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Abstract: Introduction: A deep learning algorithm to quantify steatosis from ultrasound images may
change a subjective diagnosis to objective quantification. We evaluate this algorithm in patients with
weight changes. Materials and Methods: Patients (N = 101) who experienced weight changes ≥ 5%
were selected for the study, using serial ultrasound studies retrospectively collected from 2013 to
2021. After applying our exclusion criteria, 74 patients from 239 studies were included. We classified
images into four scanning views and applied the algorithm. Mean values from 3–5 images in each
group were used for the results and correlated against weight changes. Results: Images from the
left lobe (G1) in 45 patients, right intercostal view (G2) in 67 patients, and subcostal view (G4) in
46 patients were collected. In a head-to-head comparison, G1 versus G2 or G2 versus G4 views
showed identical steatosis scores (R2 > 0.86, p < 0.001). The body weight and steatosis scores were
significantly correlated (R2 = 0.62, p < 0.001). Significant differences in steatosis scores between
the highest and lowest body weight timepoints were found (p < 0.001). Men showed a higher
liver steatosis/BMI ratio than women (p = 0.026). Conclusions: The best scanning conditions are
3–5 images from the right intercostal view. The algorithm objectively quantified liver steatosis, which
correlated with body weight changes and gender.

Keywords: quantitative ultrasound; liver steatosis; weight changes; artificial intelligent; deep learning

1. Introduction

After successful global hepatitis B vaccination programs and direct anti-hepatitis C vi-
ral regimens, both hepatitis B and hepatitis C diseases declined significantly. Non-alcoholic
fatty liver disease (NAFLD) is becoming the leading cause of diffuse liver disease [1]. The
gold standard for diagnosing liver steatosis remains liver histology studies. Magnetic reso-
nance imaging proton density fat fraction (MRI-PDFF) is also accepted as a non-invasive
gold standard alternative [2,3]. However, MRI is quite expensive. The 2D ultrasound
(US) is widely used as the first-line diagnostic modality for liver diseases. It may also
detect liver steatosis. Unfortunately, the US diagnosis of liver steatosis or fibrosis is quite
subjective. Several non-invasive quantitative ultrasounds (QUS) have been developed with
increasing popularity [4]. These include control attenuation parameters [5], attenuation
imaging [6], ultrasound-guided attenuation parameters [7], tissue attenuation imaging
(TAI), tissue scatter-distribution imaging (TSI) [8], and sound speed estimation [9]. Even so,
these modalities need specialized equipment that is not always available. Each modality
has its own diagnostic condition and is difficult to exchange or compare. Another direction
is to apply machine learning on standard 2D B mode US to quantify liver steatosis [10–16].
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Using deep learning (DL) on a big data US cohort, we developed an algorithm that can
quantify liver steatosis from US images [10]. This modality has advantages over other
QUS in that it does not need an area of interest, can be applied to US images acquired
from standard scanners, and can learn from images collected in either retrospective or
prospective studies.

A limitation of the previous study was that it was evaluated only on patients with
gold-standard biopsies [10], introducing a selection bias in the test cohort. Gaining reliable
gold standards from a broader population is difficult due to the invasiveness or expense of
the measures. However, it is established that liver steatosis is positively correlated with
body weight [17] and can act as a “silver standard”. Therefore, we evaluate our algorithm
on a longitudinal cohort of patients who underwent body weight changes to measure how
well our algorithm correlates with these changes over time.

2. Materials and Methods

This study was approved by the Institutional Review Board (IRB) of the Chang Gung
Medical Foundation (CGMH IRB No. 201801283B0 and 202200758B0). The informed
consent was waived by IRB because this is a retrospective study.

2.1. Patients

Our retrospective cohort included patients undergoing long-term surveillance for
chronic liver disease at the Chang Gun Memorial Hospital outpatient department. Among
them, patients with a history of weight changes greater or equal to 5% between June 2018
and December 2020 were enrolled in this study. A 5% weight change will decrease hepatic
steatosis significantly [18]. The corresponding sequential 2D ultrasound studies between
2013 to 2021 were collected. Two hepatologists (D Tai and T Hsu) with over 20 years of
experience assessed images and excluded those of poor quality. Those studies without body
weight records or those recorded as dual images were also excluded. Patients with only one
single eligible study were also excluded. During the exclusion process, some patients may
have weight changes of less than 5% at the timepoints with available ultrasound studies.
Therefore, the whole series will be categorized into weight change greater than or equal to
5%, or lower than 5% groups.

2.2. Image Views

Eligible images were classified into 4 view groups according to the scanning view as
detailed in our previous work [10], except with a slight modification. Briefly, view group 1
(G1) includes images of the left hepatic lobe scanned with either vertical or horizontal
views; view group 2 (G2) includes images of the right hepatic lobe scanned at the intercostal
space; view group 3 (G3) includes images focused on liver/kidney contrast scanned with
either intercostal or subcostal views; and view group 4 (G4) includes images with subcostal
view. The only difference with the previous study is that subcostal scans with liver/kidney
contrast are not included in G4.

2.3. Preparation and Reading of Images

Selected US images were first preprocessed to remove any image regions outside
of the actual scan area, excluding personal identification, brand of machine, and study
information [10]. After converting the images into PNG files, images were read by our
established steatosis deep learning algorithm [10], which we summarize below. Our
algorithm was trained on the largest and most diverse cohort of ultrasound images to
date for steatosis quantification, totaling 2899 patients and 200,654 images acquired across
13 different scanners. Images were retrospectively mined from the picture archiving and
communication system of the Chang Gung Memorial Hospital and came accompanied by
steatosis assessments produced from ultrasound readings during routine clinical care. The
selection criterion was those patients who received elastography between 2011 and 2018.
As backbone, our algorithm used ResNet18 [19] and was trained using an ordinal loss [20].
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Once trained, the algorithm can provide a continuous steatosis severity score for an image
ranging from 0 to 1, otherwise known as its image-wise score. The algorithm was validated
(N = 147) and tested (N = 112) on histology-proven cases, demonstrating area under the
curves of the receiver operating characteristic curve to classify mild, moderate, and severe
steatosis grades of 0.85, 0.91, and 0.93, respectively. More details can be found in Li et al. [10],
including additional analyses on the algorithm’s repeatability across scanner types.

2.4. Ultrasound Steatosis Score

In our previous study [10], special care was taken to examine how many images in
each view group could produce stable and reproducible data. We found that 3–5 images
may provide a max repeatability coefficient lower than 0.3, except for group 3 (Table 1).
Therefore, the view group scores were defined as the mean of 3–5 image-wise scores for
each view group. Groups with less than 3 images in each study were excluded. Each study
should have at least one group with ≥3 eligible images.

Table 1. The max repeatability coefficient in different numbers of images is tabulated across different
view groups.

Group 1 Image 2 Images 3 Images 4 Images 5 Images

1 0.4614
(0.4210, 0.5078)

0.3263
(0.2957, 0.3552)

0.2664
(0.2397, 0.2934)

0.2307
(0.2089, 0.2555)

0.2064
(0.1874, 0.2259)

2 0.3665
(0.3385, 0.3942)

0.2592
(0.2381, 0.2797)

0.2116
(0.1955, 0.2298)

0.1833
(0.1697, 0.1996)

0.1639
(0.1508, 0.1763)

3 0.5264
(0.4711, 0.5814)

0.3722
(0.3292, 0.4135)

0.3039
(0.2717, 0.3393)

0.2632
(0.2350, 0.2906)

0.2354
(0.2117, 0.2596)

4 0.4583
(0.4150, 0.5029)

0.3240
(0.2945, 0.3587)

0.2646
(0.2361, 0.2920)

0.2291
(0.2067, 0.2547)

0.2049
(0.1833, 0.2267)

Parentheses enclose bootstrapped 95% confidence intervals.

Although our prior work derived a steatosis score for each view group [10], for this
analysis we must give every study a single diagnostic result. Thus, we defined a protocol
as follows. Because steatosis scores from the G2 view were the most accurate [10], we
selected the G2 view preferentially. We fall back to G1 or G4 views if the G2 view data is not
available. To choose between G1 or G4 views, we select those with the largest view of the
liver parenchyma and the best image quality. This protocol can be followed prospectively.
For our retrospective cohort, we applied this protocol blind to the DL steatosis score, weight
changes, or any other clinical information. We exclude G3 images from our protocol, as
these are not collected in sufficient quantity in our practice.

2.5. Statistical Analysis

Patient characteristics were represented as the number and percentage, or the mean ±
standard deviation (SD) or standard error of mean (SEM), as appropriate. When measuring
correlation for serial studies, with repeated measures for each patient, standard correlation
measures are not appropriate since they assume independence of error between each ob-
servation [21]. Instead, we calculated the repeated measures correlation between patient
weights and steatosis scores with the Pingouin Python library [22]. Differences between
high and low body weight stages were performed by paired t-tests. Categorical variables
were tested using the Chi-square test. Except for the repeated measures correlation, statisti-
cal analyses were performed using the SPSS software (version 22; SPSS Inc., Chicago, IL,
USA), and a p-value of <0.05 was judged as statistically significant.
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3. Results
3.1. View Groups of the Study

Among 101 patients enrolled, 74 patients had adequate images (a total of 2393 images
in 239 studies), body weight information, and at least two US studies (mean 3.2, range
2–7 studies/cases). The view groups included in this analysis are shown in Figure 1. G2
had the most eligible cases (67 cases, 184 studies), followed by G1 (45 cases, 116 studies) and
G4 (46 cases, 115 studies). G3 had the lowest number of eligible cases (19 cases, 45 studies).
The demographics of the study patients are shown in Table 2. Note, even though all patients
must have ≥5% weight change in the study period, the removal of studies without enough
adequate images can also remove high or low recorded weight timepoints. Thus, after this
purging, patients can now have <5% (n = 13) and ≥5% (n = 61) weight changes associated
with included imaging studies and corresponding timepoints.

Figure 1. Flowchart.

Table 2. Demography.

Category Number (%) or Mean ± SD

Total No. 74
Gender

Male 48 (64.9%)
Female 26 (35.1%)

Etiology
NBNC 26 (35.1%)
HBV 43 (58.1%)
HCV 4 (5.4%)
Alcoholic 1 (1.4%)

Age (year) 51.74 ± 9.85
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Table 2. Cont.

Category Number (%) or Mean ± SD

Initial body height (cm) 165.88 ± 7.88
Initial body weight (kg) 80.74 ± 12.12
Initial AST (U/L) 33.34 ± 18.58
Initial ALT (U/L) 39.90 ± 31.77
Initial total cholesterol (mg) 204.72 ± 58.49
Initial triglyceride (mg) 202.56 ± 141.51

3.2. Head-to-Head Comparison of Steatosis Scores between Two Groups in the Same Patient

To understand the difference between groups of the same patient, we collected patients
that had both G1 and G2 or G2 and G4 images available. Paired t-test studies showed
no significant differences in steatosis scores (Table 3). Correlation studies show a high
correlation between steatosis scores of the same patient across groups (Figure 2. G1 vs.
G2: R2 = 0.86, p < 0.001; G2 vs. G4: R2 = 0.88, p < 0.001).

Table 3. Head-to-head comparison of steatosis scores between view groups.

Image View Study No.
Steatosis Score

Mean SD SEM p Value

G1 99 0.481 0.312 0.031 0.377
G2 99 0.491 0.297 0.030

G2 89 0.441 0.289 0.031 0.357
G4 89 0.431 0.286 0.030

Figure 2. Correlation of steatosis scores between US view groups on the same patient. Left G1 vs. G2
view (R2 = 0.86, p < 0.001); Right G1 vs. G4 view (R2 = 0.88, p < 0.001).

3.3. Correlation between Body Weight and Steatosis Score

This cohort included sequential studies. An example of sequential G2 US images of a
patient is shown in Figure 3. Steatosis scores from 2D ultrasound studies with different
scanners at different timepoints are shown in this figure.

For the whole series, using our study-wise protocol detailed above, 67 patients had
sufficient G2 views. For the remainder, we used their G1 or G4 views, as per our proto-
col. The repeated measures correlation between body weight and steatosis score in all
74 patients is shown in Figure 4. The correlation is quite good (R2 = 0.62, p < 0.001; 0.50–0.72
95% confidence intervals).
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Figure 3. Demonstration of body weight and steatosis score changes by sequential G2 images in a
patient. Different scanners were used at different timepoints. A significant decrease in steatosis scores
between highest and lowest weight points can be found. One should note that the lowest steatosis
score occurred at the beginning of weight change from 99 kg to 93 kg.

Figure 4. Repeated measures correlation of body weight and DL steatosis scores in the whole series.
The analysis was based on data from G2 images. When G2 images are not available, G1 or G4 data
with best quality will be added to the analysis. A positive correlation trend is found between weight
and steatosis score (N = 74, R2 = 0.62; 0.50–0.72 95% CI intervals, p < 0.001). Each color represents a
different patient.

For further analysis, we selected the highest or lowest body weight timepoints among
the sequential studies on the same patients. By using the single result of each study, we
compared steatosis scores between high body weight and low body weight timepoints
(Figure 5). We found that both patients with <5% (p < 0.001) and ≥5% (p = 0.014) weight
changes showed significant differences in steatosis scores between body weight timepoints.
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Figure 5. Mean steatosis scores during body weight changes. The highest and lowest body weight
stages were determined for each patient. Sixty-one patients had maximal weight differences greater
than 5% body weight and thirteen patients had weight differences lower than 5%. A significant mean
DL steatosis score difference between highest (p < 0.001) and lowest weight timepoints (0.014) can be
found in both groups.

3.4. Differences in Steatosis Scores across Gender Differences

Gender differences in liver steatosis in high or low body weight stages are shown in
Table 4. In the high body weight timepoints, mean steatosis scores were higher in males, but
with no statistical significance. However, the body mass index (BMI) was higher in females.
After dividing the steatosis score by BMI, the difference between males and females is
statistically significant (p = 0.026). Similar situations were present in the low body weight
timepoints, but with no statistical significance.

Table 4. Gender differences on liver steatosis in studies of G2 view groups.

Body Weight
Timepoints Category Gender No Mean SD SEM p Value

High Steatosis
score

M 48 0.6458 0.2573 0.0371 0.173
F 26 0.5598 0.2560 0.0502

BMI
M 48 28.6137 3.3424 0.4824 0.071
F 26 30.7566 5.3240 1.0441

Steatosis
score/BMI

M 48 0.0223 0.0084 0.0012 0.026
F 26 0.0179 0.0073 0.0014
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Table 4. Cont.

Body Weight
Timepoints Category Gender No Mean SD SEM p Value

Low Steatosis
score

M 48 0.3985 0.2847 0.0411 0.307
F 26 0.3307 0.2417 0.0474

BMI
M 48 26.0044 3.1512 0.4548 0.267
F 26 27.0644 4.9994 0.9805

Steatosis
score/BMI

M 48 0.0149 0.0100 0.0014 0.112
F 26 0.0116 0.0074 0.0014

BMI: body mass index.

3.5. Brands of Ultrasound Scanners Used in Different Viewpoints

Five brands of scanners were used in this study (Table 5). The main scanners were
Toshiba TUS-A300 (62%) and Philips iU22 (32.4%).

Table 5. Brands of ultrasound scanners used from different viewpoints.

View
Groups

Brands

Aloka
SSD 5500

Hitachi
Preirus

Philips
iU22

Siemens
S2000

Toshiba
TUS-A300 Total

1 0 2 32 1 81 116
2 5 6 59 3 110 184
3 0 0 13 1 31 45
4 0 5 45 3 63 115

Total (%) 5 (1.1) 13 (2.8) 149 (32.4) 8 (1.7) 285 (62.0) (100) 460

4. Discussion

The steatosis scores quantified from retrospectively collected 2D ultrasound images
showed a significant correlation with body weight changes (Figures 4 and 5). These
findings provide further important validation that our DL algorithm can be used as
an objective quantification of steatosis from 2D ultrasound images [10]. Importantly,
the current validation does not have the selection bias of populations with biopsy or
MRI-PDFF measurements.

Weight loss induced by lifestyle changes may reduce nonalcoholic steatohepatitis [23].
Covarrubias et al. report an interesting long-term liver and pancreas fat quantification
study during a weight-loss surgery program [24]. Nine histology-proven liver steatosis
patients were followed up prospectively in a 16-month period after bariatric surgery. They
received an MRI-PDFF study during each visit. In the four to five successful MRI-PDFF
studies, both liver and pancreas fat fractions decreased in accordance with weight loss. Our
retrospective US study included 74 cases. Each case received two to seven qualified 2D US
studies. These US studies were not quantitative US. However, our previously established
deep learning algorithm, learning from a big data cohort of 2D US images and validated
and tested in histology-proven cases [10], made the objective quantitative analysis of this
study possible.

Many quantitative US studies using artificial intelligence algorithms developed by
2D ultrasound have been reported [16]. Most of the studies use a single US machine. This
strategy may produce lower variations but also severely limit its clinical use. As discussed
in our prior work, our algorithm was trained on 13 different scanner models and reports
percentage agreement numbers between scanners of 92% or higher. Additionally, most US
artificial intelligence studies use a single viewpoint, with a handful of exceptions that use
multiple views [14,25,26]. Our algorithm can handle multiple views. These study design
choices gave us the opportunity to conduct further retrospective studies, such as this one,
that incorporate different scanners (Figure 3) and viewpoints, which allows for a much
more flexible and representative data collection strategy.
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Different from CT or MRI images, most US operators acquired images without a
standardized format. To minimize potential variations, we systematically classified 2D
ultrasound images into 4 groups according to the scanning positions [10]. We found that
an adequate number of 3–5 images of the right intercostal space can be obtained from this
retrospective study (Figure 1, G2, 67 cases, 184 studies). Similar images were taken from
G1 (45 cases, 116 studies) and G4 (46 cases 115 studies). Our previous study indicated that
G2 images produce the highest repeatability and accuracy [10], while the performances
of the G1 and G4 groups are nearly as good (Table 3 and Figure 2). The liver/kidney
contrast views (G3) are frequently used for the diagnosis of fatty liver in routine ultrasound
scanning. However, only 19 patients and 45 studies had adequate images collected. This
view includes two organs that produce higher variations than other view groups [10]. We
may need more than five images to achieve acceptable repeatability in this G3 view group.

Based on our previous study [10], we used the mean of three to five images in the
same group for maintaining repeatability (Table 1) [10]. Current QUS requires an area of in-
terest [5–9] to maintain the quality of quantification. This procedure is time-consuming and
loses other information. For example, the blurring of vessels is not taken into consideration
in QUS. In contrast, our DL algorithm accepts whole US images, and it is relatively easy to
acquire five images in a short time without interrupting the routine screening procedure.
The key points are to acquire good-quality images and to include as much liver parenchyma
as possible. For future protocols, we will recommend acquiring five good-quality images of
the liver from the right intercostal view for every study. When the right hepatic lobe is not
available, five good-quality images from either the left hepatic lobe or subcostal scan will be
a good substitution. This standard procedure will create a chance for future retrospective
quantification in most patients.

The study was originally aimed at the correlation between steatosis scores with weight
changes. Unexpectedly, we found differences in steatosis scores between genders. Women
accumulate fat mainly in the subcutaneous adipose tissue while men tend to accumulate
fat in abdominal visceral adipose tissue [27,28]. The gonadal steroids, including andro-
gens, estrogens, and progestogens are involved in the control of body fat distribution in
humans [29]. A review by Lonardo et al. concluded that the prevalence and severity of
NAFLD are higher in men than in women during the reproductive age [30]. This trend
decreased after menopause [31]. In this study, we found that men tend to have a higher
liver steatosis score than women. Gender steatosis score differences were more prominent
in the high body weight than in the low body weight timepoints (Table 4). Identifying
the fact that men are more susceptible to liver steatosis than women also supports this DL
algorithm as a good quantification model.

It should be noted that weight loss is not the only factor that determines liver steatosis.
Oh et al. collected patients with NAFLD who received different therapies [32]. Among
them, 45 patients received an exercise regimen and 29 patients received a weight reduction
regimen. In the exercise group, their total energy intake was increased with little weight
loss, yet they produced a significant reduction in liver steatosis [32]. In Figure 3 of this
study, we can see the steatosis score is not completely correlated with weight. The lowest
steatosis score occurred at the beginning of a significant weight change rather than at the
lowest body weight timepoint. We do not know whether this was related to exercise or
other factors.

Our limitation is that weight was used as a quantification standard. This is a retro-
spective study; we did not have histology or MRI-PDFF study for validation. The other
limitation is that different scanners were used in this study (Table 5). Nonetheless, these
scanners were used during the DL algorithm development. As the reported agreement
among the three main scanners was more than 92% [10], the effect of the different scan-
ners should be minimal. However, measuring the algorithm’s performance on alternative
scanners requires further prospective external validation. Additionally, our case number is
relatively small. Further confirmation by a larger series may be needed.
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We conclude that our DL steatosis algorithm could be considered an objective quan-
titative model for liver steatosis. This algorithm can be used in retrospective studies on
images with different brands of ultrasound machines.
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