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Abstract: ECG wave recognition is one of the new topics where only one of the ECG beat waves
(P-QRS-T) was used to detect heart diseases. Normal, tachycardia, and bradycardia heart rhythm are
hard to detect using either time-domain or frequency-domain features solely, and a time-frequency
analysis is required to extract representative features. This paper studies the performance of two
different spectrum representations, iris-spectrogram and scalogram, for different ECG beat waves in
terms of recognition of normal, tachycardia, and bradycardia classes. These two different spectra are
then sent to two different deep convolutional neural networks (CNN), i.e., Resnet101 and ShuffleNet,
for deep feature extraction and classification. The results show that the best accuracy for detection
of beats rhythm was using ResNet101 and scalogram of T-wave with an accuracy of 98.3%, while
accuracy was 94.4% for detection using iris-spectrogram using also ResNet101 and QRS-Wave.
Finally, based on these results we note that using deep features from time-frequency representation
using one wave of ECG beat we can accurately detect basic rhythms such as normal, tachycardia,
and bradycardia.

Keywords: ECG; iris-spectrogram; scalogram; CNN; ResNet101; ShuffleNet; heart rhythm

1. Introduction

The heart is a muscle that pumps blood throughout the body, and contracts rhythmi-
cally. The atrial sine node, which functions as a natural pacemaker, initiates this contraction,
which then spreads to the rest of the muscle. There is a pattern to the way that this electrical
pulse spreads [1]. This action causes fluctuations in the skin’s surface’s electrical potential
by producing electric currents on the body’s surface. Electrodes and proper tools can be
used to record or measure these signals, known as an electrocardiogram (ECG) [2].

An ECG signal is composed of three major components explained in Figure 1 [3]: P-
wave; QRS complex, which contains three waves, i.e., Q, R, and S; and the T-wave [4]. The
P-wave is a small flexure wave indicating atrial depolarization, ventricular depolarization
is represented by the QRS complex, and the T-wave is indicative of ventricular repolariza-
tion (atrial repolarization is hidden by the large QRS complex) [5]. The amplitudes and
frequencies of these waves are shown in Table 1 below [4,6].

When there is no disease or abnormality in the waveform of the ECG signal, the heart’s
regular rhythm is known as a normal sinus rhythm (NSR). Typically, the heart rate of NSRs
ranges from 60 to 100 beats per minute. The breathing cycle causes a small change in the
R-R interval’s regularity. Sinus tachycardia is the name for the rhythm when the heart rate
rises above 100 beats per minute and the R-R interval decreases. This is the heart’s normal
response to the need for increased blood circulation; it is not an arrhythmia. However,
overly rapid heartbeats result in incomplete filling of the ventricles before contraction,
which lowers pumping effectiveness and negatively impacts perfusion. Bradycardia, which

Diagnostics 2023, 13, 308. https://doi.org/10.3390/diagnostics13020308 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13020308
https://doi.org/10.3390/diagnostics13020308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-2966-6442
https://orcid.org/0000-0001-7260-6085
https://orcid.org/0000-0002-5417-0043
https://doi.org/10.3390/diagnostics13020308
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13020308?type=check_update&version=2


Diagnostics 2023, 13, 308 2 of 19

occurs when the heartbeat is extremely slow, can have a significant negative impact on
important organs and the heart rate drops down to 60 beats per minute, and the R-R
interval increases [7].

The paper is organized as follows: Section 2 provides details about the state-of-the-
art-related works. Section 3 presents an explanation of the used dataset, the preprocessing
and segmentation of the ECG, iris spectrogram, and scalogram. Section 4 shows the results,
including the performance of the proposed CNN classifiers, and the discussion about the
proposed method results. Finally, Section 5 represents the conclusion of the work.

Figure 1. ECG signal components show the onset and offset of each wave.

Table 1. The amplitudes and frequencies of ECG waves.

ECG Waves Amplitude Frequency

P-Wave 0.25 mV 5–30 Hz

QRS-Complex The amplitude for the largest
wave R is 1.6 mV 8–50 Hz

T-Wave 0.1–0.5 mV 0–10 Hz

2. Literature Review

Classification of normal and arrhythmia-associated ECG is an important goal to
achieve better detection and proper identification of various cardiovascular diseases (CVDs).
However, the small amplitude and duration of the ECG arrhythmia can make it difficult to
classify. With the rise of deep learning techniques, several recent studies have used very
deep networks for ECG classification. Here, we will attempt to detail the latest related
works using time-frequency methods for ECG classification.

Rashed Al-Mahfuz et al. proposed a novel ECG beat classifier using a customized
VGG16-based Convolution Neural Network (CNN) with two advanced time-frequency
representation techniques, Continuous Wavelet Transforms (CWT) and Hilbert-Huang
transform (HHT), to identify the best time-frequency representation of ECG beats. The
proposed adopted CNN with CWT scalogram achieved 100% classification accuracies
on MIT-BIH arrhythmia database for 2–4 classes and 99.90% for 5 classes, and the CWT
scalogram outperformed the HHT spectrum in all the cases [8].

Swain et al. introduced an automated identification of myocardial infarction (MI)
using a modified Stockwell transform (MST)-based time-frequency analysis and a phase
information distribution pattern method. Both healthy and MI ECG signals are collected
from the PTB diagnostic ECG database with 12 lead ECG signals; the results of the proposed
method can detect the MI successfully with an accuracy, sensitivity, and specificity of 99.93%,
99.97%, and 99.30% respectively [9]. Additionally, Lekhal et al. introduced an ECG beat
classifier system based on features observed in time–frequency analysis using a variant of
the Stockwell transform, and then the SVM with asymmetric costs (AS3VM) was applied
for assessment of the feature performance. The proposed method has been evaluated on
the MIT-BIT arrhythmia database, using four types: normal beats (N), left and right bundle
branch blocks (L and R), and premature ventricular contractions (V). The obtained results
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show accuracies of 99.35%, 98.73%,98.57%, and 99.44% respectively, for N, L, R, and V
beats [10].

However, a suitable method for telemedicine systems provided by Kayikcioglu et al.
to classify ST segment using time-frequency distribution based on features from multi-lead
ECG signals of four-class and tested them on three different databases, MIT-BIH Arrhythmia
database, European ST-T database, and Long-Term ST database. The weighted k-NN
algorithm achieved the best average performance with an accuracy of 94.23%, a sensitivity
of 95.72%, and a specificity of 98.15% using the Choi–Williams time-frequency distribution
features, in addition to the other classification algorithms SVM and Ensemble [11].

Kłosowski et al. proposed an effective method for ECG classification using the deep
neural long-short-term memory (LSTM) network and feature extraction consists of convert-
ing the ECG signal into a series of spectral images using short-term Fourier transformation.
Then, the images were converted using Fourier transform again to two signals, which
include instantaneous frequency and spectral entropy, which are used to train the LSTM
network [12].

In 2021, Wang et al. provided a simple and accurate method, which can be used as
a clinical auxiliary diagnostic tool, and is an automatic ECG classification method based
on Continuous Wavelet Transform (CWT) to obtain different time-frequency components
and Convolutional Neural Network (CNN) to extract features from the 2D scalogram
composed of the time-frequency components. The method achieved an accuracy of 98.74%,
a sensitivity of 67.47%, an F1-score of 68.76%, which compared with existing methods is
increased by 4.75~16.85%, and a positive predictive value of 70.75% [13].

In the same year, Hussein et al. presented a novel method to extract ST and PR features
from the Choi–Williams time-frequency distribution proposed for myocardial ischemia
identification. With the use of these extracted features, a multi-class SVM classifier is
trained to detect unknown circumstances and assess whether they are ischemic or normal.
Improved detection performance is the result of using multi-lead ECG for classification and
1 min intervals rather than beats or frames. The proposed strategy produced a final result
that had an overall accuracy, sensitivity, and specificity of 99.09%, 99.49%, and 98.44%,
respectively [14].

Furthermore, in 2022, Alqudah et al. published a paper in which they present a
method that is efficient, simple, fast, and deployable on mobile devices. A deep learning
methodology was developed to detect up to 17 classes of cardiac arrhythmia based on
analyzing a single ECG beat and calculating the iris spectrogram to feed the convolutional
neural network. The results show that the proposed methodology has an overall recognition
accuracy of 99.13%± 0.25, 98.223%± 0.85, and 97.494%± 1.26 for 13, 15, and 17 arrhythmia
classes, respectively. The training/testing is performed using tenfold cross-validation [15].

Faraget et al. provided a short-time Fourier Transform (STFT) Convolutional Neural
Network (CNN) model for ECG classification in real-time at the edge. To extract the
spectrogram from the input ECG signal, they developed an STFT-based 1D convolutional
(Conv1D) layer and then reshaped it into a 2D heat-map image to feed the 2D convolutional
(Conv2D) neural network (CNN) for classification. The proposed classifier achieved 99.1%
accuracy and a 95% F1-score at the edge with a maximum model size of 90 KB, an average
inference time of 9 ms, and a maximum memory usage of 12 MB [16].

This study aims to propose a comparison between two different advanced time-
frequency methods, i.e., iris spectrogram and scalogram, to categorize the previous types
of ECG, i.e., Normal, Tachycardia, and Bradycardia, using deep learning with Resnet101
and ShuffleNet convolutional neural networks.

3. Materials and Methods

The methodology of this research can be concentrated on the design and implementa-
tion of the procedure steps to achieve the overall approach. The first step is preparing ECG
data with different types to be ready for the system implementation. The implemented
approach for ECG wave recognition is passed into three main steps, as shown in Figure 2,
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the Preprocessing and Segmentation process, Time-Frequency methods, and diagnosis and
Recognition using Deep Learning.

Figure 2. Block diagram of the proposed methodology.

3.1. Dataset

ECG-ID Database is used in this study for normal ECG type; the database contains 310
ECG recordings, obtained from 90 persons, and was created and contributed by Tatiana
Lugovaya, who used it in her master’s thesis [17]. Additionally, the Challenge 2015 Training
Sets is used for tachycardia and a bradycardia type; the training set contains 750 recordings
for five ECG categories. However, two types were selected [18]. The length of each ECG
signal segment is 10 s. The applied segmentation methodology (discussed in the next
section) results in 316 normal beats, 138 Bradycardia, and 326 Tachycardia images for all
methods, with a total of 780 images.

3.2. ECG Preprocessing and Segmentation

The main objective of this processing is to distinguish the P, QRS, and T waves and
detect the characteristic points P-Onset, P-Offset, QRS-Onset, QRS-Offset, and T-Onset,
T-Offset for each cycle. After identifying the ECG waves, their respective amplitudes are
measured concerning the baseline. Before analysis, an ECG signal is typically the first
bandpass filtered using several frequency ranges. Bandpass filtering is widely used to
remove low- and high-frequency noise components, baseline wander muscle noise, and
power line interference [19]. The frequency range used is 0.5–40 Hz [20,21].

For de-noising and baseline wandering removal, different types of wavelet transforms
were usually applied to ECG signals. Advanced signal processing methods, such as the
stationary wavelet transform de-noising technique, should be employed to eliminate vari-
ous noise types that contain muscle artefacts and electrode moving artefacts [22]. Baseline
wanders removal and de-noising were achieved by multiresolution wavelet transform [23].
In this study, the noisy signal was decomposed into nine levels by using the Daubechies
wavelet db8. The de-noised signal was recovered by taking the inverse discrete wavelet
transform of the resulting coefficients. The next step in the preprocessing stage used is
amplitude normalization, which is optional but useful for visually comparing data from
various patients and datasets [24]. To ensure the signal starts with P-wave and ends with
T-wave, find the peaks of the R-wave. The onset of the P-wave for the signal is the half
peak-to-peak distance between the two first peaks and the offset of the T-wave for the
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signal is also the half peak-to-peak distance between the two last peaks. Figure 3 below
show the preprocessing stages for all ECG data.

Figure 3. The preprocessing stages for normal ECG signal for example: (a) The Original ECG signal;
(b) The Preprocessed ECG signal; (c) The ECG signal starting with the P-wave and ending with the
T-wave.

In this work, we have adopted the QRS-waves detection algorithm, which is developed
by Faruk U, who proposed a new thresholding method on the Pan–Tompkins algorithm [25]
and found the maximum peaks in the left and the right of the R-wave within a window to
detect the P-wave and the T-wave of the same beat. Furthermore, in this work, we have
depended on the zero crossing to detect the onset and offset of each wave; the P-wave
and T-wave onset and offset was detected by beginning from the waves’ peaks and by
searching backwards and forward, respectively, to find zero crossing, which is the onset
and offset of the two waves, respectively. From the P-wave offset to Q-wave, a forward
search is carried out in this window to find the last zero crossing point. This point is the
QRS onset. To find the QRS offset, we take a window from the S-wave to T-wave onset and
search forward in this window to find the first zero crossing. Figures 4 and 5 illustrates the
process of segmentation.

Figure 4. The peaks and intervals detection for ECG types: (a) The Normal ECG; (b) The Bradycardia
ECG; (c) The Tachycardia ECG.
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Figure 5. The wave segmentation for ECG types: (a) The Normal P-wave; (b) The Normal QRS-
waves; (c) The Normal T-wave; (d) The Bradycardia P-wave; (e) The Bradycardia QRS-waves;
(f) The Bradycardia T-wave; (g) The Tachycardia P-wave; (h) The Tachycardia QRS-waves; (i) The
Tachycardia T-wave.

For segmenting, ECG waves are considered at an extracted onset and offset of each
wave separately from the ECG signal for all ECG types as shown in Figure 5. A total of
320 for normal, 140 for bradycardia, and 325 for tachycardia P-waves, QRS-waves, and
T-waves are extracted.

3.3. Time-Frequency Representations

Time-frequency representations define the frequency content of a signal as a function
of time [26]. Time-frequency analysis and representation are used in the fields of signal
and image processing, data analysis, measurements, acoustics and vibration, machinery
diagnosis, seismology, etc. for the analysis of signals and data, fundamental frequency
detection, instantaneous frequency determination, etc. [27]. Two of the most commonly
used time–frequency analysis tools include the short-time Fourier transform (STFT) and
continuous wavelets transform (CWT) [28].

STFT is a series of Fourier transforms of a windowed signal. When a signal’s fre-
quency components change over time, the STFT gives time-localized frequency informa-
tion, whereas the conventional Fourier transform provides frequency information averaged
across the whole signal time interval. The spectrogram, which is an intensity representa-
tion of STFT magnitude over time, is frequently used to visualize STFT [29]. The STFT is
given by:

X(n, ω) = ∑∞
m=−∞ ω[n−m]x[m]e−jωn (1)

m is a “dummy” time argument whereas n represents the location of the short segment of
the original time function as it is obtained by the window ω[n−m] which moves along the
m-axis according to the value of n.

Wavelet decomposition uses a scale rather than a frequency to translate a signal onto
a time-scale plane. The time-frequency plane of the STFT is the same as this, and each
scale of the time-scale plane corresponds to a certain frequency range of the time-frequency
plane. When comparing the wavelet with the Fourier transform, the wavelet decomposes
the signal into shifted or scaled shapes from a mother wavelet, whereas the Fourier analysis
decomposes the signal into sinusoids of various frequencies [30].

The CWT is the sum of the signal x(t) multiplied by shifted and scaled shapes from a
mother wavelet ϕ(t) [30]:

CWT(scale, position) =
∫ +∞

−∞
x(t) ∗ ϕ(scale, position, t)dt (2)
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At this time, frequency–time analysis allows us to know how the signal is distributed
with frequency and phase, so complex signals can be expressed concisely and analyzed
easily. However, by visually representing signals at various scales and various frequencies
through CWT, hidden features can be seen in the time-frequency domain [30].

3.3.1. Irisgram ECG Representation

In 2018, H. Zhivomirov proposed an innovative method for visualizing the outcomes
of time-frequency analysis called an “iris-spectrogram” or “irisgram” for its resemblance
to a human iris, as shown in Figure 6. The irisgram is a circular representation of the
traditional spectrogram in which the signal strength is indicated axially with color and
time increases circumferentially in a clockwise direction. To pinpoint the precise location of
a given point in the time-frequency domain, one must utilize a Data Cursor tool because
the circular design of the irisgram does not permit annotations to be placed on the time
and frequency axes [27].

Figure 6. (a) An irisgram of QRS-waves; (b) Human eye iris.

Times and frequencies values converted into the polar coordinates to generate an
irisgram, using the following Equations (3)–(5), are applied [31]:

θ =

{
−π :

2π

T − 1
: π

}
, where T is the length o f time vector. (3)

ρ =
max( f )

3
+ f , where f is the f requency vector. (4)

X = ρ× cos θ , and Y = ρ× sin θ. (5)

Then, compute the spectrogram of power spectral density (PSD) and convert to
amplitude spectrum in dB within the range −120 dB to 120 dB, which are the values of the
Z plane [32]. Using the (surf) function, the values of X and Y are plotted against Z to create
a 3D surface plot. This sort of plot contains solid edge colors and face colors, and the color
of the surface varies according to the heights that Z specifies. This function is used to plot
the values in matrix Z as heights (weights) above a grid in the X-Y plane [15].

In this research, for all types of segmented ECG waves, the irisgram representation
has been generated using the function irisgram, accessed in MATLAB® Central File Ex-
change [32], and the resulting images are stored with their relevant classes, as shown in
Figure 7. Then, the deep learning models will be applied to the stored images, as will be
shown next.
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Figure 7. The irisgrams for ECG types: (a) The Normal P-wave irisgram; (b) The Normal QRS-waves
irisgram; (c) The Normal T-wave irisgram; (d) The Bradycardia P-wave irisgram; (e) The Bradycardia
QRS-waves irisgram; (f) The Bradycardia T-wave irisgram; (g) The Tachycardia P-wave irisgram;
(h) The Tachycardia QRS-waves irisgram; (i) The Tachycardia T-wave irisgram.

3.3.2. Scalogram ECG Representation

The scalogram (SG) is a time-frequency representation of the signal constructed by a
wavelet transformation, where coefficient values at specific time-frequency locations can be
indicated by color [33]. The SG of x is defined by the following equation:

S(x) =‖Wax(b) ‖

√∫ +∞

−∞
x(t)ϕ(

t− B
A

)da (6)

Which represents the energy of Wax(b) at the scale A. B defines the translation of the mother
wavelet ϕ(t). The SG enables the detection of the signal’s most representative scales (or
frequencies), or those that contribute the most to the signal’s overall energy. By integrating
(4) between these values, we may define the appropriate windowed SG if we are only
interested in a specific time window (t0; t1). The three axes are time (x), scales (y), and
coefficient value (z) [34,35]. The ECG wave SG sample is shown in Figure 8.

Figure 8. The Tachycardia T-wave SG.
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Additionally, in this research, for all types of segmented ECG waves, the SG repre-
sentation has been generated using the function wscalogram, in MATLAB®, with different
scaling in each wave, as shown in Table 1, and the resulting images are stored with their
relevant classes, as shown in Figure 9. Then, the deep learning models will be applied to
the stored images, as will be shown next.

Figure 9. The Scalogram for ECG types: (a) The Normal P-wave SG; (b) The Normal QRS-waves
SG; (c) The Normal T-wave SG; (d) The Bradycardia P-wave SG; (e) The Bradycardia QRS-waves SG;
(f) The Bradycardia T-wave SG; (g) The Tachycardia P-wave SG; (h) The Tachycardia QRS-waves SG;
(i) The Tachycardia T-wave SG.

3.4. Deep Learning

Usually, deep learning models need a large dataset to train and achieve robust results.
Therefore, many researchers have started to employ transfer learning techniques to tune
the pre-trained deep learning structures to perform the intended task.

The first convolutional neural network is the residual neural network, which is dis-
tinguished by its residual block property. This feature enhances the performance of clas-
sification by overcoming the problems of vanishing or exploding gradients due to deep
learning layers. ResNet allows forming a skipping connection which enables activating a
layer to further layers by skipping some layers in between. There are various versions of
ResNet, such as ResNet-18, -34, -50, and -101. These versions are based on the number of
deep layers. The architecture ResNet is stacking of such residual blocks. The input size of
these networks is 224 × 224 × 3 [36].

The second convolutional neural network is ShuffleNet, which is one of the most effective
networks utilized in mobile applications. To obtain a high accuracy level, ShuffleNet performs
two types of convolutions: point-wise group convolution and channel convolution, which
makes its performance efficient and fast. It consists of a stacking of ShuffleNet blocks, each one
consisting of two grouped convolutional layers, channel shuffle layer, in addition to depth-wise
convolutional layers. The output from each block maps using the ReLU layer. The designed
input layer is compatible with image size 224 × 224 × 3 [37,38].

4. Results

The resulting images were utilized to build deep learning models either using ResNet101
or ShuffleNet. ECG signal is segmented into three waves P, QRS, and T. Each segment
proceeds with irisgram and scalogram, separately. For each wave, there are two generated
colored images; one for scalogram and the other for irisgram. The labeled data are recog-
nized based on ECG diagnosis, normal, bradycardia, or tachycardia. For each class, six
datasets are achieved; three ECG segments for each category in both signals’ representa-
tions, i.e., irisgrams and scalograms. The classification is performed using two pre-trained
deep-learning structures ResNet and ShuffleNet. The resulting representation images are
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divided into 70% training and 30% testing. The corresponding sections demonstrate the
analysis of the results.

4.1. Irisgram Representation
4.1.1. ResNet

The iris image classification is executed using pre-trained ResNet101 structures, and
the corresponding matrices illustrate its performance. The first one shows the performance
of the irisgram of the P-waves, and the second one illustrates the capabilities of the irisgram
of the T-waves. The third represents the performance of the irisgram of the QRS waves.

For the irisgram P-wave, as shown in Figure 10a, the sensitivity of bradycardia is
85.4%, where 35 out of 41 cases are classified correctly. The precision of bradycardia is
94.6%. Meanwhile, 87 segments were discriminated from 95 P-waves for normal subjects,
with a sensitivity of 91.6% and a positive predictive value of 98.9%. A true positive rate
of tachycardia is the highest value at 98.9%. On the other hand, its precision is the lowest
because 14 cases were misrecognized as tachycardia. The overall accuracy is 92.7% for
all classes.

Figure 10. Confusion matrices of ECG irisgram using ResNet101: (a) P-waves irisgram; (b) T-waves
irisgram; (c) QRS waves irisgram.

The confusion matrix describes the outputs of T-waves. The results are not promising.
Seven segments are misclassified as healthy and 18 cases of bradycardia are misclassified
as tachycardia. Therefore, the sensitivity is too low for bradycardia cases, at 39%. Moreover,
14 cases from other classes are misclassified as bradycardia by the worst precision of 57%.
The performance of ResNet is better regarding normal class recognition. Nine samples are
misclassified, which is one as bradycardia and the rest as tachycardia, with a sensitivity of
90.5% and a misclassification rate of 9.5%. Regarding discrimination between tachycardia
and normal classes, there are seven classes of bradycardia classified as normal and the
precision is 92.5%. Tachycardia’s sensitivity reaches 95.9%, and the misclassification rate is
4.1%. Furthermore, 19 cases of bradycardia cases are recognized as tachycardia. Therefore,
the precision was reduced to 82.2%. The overall accuracy is the lowest, and it does not
exceed 83.3%.
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For the QRS wave irisgram, results show an improvement in discrimination between
three classes in terms of sensitivity, accuracy, and precision. In the bradycardia class,
37 cases are distinguished correctly from 41 and six misclassified samples as bradycardia.
That is why the precision reduced to 86% from what it was in the P-waves case. Recall
and PPV are the highest for healthy segments by almost 97% for both performance terms.
Tachycardia obtains a high level of precision using the QRS-waves, in which just three
samples from the whole data were misclassified as tachycardia, and the sensitivity is 94.9%.
The overall accuracy of the proposed approach regarding QRS-waves irisgram is 94.9%.

4.1.2. ShuffleNet

The irisgram images are proceed using ShuffleNet. The process is started by splitting
the dataset into 70% training and 30% tests. That operation is executed on each ECG
segment. The following confusion matrices characterize the performance of the test phase
of the whole database.

The first confusion matrix in Figure 11a represents the P-waves irisgram images. The
sensitivity of bradycardia is 90.2%, where 37 cases are classified correctly from 41. The
precision of bradycardia is 78.7%. Meanwhile, 94 segments were distinguished from 95
p-waves for normal subjects, with the highest sensitivity of 98.9% and a best positive
predictive value reaching 100%. A true positive rate of tachycardia is 89.8%. On the other
hand, its precision is the lowest because 14 cases were misrecognized as tachycardia. The
overall accuracy is 93.6% for all classes.

Figure 11. Confusion matrices of ECG irisgram using ShuffleNet: (a) P-waves irisgram; (b) T-waves
irisgram; (c) QRS-waves irisgram.

The second confusion matrix represents the outputs of T-waves representation. The
results are not adequate. Nine segments are misclassified as healthy, and seven cases
of bradycardia are misclassified as tachycardia. Therefore, the sensitivity is too low for
bradycardia cases at 61%. However, nine cases from other classes are misrecognized as
bradycardia by the worst precision of 73.5%. The accomplishment of ShuffleNet is better
than normal class discrimination. Seven samples are misclassified as bradycardia, and zero
samples as tachycardia, with high sensitivity of 92.9%, and a misclassification rate of 7.1%.
There are seven classes of bradycardia classified as normal for discrimination between
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tachycardia and normal classes, and the precision does not exceed 92.5%. Tachycardia’s
sensitivity reaches 95.9%, and the misclassification rate is 4.1%. Moreover, 19 cases of
bradycardia cases are classified as tachycardia. Therefore, the precision was reduced to
82.2%. The overall accuracy is the lowest, and it does not exceed 83.3%

For the QRS waves irisgram, results show an improvement in discrimination between
three classes in terms of sensitivity, accuracy, and precision. In the bradycardia class,
31 cases are classified correctly from 41, and four misclassified samples as bradycardia.
That is why the precision reduced to 88.6% from what it was in the P waves case. Recall
and PPV are the highest for normal ECG segments by almost 94.8% for both performance
evaluation terms. Tachycardia obtains a high level of precision using the QRS-waves,
in which just five segments from all the data were misclassified as tachycardia, and the
highest sensitivity reaches 100%. The overall accuracy of the proposed approach regarding
QRS-waves irisgram is 94.0%.

4.2. Scalogram Representation
4.2.1. ResNet

The scalogram image recognition is performed utilizing pre-trained ResNet101 archi-
tecture, and the following matrices represent its performance. The first matrix describes the
accomplishment of the scalogram of the P-waves, while the second one shows the capability
level of the scalogram of the T-waves. On the other hand, the third one demonstrates the
performance of the scalogram of the QRS-waves.

The first confusion matrix in Figure 12a indicates P-waves scalogram images. The
sensitivity of bradycardia is 85.4%, where 35 cases are discriminated correctly from 41.
The precision of bradycardia is almost moderate by 87.5%. While 93 segments were
distinguished from 95 P-waves for healthy subjects, with the highest sensitivity of 97.9%
and a best positive predictive value reaching 100%. The true positive rate of tachycardia
is 94.9%. The precision is 92.1% because 14 cases were misclassified as tachycardia. The
overall accuracy is 94.4% for all classes.

Figure 12. Confusion matrices of ECG SGs using ResNet101: (a) P-waves SG; (b) T-waves SG;
(c) QRS-waves SG.
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The second confusion matrix describes the output of T-waves representation. The
results are better than the P-waves and QRS-waves scalogram. Two segments are misclassi-
fied as healthy, and no cases of bradycardia are misclassified as tachycardia. Therefore, the
sensitivity is too high for bradycardia cases at 95.1%. However, two cases from other classes
are misrecognized as bradycardia by the highest precision of 95.1%. The performance of
ShuffleNet is better than normal class discrimination. Two samples are misrecognized
as bradycardia, and zero samples as tachycardia, with high sensitivity of 97.9%, and a
misclassification rate of 2.1%. For discrimination between tachycardia and normal classes,
there are no misclassification segments with the highest precision reaches to 100%. Tachy-
cardia’s sensitivity is the best by 100%. Moreover, only two cases of bradycardia cases are
misclassified as tachycardia. Therefore, the precision is high at 98%. The overall accuracy is
the highest and reaches 98.3%.

QRS-waves SG is presented in the third confusion matrix. In the bradycardia class,
18 cases are classified correctly from 41, and 19 segments are misclassified as bradycardia.
That is why the precision is too low reaching 48.6% from what it was in the P-waves
case. Recall and PPV are the highest for normal ECG segments by almost 92.8% for both
performance evaluation terms. Tachycardia obtains an acceptable level of precision using
QRS-waves, in which 18 segments from the whole data were misclassified as tachycardia,
while the sensitivity reaches 83.7%%. The overall accuracy of the proposed approach
regarding the QRS-waves SG is 81.0%.

4.2.2. ShuffleNet

The scalogram image recognition is executed using a pre-trained ShuffleNet structure,
and the corresponding matrices illustrate its performance. The first matrix represents the
performance of the scalogram of the P-waves, while the second one shows the capability
level of the scalogram of the T-waves. On the other hand, the last confusion demonstrates
the performance of the scalogram of the QRS waves.

The first confusion matrix in Figure 13a indicates P-waves scalogram images. The
sensitivity of bradycardia is 2.4%, where just one case is discriminated correctly from 41.
The precision of bradycardia is too low at 14.3%. While 80 segments were distinguished
from 95 P-waves for healthy subjects, with moderate sensitivity of 84.2% and a positive
predictive value reaching 89.9%. A true positive rate of tachycardia is 91.8%. The precision
is 65.2%, because eight cases were misclassified as tachycardia. The overall accuracy is
73.1% for all classes.

Figure 13. Confusion matrices of ECG SGs using ShuffleNet: (a) P-waves SG; (b) T-waves SG;
(c) QRS-waves SG.
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The second confusion matrix describes the outputs of T-waves representation. The
results are almost like a P-waves SG. Eight segments are misclassified as healthy and five
cases of bradycardia are misclassified as tachycardia. Therefore, the sensitivity is too low
for bradycardia cases at 80.5%. However, 13 cases from other classes are misrecognized
as bradycardia by the lowest precision of 38.1%. The performance of ShuffleNet is better
than normal class discrimination. Eight samples are misrecognized as bradycardia and
five samples as tachycardia, with moderate sensitivity of 86.3% and a misclassification
rate of 13.7%. For discrimination between tachycardia and normal classes, there are
five misclassification segments and 32 segments misclassified for bradycardia with a low
precision reach of 71.1%. Tachycardia’s sensitivity is the best at 93.9%. Moreover, only five
cases of bradycardia cases are misclassified as tachycardia. Therefore, the precision is high
at 98%. The overall accuracy is the highest and reaches 77.6%. Tables 2–5 summarize the
obtained results. Exploiting the scalogram representation of T-waves and the pre-trained
ResNet101 yields a high accuracy of 98.3%.

Table 2. Results of Irisgram and ResNet101.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 85.40% 94% 90% 86% 39% 57.10%

Normal 91.60% 98.90% 96.80% 96.80% 90.50% 92.50%

Tachycardia 96.90% 87.20% 94.90% 96.40% 95.90% 83.20%

Accuracy = 92.7% Accuracy = 94.9% Accuracy = 83.8%

Table 3. Results of Irisgram and ShuffleNet.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 90.20% 79% 76% 89% 61% 73.50%

Normal 98.90% 100.00% 95.80% 94.80% 97.90% 91.20%

Tachycardia 89.80% 94.60% 100.00% 95.10% 92.90% 92.90%

Accuracy = 93.6 Accuracy = 94 Accuracy = 89.3

Table 4. Results of Scalogram and ResNet101.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 85.40% 88% 44% 49% 95% 95.10%

Normal 97.90% 100.00% 94.70% 92.80% 97.90% 100.00%

Tachycardia 94.90% 92.10% 83.70% 82.00% 100.00% 96.00%

Accuracy = 94.4% Accuracy = 81.2% Accuracy = 98.3%

Table 5. Results of Scalogram and ShuffleNet.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 2.40% 14% 88% 90% 20% 38.10%

Normal 84.20% 84.90% 96.80% 100.00% 86.50% 97.60%

Tachycardia 91.80% 65.20% 99.00% 95.10% 93.90% 71.30%

Accuracy = 73.1% Accuracy = 96.2% Accuracy = 77.8%
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QRS-waves SG is presented in the third confusion matrix. In the bradycardia class,
36 cases are classified correctly from 41, and 4 segments are misclassified as bradycardia.
That is why the precision is almost high reaching 90.0% from what it was in the P-wave
case. Recall and PPV are the highest for normal ECG segments by almost 96.8% and 100%,
respectively. Tachycardia obtains the best level of precision using the QRS-waves, in which
just one segment from the whole data was misclassified as tachycardia, while the sensitivity
is the best too, reaching 99.0%. The overall accuracy of the proposed approach regarding
the QRS-waves SG is 96.2%.

To check the validity of features extracted using the models, we check the class
activation maps (CAMs) and we find that all the trained models have selected the most
significant regions of the scalogram and irisgram. Figures 14–16 show a sample if CAM
using ShuffleNet using the last ReLU layer and scalogram for the three classes Normal,
Bradycardia, and Tachycardia, respectively.

Figure 14. Normal Class CAM using ShuffleNet and Scalogram.

Figure 15. Bradycardia Class CAM using ShuffleNet and Scalogram.
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Figure 16. Tachycardia Class CAM using ShuffleNet and Scalogram.

4.3. K-Fold Results

To ensure the validity of the proposed methodology, the datasets’ evaluation was
performed using a 5 K-fold technique. These techniques were applied on the highest two
results gained using each ShuffleNet and ResNet101. The overall confusion matrix and
ROC of ResNet101 with Scalogram T-waves are shown in Figure 17. The overall confusion
matrix and ROC of ResNet101 with Scalogram T-waves are shown in Figure 18.

Figure 17. (A) Confusion matrix and (B) ROC for ResNet101 with Scalogram T-waves.

Figure 18. (A) Confusion matrix and (B) ROC for ShuffleNet with Scalogram QRS-waves.
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Then, the performance results of 5 K-fold using the two scenarios are shown in Table 6.
Using these results, we can conclude that the performance of the proposed model is stable
over different sets of training and testing, which make it robust.

Table 6. Results of 5 K-fold using two scenarios.

T-Wave with ResNet101 QRS-Wave with ShuffleNet

Sensitivity 97.13 ± 0.95% 97.29 ± 1.30%

Precision 97.52 ± 0.23% 96.11 ± 0.17%

Accuracy 97.82 ± 0.65% 97.31 ± 0.50%

5. Conclusions

This paper introduced a comparison between different ECG waves (P-QRS-T) spec-
trum representations (iris-spectrogram and scalogram) and two widely used CNN archi-
tectures (ResNet101 and ShuffleNet) for classifying three main heart rhythms (Normal,
Tachycardia, and Bradycardia). The paper mainly focused on how different spectrum
representations of other ECG beat waves combined with one of the two used CNN archi-
tectures perform on the classification of arrhythmias to ensure their ability to be applied
later using embedded systems. The proposed methodology addressed the main concern of
providing high performance with the lowest computational complexity on preprocessing,
feature extraction, and classification for classifying ECG beats arrhythmias. The suggested
combination methods achieved, in general, high-performance rates with generated images
from these spectrums and were fed to CNN architectures. The main advantages of the
proposed system are the ability to employ the methodology in embedded systems in the
future. The disadvantages are the limited number of records on the used dataset, where a
larger dataset is required for further evaluation of the method, yet the current results are
very promising.
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