor datasets of 1500 BP-MRI
exams that include clinical and acquisition variables. The histopathology techniques range
from MRI-guided biopsy (MRBx), systematic biopsy (SysBx), combined MRBX and SysBx
(MRBx + SysBx), and radical prostatectomy (RP) [22]. A subset of the 1500-patient cohort
underwent or had available biopsy results. Patients were scanned in four centers using
nine scanners manufactured by Siemens and Philips [21]. Each centers’ staff pathologists
and radiologists assessed patients at their center, independently of each other. The PI-CAI
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data compilation [21] only includes the bi-parametric MRI, specifically the ADC, HBV, and
T2 sequences.

Table 1 summarizes the clinical data for 42 consecutive patients and biopsy results
in the PI-CAI data collection. All patients had biopsy-proven adenocarcinoma of the
prostate, with a mean patient age of 65.1 years (range, 50 to 78 years), mean PSA of
13.49 ng/mL (range, 1.5 to 81.95 ng/mL), mean prostate volume mean of 60.6 cm3 (range,
19 to 192 cm3), and mean ISUP grade of 1.12 (range, 0 to 5) (Table 1). No restrictions were
placed on the tumor location within the prostate in this study. All cases were anonymized
prior to analysis.

Table 1. Summary of patient characteristics.

Clinical Features Median [Minimum, Maximum]

Age (Years) 65.14 [50.00, 78.00]

PSA Median (ng/mL) 13.49 [1.50, 81.95]

Prostate Volume Median (mL) 60.6 [19.00, 192.00]

ISUP Grade Patient #

0 17

1 14

2 5

3 3

4 1

5 2
Abbreviations: PSA: Prostate Serum Antigen; ISUP: International Society of Urological Pathology.

2.3. Spatial Registered Hypercube Assembly: MRI Components, Sequences

Structural (T2) images, DWIs, and particularly the ADC and HBV images, composed
the bi-parametric MRI data collect [21]. The PI-CAI excluded DCE images.

2.4. Spatial Registered Hypercube Assembly, Pre- Image Processing Analysis

Prior to registration, scanning parameters (spatial resolution, offsets for the scanning
setup) were read from image header files for all MRI sequences (ADC, HBV, and T2) for
each patient. All MRI images were digitally resized [10–16] to the sequence with the lowest
spatial resolution in the transverse direction. The T2 images were translated a few voxels to
the reference image (ADC and HBV) using the offsets read from the image header files. The
slices were positionally transposed to the offsets based on the known location of the axial
offsets. Finer adjustments required additional small transverse translation based on a visual
inspection of the T2 image to align with the ADC and HBV image. Stacked individual
slices were appropriately scaled, translated, and cropped so as to be spatially registered
at the voxel level and thereby constitute a “cube”. After cropping, all image sequences in
the stack shared the same field of view (FOV). The “three-dimensional” (two-dimensional
slice plus the “spectral” dimension of the spatially registered ADC, HBV, and T2 images)
cubes were subsequently “stitched” together into the narrow three-dimensional hypercube
that depicts the entire scan including the prostate. The stitching (or mosaicking) resembles
the approach employed in remote sensing applications that stitch (mosaic) large areas in
order to enhance the visual depiction of the entire imaged area and expedite the speed for
processing the high dimensional data. Spatial registration and stitching took a few seconds
to process using a Windows 10, Base Speed 2 Ghz, Cache memory 8 Gbyte machine for
each patient.

Figure 2 shows an example of a stitched spatially registered image. Figure 2 shows
three spatially registered sequences (ADC, HBV, and T2) and a color composite generated
by assigning red, green, and blue to the ADC, HBV, and T2 sequences, respectively. Spatially
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registered “cubes” were “stitched” together and abutted together in the horizontal direction
and are also shown in Figure 2. A shared zoomed-in part of the image is shown for the
ADC, HBV, T2, and composite color image. The tumor in this color scheme appears green
(low ADC, High B Value HBV, and low T2). Also, Figure 2 shows the voxels that exceed the
threshold = 0.90 for ACE along with displays of the blobbing and labeling [12] of voxels
exceeding the ACE threshold = 0.90. The computed eccentricities and volumes are listed
for every blob.
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Figure 2. Spatially registered ADC, HBV, T2, and color composite images displayed following
assignment to red, green, and blue colors, respectively. Zoomed ADC, HBV, T2, and color composite
image also shown. Tumor appears as green; bladder appears as magenta. Also shown are voxels with
ACE scores exceeding threshold = 0.90 and blobs and their eccentricity and volume computations.

2.5. Adaptive Cosine Estimator (ACE) Algorithm

Supervised target detection algorithms [10,24] peruse and classify a voxel into either
a target (prostate tumor) or background (normal prostate) based on information about
the target (tumor), specifically the tumor signature. The tumor signature S is a three-
dimensional vector whose components are intensity values from within the manifold (T2,
High B Value, ADC) that relate to the target. The background is characterized by a mean
three-dimensional vector m and covariance matrix CM (3 dimensions × 3 dimensions)
that includes the variance and accounts for correlations among the different dimensions.
The Adaptive Cosine Estimator (ACE) algorithm is one supervised target detection algo-



Diagnostics 2023, 13, 3238 6 of 14

rithm [10,24]. A multi-dimensional cone surrounding the target signature S describes the
ACE decision surface. Voxels whose ACE scores lie within the decision cone are assigned to
the target, whereas those outside the cone are assigned to the background. Appendix A.1.
offers a more detailed summary of the ACE algorithm and provides clarifying equations.

2.6. Tumor Volume Measurements, Supervised Target Detection

The ACE algorithm was applied to the spatially registered BP-MRI [11] to generate a
metric associated with the tumor volume. Voxels that lie inside the decision cone or exceed a
threshold for ACE scores were assigned to the tumor. Normal tissue was assigned to voxels
that resided outside the decision cone or had ACE scores residing below the threshold. The
number of voxels that exceeded the threshold (tumor) were counted. This sum is converted
to volume based on the MRI spatial resolution. Appendix A.2. summarizes some of the
mathematics behind the tumor volume computation. For more details, see Reference [11].

2.7. Labeling and Blob Generation

In the computer vision field, blobbing and labeling [12,25] means aggregating neigh-
boring voxels in an objective way. The blobbing is applied to a mask image or binary image
after the application of a threshold to the ACE detection image. The value of 1 or 0, or “True”
or “False”, is associated with the tumor (background) in each masked image. Blobbing is
based on whether the voxels that are associated with the tumor form an 8-pixel connected
neighborhood. Each “True” voxel peruses voxels within a given neighborhood (1 voxel
away) to see if they are also “True”. If they are “True” they are connected, collected, and
labeled as a member of a blob. Blobs smaller than <5 voxels (~10−2 mL) were filtered out.

2.8. Eccentricity Calculation

The eccentricity [12] for every labeled blob was calculated using custom software that
was coded in Python 3. After collecting a blob, the moment of inertia matrix I for the kth
blob was computed. The eigen equation was solved for the moment of inertia I and the
eigenvalues for each blob was determined. The largest eigenvalue was assigned to the
large axis lk, and the second eigenvalue was assigned to the transverse moment sk. The
eccentricity Ek for the kth blob is a normalized difference of the major axis and minor axis.
Eccentricity values Ek range from 0 (spherical shape) to 1 (line). Appendix A.3. offers a
more detailed summary of the eccentricity computation and provides clarifying equations.

2.9. Univariate and Multivariate Fitting

Using a univariate and multivariate linear regression analysis [26], one or multiple
independent variables are fitted to a single independent variable. In this study, the inde-
pendent variables correspond to the largest blob’s eccentricity and largest and average
blob’s volume generated after applying varying ACE thresholds. The dependent variable
is the ISUP grade or CsPCa. The latter is a categorical variable (binary variable or either
True or False). The fits minimize the error in a least squares calculation by finding the
optimal fitting coefficient for the independent variable. These fitting coefficients can be
applied to the independent variables to generate a fit, and then compared to actual data.
Correlation coefficients and fitted lines test the agreement of the computed p values to
assess the probability that the fit is or is not correlated. Confidence Intervals are computed
for every variable along with p values for the multivariable fit. Appendix A.4. offers a
more detailed summary of the linear regression fitting and provides clarifying equations.

2.10. Logistic Regression

A logistic regression analysis [27] fits the individual or multiple independent variables
(specifically, the processed tumor volume, tumor eccentricity, or clinical patient data) to the
dependent categorical variable, CsPCa, that takes only two values. Clinically significant
prostate cancer (CsPCa) was associated with ISUP grade ≥ 2, and clinically insignificant
prostate cancer (CiPCa) was associated with ISUP < 2. The training/test sets were randomly
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assigned among the 42 patients. The training/test sets retained a 70%/30% ratio for
1000 different random sets for all patients and generated a distribution of ROC [23] curves
and associated AUC scores. A histogram summarizing the distribution of AUC scores
was computed, along with the 2.5% and 97.5% AUC scores, in order to generate the 95%
confidence interval. The AUC scores and the 95% confidence interval from the ROC curves
assessed the fit quality.

2.11. Receiver Operator Characteristic

The receiver operator characteristic (ROC) curve [23] is a graphical way of evaluating
a binary classifier. The binary classifier in this study distinguishes CsPCa (ISUP ≥ 2)
from CiPCa (ISUP < 2). The ROC curve plots the true positive or sensitivity (probability
of accurately detecting CsPCa) against the false positive rate or 1-specificity rate, where
sensitivity corresponds to accurately detecting CiPCa. The ROC curve is a monotonically
increasing function. A way to summarize and assess the binary classifier is to compute the
area under the curve (AUC) for the ROC curve. The AUC varies from 0 (poor performance)
to 1 (perfect classifier). Appendix A.5. offers a more detailed summary of the ROC curve
considerations and provides clarifying equations.

3. Results
3.1. Univariate Fits

Figure 3 shows plots of correlation coefficients (R) (red) and p-values (blue) from the
linear regression fitting of the maximum blob volume, average blob volume, and maximum
blob eccentricity for Figure 3a–c, respectively, to the ISUP grade for 42 patients as a function
of the ACE thresholds. A higher (lower) correlation coefficient (p-value) corresponds to
high ACE thresholds (>0.90). The correlation coefficients (p-values) generally monotonically
increase (decrease) as a function of the ACE threshold. Sufficiently low p-values (<0.05) are
only observed for the ACE threshold (0.90).

Figure 3. Plot of correlation coefficients (R) (red) and p-values (blue) from linear regression fitting of
maximum blob volume (a), average blob volume (b), and maximum blob eccentricity (c) to the ISUP.

Table 2 summarizes the results of fitting the correlation coefficients (R) and p-values
from the linear regression fitting of maximum blob volume, average blob volume, and
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maximum blob eccentricity to the ISUP grade (for the denoted ACE thresholds) for
42 patients. In addition, Table 2 records the evaluation of logistic probability fits of
maximum blob volume, average blob volume, and maximum blob eccentricity to the
CsPCa (ISUP ≥ 2), namely the AUC from the ROC curves with 95% confidence intervals.
Also shown are the coefficient correlation, p-values, and AUC for the univariate (logistic
probability) fitting to the ISUP grade (CsPCa) using clinical parameters (prostate serum
antigen (PSA), prostate volume, patient age). The R, p-values, and AUC values using the
clinical parameters are lower than the better performing tumor eccentricity and volume
(ACE threshold > 0.92).

Table 2. Summary of univariate fitting.

Univariate Variable ACE Treshold R p-Value AUC [95% CI]

Ave Blob Vol (mL) 0.90 0.333 0.0313 0.641 [0.167–1.0]

Max Blob Vol (mL) 0.90 0.333 0.0313 0.892 [0.667–1.0]

Max Blob Eccentricity 0.90 0.145 0.358 0.466 [0.0–0.917]

Ave Blob Vol (mL) 0.92 0.393 0.010 0.641 [0.167–1.0]

Max Blob Vol (mL) 0.92 0.348 0.0238 0.959 [0.80–1.0]

Max Blob Eccentricity 0.92 0.100 0.525 0.500 [0–0.917]

Ave Blob Vol (mL) 0.94 0.419 0.00712 0.701 [0.333–1.0]

Max Blob Vol (mL) 0.94 0.371 0.0185 0.949 [0.778–1.0]

Max Blob Eccentricity 0.94 0.402 0.0102 0.896 [0.630–1.0]

Ave Blob Vol (mL) 0.96 0.390 0.0171 0.0 [0.0–0.0]

Max Blob Vol (mL) 0.96 0.396 0.0152 0.364 [0.091–0.636]

Max Blob Eccentricity 0.96 0.354 0.0315 0.443 [0.125–0.727]

Age (Years) NA 0.045 0.778 0.450 [0.182–0.75]

PSA (nG/mL) NA 0.153 0.339 0.418 [0.0–0.909]

Prostate Volume (mL) NA 0.174 0.271 0.464 [0.167–0.767]
Abbreviations: Max Blob eccentricity: Maximum Blob Eccentricity, Max Blob Vol: Maximum Blob Volume,
Ave Blob Vol: Average Blob Volume, PSA: prostate serum antigen, R: Correlation Coefficient, AUC: Area Under
the Curve, CI: 95% Confidence Interval, mL: milliliter, nG/mL: nanograms per milliliter.

Figure 4 plots the correlation coefficients (red) and p-values (blue) against the fitted
slopes from fitting the maximum blob eccentricity to the ISUP grade. The steeper the
slope, the higher (lower) the correlation coefficient (p-value) and further confirming that
maximum blob eccentricity is negatively correlated with tumor aggressiveness.
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3.2. Multivariate Fits

Figure 5 is one example showing the multivariate fitting (in this case maximum blob
eccentricity and average blob volume using ACE Threshold = 0.94) to the ISUP grade.
A straight line depicts the linear fit.

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

Coefficient, AUC: Area Under the Curve, CI: 95% Confidence Interval, mL: milliliter, nG/mL: 

nanograms per milliliter. 

Figure 4 plots the correlation coefficients (red) and p-values (blue) against the fi�ed 

slopes from fi�ing the maximum blob eccentricity to the ISUP grade. The steeper the slope, 

the higher (lower) the correlation coefficient (p-value) and further confirming that 

maximum blob eccentricity is negatively correlated with tumor aggressiveness. 

 

Figure 4. Plot of correlation coefficient (red) and p-values (blue) against the fi�ed slops from fi�ing 

the maximum blob eccentricity to ISUP grade. 

3.2. Multivariate Fits 

Figure 5 is one example showing the multivariate fi�ing (in this case maximum blob 

eccentricity and average blob volume using ACE Threshold = 0.94) to the ISUP grade. A 

straight line depicts the linear fit. 

 

Figure 5. Multivariate fi�ing (maximum blob eccentricity and average blob volume using ACE 

Threshold = 0.94) to ISUP grade. Straight line depicts the linear fit. 

Table 3 summarizes multivariate (logistic probability) fits of tumor eccentricity and 

tumor volume to the ISUP grade (CsPCa) for ACE thresholds of 0.90 to 0.96. Correlation 

coefficients (R1, R2, R12) and associated p-values are shown. The AUC scores with a 95% 

confidence interval for the multivariate logistic probability fits to CsPCa are shown. 

Figure 5. Multivariate fitting (maximum blob eccentricity and average blob volume using ACE
Threshold = 0.94) to ISUP grade. Straight line depicts the linear fit.

Table 3 summarizes multivariate (logistic probability) fits of tumor eccentricity and
tumor volume to the ISUP grade (CsPCa) for ACE thresholds of 0.90 to 0.96. Correlation
coefficients (R1, R2, R12) and associated p-values are shown. The AUC scores with a
95% confidence interval for the multivariate logistic probability fits to CsPCa are shown.
Combining the tumor eccentricity and volume in the fitting routine results in larger (smaller)
correlation coefficients (p values) relative to univariate fits (Table 2).

Table 3. Summary of multivariate (logistic probability) fits of tumor eccentricity and tumor volume
to ISUP grade (CsPCa).

ACE Threshold Independent
Variable 1 R1 (p Value) Independent

Variable 2 R2 (p Value)
R12

(F-Statistic
Probability)

AUC
[95% CI]

0.90 Max Blob
Eccentricity −0.145 (0.303)

Average
Blob

Volume
0.333 (0.029) 0.367 (0.0593) 0.542

[0.250–0.833]

0.90 Max Blob
Eccentricity −0.145 (0.551) Max Blob

Volume 0.333 (0.044) 0.345 (0.0847) 0.869
[0.636–1.0]

0.92 Max Blob
Eccentricity −0.101 (0.646)

Average
Blob

Volume
0.393 (0.0102) 0.399 (0.034) 0.640

[0.182–1.0]

0.92 Max Blob
Eccentricity −0.101 (0.780) Max Blob

Volume 0.348 (0.0310) 0.351 (0.0772) 0.959
[0.80–1.0]

0.94 Max Blob
Eccentricity −0.402 (0.028)

Average
Blob

Volume
0.419 (0.0190) 0.528 (0.0024) 0.896

[0.625–1.0]

0.94 Max Blob
Eccentricity −0.402 (0.037) Max Blob

Volume 0.371 (0.068) 0.484
(0.00716)

0.949
[0.778–1.0]

0.96 Max Blob
Eccentricity −0.354 (0.019)

Average
Blob

Volume
0.390 (0.011) 0.530

(0.00372) 0.084 [0–0.3]

0.96 Max Blob
Eccentricity −0.354 (0.018) Max Blob

Volume 0.396 (0.009) 0.536 (0.0032) 0.448
[0.182–0.727]

Abbreviations: Max Blob eccentricity: Maximum Blob Eccentricity, Max Blob Vol: Maximum Blob Volume,
Ave Blob Vol: Average Blob Volume, PSA: prostate serum antigen, R1: Correlation Coefficient for Independent
variable 1, R12: Correlation Coefficient for multivariate fit, AUC: Area Under the Curve, CI: 95% Confidence
Interval, mL: milliliter, nG/mL: nanograms per milliliter.
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4. Discussion

This study examined the relationship between prostate tumor eccentricity and volume
derived from supervised target detection algorithms applied to spatially registered bi-
parametric MRI, and tumor aggressiveness. There is a correlation (R~0.30, p < 0.05) between
the largest blob’s eccentricity and volume as well as the average blob volume, and the ISUP
grade. Similarly, the same features used to predict CsPCA resulted in an AUC score of
~0.70. These correlation coefficients and AUC scores are lower than those using the signal
to clutter ratio, which were previously [16] applied to the same data set (R~0.5, AUC~1.0),
but better than from conventional clinical variables (PSA, prostate volume, age). The R
and AUC scores are also lower for bi-parametric MRI relative to the values found from
analyzing MRIs [13] that included dynamic contrast enhancement.

The lower correlation coefficients and AUC scores for the ISUP grade and CsPCA
multivariate and logistic regression fitting in the bi-parametric MRI study, relative to the
earlier MP-MRI study [13], indicates that the images derived from the dynamic contrast
enhancement technique actually play a crucial role in delineating the tumor. It appears
that the vasculature provides important information regarding the tumor shape. Previous
studies of eccentricity [12] and volume [11] used seven components, versus the present
study that used only three. This reduction in the number of dimensions means a lower
signal to clutter ratio and possibly a reduced discrimination and depiction of the prostate
tumor eccentricity and volume.

Although the correlation of eccentricity with tumor aggressiveness is lower for the
spatially registered bi-parametric MRI, it is nonetheless negative. That is, the more spherical
the maximum blob eccentricity, the more aggressive the prostate tumor. Figure 3 shows
that the higher (lower) the correlation coefficient (p-value), the more negative the slope
was in the univariate fitting. Other studies [28] that employ artificial intelligence have
found that shape features are negatively correlated with tumor aggressiveness. Previous
work [12] found that eccentricity, derived from a quantitative analysis of tumors outlined by
pathologists for stained wholemount prostatectomy slides, negatively correlated with the
Gleason score. As was previously noted, prostate tumors are usually adenocarcinomas in
the prostate. Similarly, other morphology studies found that adenocarcinomas in breast [29]
and lung tissues [30,31] showed that eccentricity negatively correlated with grade.

This manuscript only reports a subset of calculations that were performed for tumor
eccentricity and volume. Additional calculations were generated, such as weighted ec-
centricity, average eccentricity, and total volume. However, these additional calculations
correlated poorly with ISUP grade, unlike the calculations for the MP-MRI, and were,
therefore, not reported in this manuscript. Similarly, additional processing for the ACE
computation, such as removing noisy principal components and regularizing the covari-
ance matrix, failed to achieve high correlation with the ISUP grade and CSPCa, unlike
earlier studies that employed these covariance matrix enhancements to elevate the signal
to clutter ratio connection [13,14,16].

The determination of the appropriate threshold for ACE detection is an important
parameter for applying the masks required in the labeling and blobbing operations [11,12]
and, therefore, also for tumor eccentricity [12] and volume calculations [11]. By computing
the correlation coefficients from the linear regression analysis with the ISUP grade using
varying thresholds, the threshold that resulted in the highest correlation coefficient denoted
the optimal threshold. It should be observed that the optimal thresholds (~0.90) for bi-
parametric MRI were considerably higher than the previously observed optimal threshold
(~0.60) for the MP-MRI [11,12].

To assess the relationship between tumor eccentricity and volume to tumor ag-
gressiveness, this study only reported computations of correlation coefficients (R, R12),
p-values, F-statistic probabilities, AUC scores, and the 95% confidence intervals. Previous
work [12–14] on evaluations of prostate cancer patients who were scanned using multi-
parametric MRI that included the DCE technique, reported more extensive computations,
such as student t-values (with 95% confidence intervals), fitting coefficients (with 95% con-
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fidence intervals), D’Agostino–Pearson Omnibus residual normality tests, Shapiro–Wilks
residual normality tests, Brausch–Pagan F-values and their p-values. The added computa-
tions in previous work [12–14] confirmed the conclusions derived from those inferred from
the correlation coefficient p-values alone and added little value to the manuscript. Similarly,
although they were computed but not reported in this paper, the additional assessments did
not alter the essential conclusions. Not reporting these additional assessments simplified
the discussion.

While this study is the first of its kind, it is not without limitations. This work only
analyzed a limited number of patients. Consecutive patients from the database were
processed in an attempt to minimize bias. Nevertheless, this work should be treated as
a pilot study. Additionally, this study did not apply an AI algorithm to the same patient
cohort, which means that questions of the relative merits of spectral approaches vs. AI
approaches are valid, and therefore could be the subject of future studies.

5. Conclusions

In the first study to date on spatially registered BP-MRI, tumor eccentricity and
volume was found to correlate with tumor aggressiveness, although the correlation co-
efficients and AUC scores were lower than those using tumor eccentricity and volume
for multi-parametric MRI (that included the dynamic contrast enhancement technique),
higher than using conventional clinical variables, and lower than applying the signal to
clutter ratio to BP-MRI.
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Appendix A

Appendix A.1 Adaptive Cosine Estimator (ACE)

The multispectral Supervised Target Detection (STDA) methods [10–12,24], specif-
ically the Adaptive Cosine Estimator (ACE) algorithm (Equation (A1)), was applied to
spatially registered BP-MRI. The ACE algorithm employs in-scene multispectral tumor
signatures. S, the target (tumor) signature, is a 3-component vector (T2, ADC, High-B Value,
see References [10–12,24]). S, the in-scene tumor signature, is selected from green voxels
in a three-color display of the spatially-registered BP-MRI (red is ADC, green is High-
B Value, blue is T2) [10–12,16,24]. The S vector, with the component Sq, is the mean of
the T target vector-voxels xp.q summed over p target voxels (identified as green in the
composite color image) (Equation (A1)). The signature S is substituted into the ACE
algorithm (Equation (A1)). The m vector is the background (normal prostate) 3-component
vector. CM is the background covariance (3 × 3) matrix. Digital outlining of the normal
prostate for all relevant slices on the spatially-registered BP-MRI [10–12,16,24] delineates a
restrictive mask identifying the background voxels needed for m and CM computations.
The ACE (xi) value at each voxel xi is given by Equation (A1).

Sq =
1
T

T

∑
p=1

xp.q, ACE(xi) =
(S − m)TCM−1(xi − m)√

[(S − m)TCM−1(S − m)][(xi − m)TCM−1(xi − m)]
(A1)

https://pi-cai.grand-challenge.org/
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ACE (xi) is the “whitened” cosine between the “whitened” test vector xi for voxel i
and the “whitened” target signature S (Equation (A1)) [10,24]. The ACE (xi) value identifies
whether xi is tumor or normal prostate tissue. The ACE algorithm employs the conical
hyperspace decision surface to assess whether a voxel xi is a normal prostate or background
(large angle, small cosine) or tumor or target (small angle or large cosine). The ACE scores
range from −1.0 to 1.0. The identification of the voxel is set by the detection threshold given
by the user based on previously examined data, such as optimal correlation with a grade.

Appendix A.2 Eccentricity Calculation

Custom software (written in Python 3) computed the eccentricity and volume [12] for
every labeled blob. Eigenvalues were computed from solving the eigenvalue equation for
the two-dimensional moment of inertia I (Equation (A2)) and the standard defined matrix
components Ixx, Iyy, Ixy, and Iyx. [32]

I =
(

Ixx Ixy
Iyx Iyy

)
(A2)

Eccentricity uses the largest axis Lk and transverse moments Sk are eigenvalues from
the moment of inertia matrix I for the kth blob. The eccentricity Ek for the kth blob with a
major axis Lk and minor axis Sk is given by (Equation (A3)).

Ek =
Lk − Sk
Lk + Sk

(A3)

Eccentricity values Ek range from 0 < Ek < 1. A spherical shape has an eccentricity Ek
of 0; a line has an eccentricity Ek of 1.

Appendix A.3 Tumor Volume Measurements, Supervised Target Detection

Previous work [11] described the procedure for estimating tumor volume using the
supervised target detection algorithm or ACE algorithm. A threshold is applied to the ACE
map (see Appendix A.1.). Voxels that exceed a threshold for the ACE scores are identified
as a tumor, and normal tissues are identified by ACE scores falling below the threshold.
The current study employed higher thresholds (>0.85) relative to an earlier study [11]
that used thresholds ranging from 0.40 to 0.85 in 0.05 increments and found that 0.65 was
optimal. The number voxels N within the kth blob exceeding the threshold were counted
and converted to tumor volume Vk (Equation (A4)) based on the MRI spatial resolution
(~1.5 mm × ~1.5 mm) and slice separation (3 mm), resulting in a voxel volume (r~0.01 mL).

Vk = rN = r
N

∑
i=1

xi
abs(xi)

. (A4)

Appendix A.4 Univariate and Multivariate Fitting

The ISUP grade was determined through a pathological assessment of histology
slides from a biopsy. The ISUP grades were fitted individually through a linear regression
analysis with eccentricity (Ecc) or volume (Vol). The dependent variable, the ISUP grade, is
univariately [14,15,26] linearly related to the independent measurements Ecc and Vol, i.e.:

ISUP = bconst + bEccEcc + ε (A5)

ISUP = bconst + bVolVol + ε . (A6)

Optimal coefficients bconst, bEcc, and bVol or constants, eccentricity coefficients, and
volume coefficients, respectively, were chosen by minimizing the error e through the least
squares formulation. In this study, Ecc includes eccentricity from the largest blob. The
analysis filters out contributions from blobs smaller than 5 voxels (~10−2 mL) due to spatial
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registration errors inducing spurious detections. Vol or volume in this study includes the
total tumor blob volume, average blob volume, and maximum blob volume. The fitness
and probability that the fit departs from the null fit were assessed by computing the Pearson
correlation coefficient R and p-value, respectively.

Specifically, the data tables only cite the Pearson correlation coefficient R, p-value,
F-value and affiliated p-value.

In addition to univariate fits, a multivariate fit was applied to the ISUP grade, eccen-
tricity, and volume measurements, i.e.:

ISUP = bconst + bEccEcc + bVolVol + ε (A7)

Appendix A.5 Receiver Operator Characteristic

The receiver operator characteristic curve characterizes [16,23] the binary classifier
performance. The ROC curve plots the probability of target detection (or sensitivity)
against the false alarm probability (or 1-specificity) for all threshold settings. In addition, a
classifier’s accuracy can be evaluated by comparing the multivariable logistic regression
fits with the pathologist’s CsPCA/CiPCa findings for each patient.

The vertical axis of the ROC curve (sensitivity) assesses the accuracy of identifying
patients with clinically significant prostate cancer (CsPCa) by the logistic regression for a
given threshold. The horizontal axis of the ROC curve (false alarm probability, 1-specificity)
shows the relative accuracy of correctly identifying the patient’s status of clinically in-
significant prostate cancer (CiPCa) for a given probability threshold. The ROC curve
monotonically increases. Hypothetically, the best ROC curve value would be 100% target
detection and 0% false alarm probability residing in the upper left corner for the ROC curve.
The area under the curve (AUC) assesses the classifier where 0 < AUC < 1 and AUC = 0
(poor performance) and AUC = 1 (optimal performance).
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