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Abstract: Problem: Similarity measures are widely used as an approved method for spectral dis-
crimination or identification with their applications in different areas of scientific research. Even
though a range of works have been presented, only a few showed slightly promising results for
human tissue, and these were mostly focused on pathological and non-pathological tissue classifica-
tion. Methods: In this work, several spectral similarity measures on hyperspectral (HS) images of
in vivo human tissue were evaluated for tissue discrimination purposes. Moreover, we introduced
two new hybrid spectral measures, called SID-JM-TAN(SAM) and SID-JM-TAN(SCA). We analyzed
spectral signatures obtained from 13 different human tissue types and two different materials (gauze,
instruments), collected from HS images of 100 patients during surgeries. Results: The quantitative
results showed the reliable performance of the different similarity measures and the proposed hybrid
measures for tissue discrimination purposes. The latter produced higher discrimination values, up
to 6.7 times more than the classical spectral similarity measures. Moreover, an application of the
similarity measures was presented to support the annotations of the HS images. We showed that the
automatic checking of tissue-annotated thyroid and colon tissues was successful in 73% and 60% of
the total spectra, respectively. The hybrid measures showed the highest performance. Furthermore,
the automatic labeling of wrongly annotated tissues was similar for all measures, with an accuracy of
up to 90%. Conclusion: In future work, the proposed spectral similarity measures will be integrated
with tools to support physicians in annotations and tissue labeling of HS images.

Keywords: hyperspectral data; similarity measures; tissue discrimination; spectral angle mapper;
gastrointestinal; thyroidectomy

1. Introduction

Medical hyperspectral imaging (HSI) is an emerging technique in non-invasive and
contactless image acquisition that supplies spatial and spectral information collected from
biological tissue [1]. The 3-dimensional data are called hypercubes or hyperspectral (HS)
images and supply biochemical information. The spectra are individual spectral signatures
of the tissues. The medical applications of HSI are mainly in the field of tissue perfusion
evaluation as well as the discrimination of different healthy and pathological tissues. Tissue
perfusion evaluation was performed for wound diagnostics and monitoring [2–5] and for
the early detection and examination of arterial diseases [6]. Further, HSI was evaluated to
identify tumor margins [7–11] such as those of melanoma [12] and brain tumors [7]. Ortega
et al. presented the ability of HSI to assist pathologists in the diagnosis of histological

Diagnostics 2023, 13, 195. https://doi.org/10.3390/diagnostics13020195 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13020195
https://doi.org/10.3390/diagnostics13020195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-6463-3331
https://orcid.org/0000-0001-9309-7531
https://orcid.org/0000-0001-9342-3288
https://orcid.org/0000-0001-7423-713X
https://orcid.org/0000-0001-6954-4530
https://doi.org/10.3390/diagnostics13020195
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13020195?type=check_update&version=2


Diagnostics 2023, 13, 195 2 of 15

samples by discriminating between normal and tumor breast cancer cells [13]. Tissue
discrimination using HSI for the identification of risk structures was investigated. Wisotzky
et al. developed a hyperspectral method to analyze optical human tissue properties in vivo.
Different tissue types such as fat, connective tissues, muscles, and nerves have been
evaluated [14]. Barberio et al. presented the first attempt for identification, differentiation,
and visualization of the parathyroid and thyroid glands, skin, connective tissue, muscle,
gauze, and surgical instruments by evaluating nine patients’ HSI data [15].

Further, to help interpret generated HSI data that are sufficiently complex, artificial
intelligence approaches have been used [16]. Machine learning classification methods have
been evaluated to automatically identify human tumor tissue and cells in intraoperative
macroscopic HSI data and microscopic HSI data of pathological slides [17,18], as well as
non-pathological structures [19]. Maktabi et al. showed promising results using a support
vector machine (SVM) to classify endocrine tissue [9]. Moreover, deep learning methods,
such as the convolutional neural network (CNN), have been used to provide the deep
spectral features of tumor tissue. Thiem et al. used a deep neural network to detect
oral malignancies [19]. In addition, Grigoroiu et al. showed that CNN has the potential
to provide a color-based classification approach during real-time HSI in endoscopy [20].
Cervantes-Sanchez et al. proposed an automated tissue segmentation method for liver
and neck tissue using a machine learning method [21]. Barberio et al. used a CNN
method for in vivo nerve detection [22], and Jansen-Winkeln et al. used CNN for automatic
classification of colorectal cancer and healthy mucosa [23]. Machine learning and deep
learning methods are reliable and able to provide suitable models for a versatile range of
available medical HS data. These methods often require large computational expenditures
and large annotated datasets to train the models.

The present study investigated spectral similarity measures that effectively employ
the spectral signature information for biological tissue discrimination. Precisely, object
discrimination accuracy, precision and validity rely on similarity measures and the cor-
rectly defined target signature. Earlier, researchers used spectral similarity measures for
spectral signature detection in the geographical, geological, and agriculture fields. Spectral
measures have been used for the identification of crops [24], minerals [25,26], and geo-
logically sensitive areas [27]. The spectral angle mapper (SAM) and spectral information
divergence (SID) were the most often used measures [26,28,29]. However, SAM is unable to
distinguish between positive and negative correlations and unable to correctly match badly
illuminated target pixels [30]. Du et al. developed a hybrid measure by combining SAM
and SID methods with trigonometric functions [31]. Results have shown that the ability
of discrimination is improved. Kumar et al. developed a hybrid method based on the
spectral correlation angle (SCA) and SAM methods and applied it for the wavelength range
from 400 nm to 2500 nm to classify Vigna species. Results were promising [24] but were
suitable only in the spectral region 400 nm to 700 nm. Adep et al. showed that SID-SAM
and SID-SCA obtained better performance for mineral classification [25].

Spectral similarity measures were also evaluated in medicine in a limited number of
studies. Martin et al. used SAM for detecting altered mucosa of the human larynx [32].
Chen et al. presented the SAM method as a non-invasive method for determining and
analyzing the skin changes in systemic sclerosis in humans [33]. SAM scores obtained from
31 patients were significantly higher than the normal skin score, though clinicians could
not visually detect any skin abnormality. In the study by Fabelo et al., the spectral angle
mapper was used to find similar spectra in an HSI cube [34].

This study aimed to analyze which similarity measures are best-suited for the discrim-
ination of spectral data of human tissue. Several deterministic and probabilistic similarity
measures were evaluated. Further, we developed two optimized hybrid spectral similar-
ity measures as a combination of known similarity measures that are deterministic and
probabilistic. We evaluated the performance of the proposed methods in two case studies,
the discrimination of thyroid and colon structures from surrounding tissues and surgical
instruments. Moreover, we tested the new spectral similarity measures to automatically
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check the identity of tissues manually labeled by users and to correct wrong annotations
by comparing their spectral signatures with other available tissue signatures stored in
a database. This preliminary study aimed to demonstrate the potential use of spectral
similarity measures to assist surgeons and researchers in tissue annotation.

2. Material and Methods
2.1. Patient Data

The HSI data used in this paper were collected from the University of Leipzig Medical
Center. This study was approved by the ethics committee of the University Hospital of
Leipzig, Germany (393/16-ek). Images between 500 nm to 1000 nm were recorded by using
the TIVITA® Tissue system (Diaspective Vision GmbH, Am-Salzhaff-Pepelow, Germany).
It is a push broom scanner HSI camera with a spectral resolution of 5 nm. The HS data cube
has a dimension of 640 × 480 × 100 pixels (x-, y-, wavelength). The camera was placed at
50 cm from the in vivo tissue intraoperatively.

Data on a total of 100 patients were used. Nine patients were recorded during thy-
roidectomies/parathyroidectomies, and 91 during gastrointestinal surgeries. In vivo tissues
and surgical material visible in the HSI data were labeled by an experienced surgeon. The
annotations in the thyroid/parathyroid dataset were thyroid, parathyroid, muscle, nerve,
skin, instruments, and gauze. A total of 147,799 spectral signatures were collected (Table 1).

Table 1. Spectral data of the thyroid/parathyroid dataset.

Patient Instrument Gauze Thyroid Parathyroid Skin Muscle Nerve

1 6285 - 10,853 - 8078 1450 197
2 1257 3778 3625 - 5525 1257 -
3 - 2514 12,570 2774 11,102 - -
4 2514 1257 1257 1257 3209 - -
5 5028 - 3847 441 8346 1839 -
6 5825 3771 - 441 1257 - -
7 3396 5028 - 882 2514 - 226
8 - 6292 1257 317 - - 831
9 441 3771 9124 882 1264 - -

Frequency 24,746 26,411 42,533 6994 41,295 4546 1254
In Percent (%) 16.75 17.87 28.8 4.73 27.94 3.07 0.84

The second gastrointestinal dataset included 138,962 spectral signatures of the small
intestine, colon, fat, gallbladder, esophagus, pancreas, spleen, and stomach (Table 2). The
summary of the dataset is given below.

Table 2. Spectral data of the gastrointestinal dataset.

No. of Participating Patients Tissue Type Spectral Signatures Percentage (%)

11 Small Intestine 15,913 11.45
7 Colon 8897 6.40
24 Fat 24,912 17.92
5 Gallbladder 11,475 8.25
12 Esophagus 12,272 8.83
5 Pancreas 8799 6.33
6 Spleen 7542 5.43
39 Stomach 49,552 35.65

Total: 91 138,962 100

2.2. Pre-Processing of HSI Data

Figure 1 depicts the different steps of our approach. A Savitzky–Golay (SG) filter with
a polynomial order of three was used for spectral data smoothing. This filter eliminates the
high-frequency noise. It replaces each value of the spectra with a new value that is obtained
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by polynomial fit without distorting it. Further, the spectral data were normalized using
the standard normal variate (SNV) algorithm by adjusting the reflectance mean to 0 and
standard deviation to 1. To avoid the divergence calculation error resulting from negative
data values in the vector array in the dataset, it was necessary to further rescale the data to
obtain positive values with the Min-Max filter.

Figure 1. Pipeline of the overall approach.

2.3. Spectral Similarity Measures

Measuring the similarity between data vectors was performed in HSI applications. In
this part, six classical discriminatory spectral measures were studied. These methods were
suitable to evaluate the tissue’s discriminatory ability. Apart from this, a newly optimized
spectral measure method was presented.

In the following, ∆ = {sk}K
k=1 is a dataset of K labeled spectral signatures. Let us

assume that si and sj are spectral signatures of two pixel vectors, where si = (si1, si2, . . . ,
siL)T and sj = (sj1, sj2, . . . , sjL)T. L is the number of wavelengths or spectral bands.

2.3.1. Spectral Angle Mapper (SAM)

The SAM measure, a supervised classification method [35], was introduced in 1993 [28].
It is a deterministic approach that calculates the angle between two spectra over the L
wavelengths. Its values are included in the range 0 to π/2 radians. The smaller angle shows
higher spectral similarity.

SAM
(
si, sj

)
= cos−1(θsi ,sj ) (1)

where the spectral angle θsi ,sj is defined as

θsi ,sj =
∑L

m,n=1 simsjn√
∑L

m=1 sim
2 ∑L

n=1 sjn
2

(2)

2.3.2. Spectral Information Divergence (SID)

Based on divergence calculation, the SID, which is a stochastic method, computes the
distance between the probability distribution produced by two spectral signatures [29].
The smaller value of divergence represents the best similarity between the vectors.

SID
(
si, sj

)
= entropy

(
si
∣∣∣∣sj

)
+ entropy(sj

∣∣∣∣si) (3)

Here, entropy
(
si
∣∣∣∣sj

)
is the relative entropy of sj with respect to si, and entropy

(
sj
∣∣∣∣si
)

is the relative entropy of si with respect to sj. The entropy is defined as the probability dis-
tribution of both spectra. The relative entropies are computed using the Kullback–Leibler
information divergence [36], which is widely used in information theory.

2.3.3. SAM-SID Mixed Measures

SAM computes angle and gives the correlation between two spectra. SID calculates
divergence in terms of distance. Du et al. presented a hybrid method [31] by combining
these two methods in two different combinations,

SID− SIN(SAM) = SID × sin(SAM) ; SID− TAN(SAM) = SID× tan(SAM). (4)
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where sin and tan are the usual sine and tangent trigonometric functions. The tan version
showed superior results in comparison to the sin version.

The second variant is noted as SID-TAN(SAM) in the following.

2.3.4. Spectral Correlation Angle (SCA)

The SCA is based on the Pearson correlation coefficient. It is similar to the SAM
method. SCA eliminates the negative correlation and enhances the better shading effect in
comparison to SAM [30,37,38]. The SCA values range between 0 and π/2 radians.

SCA
(
si, sj

)
= cos−1[(σ(si, sj

)
+ 1
)
/2
]

(5)

where σ
(
si, sj

)
is the Pearson correlation coefficient.

The Pearson correlation coefficient is defined as

σ
(
si, sj

)
=

L ∑L
m,n=1 simsjn −∑L

m=1 sim ∑L
n=1 sjn√

[L ∑L
m=1 sim

2 −∑L
n=1 sin

2 ][L ∑L
m=1 sjm

2 −∑L
n=1 sjn

2 ]
(6)

The values of the Pearson correlation coefficient are included in the range −1 and +1.

2.3.5. SID-SCA Mixed Measures

Kumar et al. proposed two SID-SCA mixed measure methods [24], which are calcu-
lated in the following manner:

SID− SIN(SCA) = SID× sin(SCA); SID− TAN(SCA) = SID× tan(SCA). (7)

The second variant is noted SID-TAN(SCA) in the following.

2.3.6. Bhattacharyya Distance-Based Jeffries–Matusita Measures (JM)

The Bhattacharya distance or coefficient BC measures how similar two probability
distributions are. It is widely used to calculate the separability between two different
spectra. It is calculated as follows:

BC
(
si,, sj

)
= ∑L

m,n=1
√

simsjn (8)

In the literature, the JM distance is an enhancement over the BC and scales the distance
between 0 and 2 [39].

JM =

√
2
(

1− e−BC(si,, sj )
)

(9)

2.3.7. New Optimized Hybrid Measures (SID-JM-TAN(SCA))

Adep et al. showed that the combination SID-TAN(SCA) has a higher ability than the
SID-SIN(SCA) to identify the target spectra for mineral classification [25]. The reason is
that the tan function calculates the perpendicular distance between the spectra t and s. The
JM distance is used for separability criteria and is optimal for classification tasks [27]. The
hybrid JM-SAM method was presented and resulted in a higher spectral discriminability in
comparison to SAM and JM using landcover HS images.

In this work, a new hybrid measure based on the tangent function was developed by
combining a deterministic method, i.e., SCA and SAM, and two stochastic methods, i.e.,
SID and JM. Combination of these measures increases the chance of detecting the similarity
and dissimilarity between spectra.

SID− JM− TAN(SCA) = SID× JM× tan(SCA);
SID− JM− TAN(SAM) = SID× JM× tan(SAM)

(10)

Both measures are noted SID-JM-TAN(SCA) and SID-JM-TAN(SAM) in the following.
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2.4. Statistical Analysis for Comparing Spectral Similarity Measures

The spectral similarity measures are given with different units. Therefore, Naresh
Kumar et al. introduced three statistical methods in order to be able to compare and
evaluate them [24]. They are described below.

2.4.1. Relative Spectral Discriminatory Power (RSDPW)

Let us assume that t is any specific target spectrum that is compared with the spectra si
and sj. m(.,.) is any spectral similarity measure previously defined. The RSDPW is defined
as follows:

RSDPW
(
si, sj; t

)
= max

{
m(si , t)
m(sj , t)

,
m(sj , t)
m(si , t)

}
(11)

The high values of RSDPW (si, sj; t) show the better discriminatory power of the
analyzed measures.

2.4.2. Relative Spectral Discriminatory Probability (RSDPB)

∆ = {sk}K
k=1 is a dataset of K labeled spectral signatures. The RSDPB of all sk‘ s in ∆

relative to t is defined as follows:

RSDPB (Pt, ∆ (k))= m(t, sk)/ ∑K
i=1 m(t, si) (12)

Pt, ∆ is the relative spectral discriminatory probability vector of ∆ with respect to t.
∑K

i=1 m(t, si) is a normalized value determined by t and ∆.
The RSDPB provides a relative spectral similarity measure and, therefore, enables

a more accurate comparison between different tissues. If the RSDPB is low, the spectral
similarity method has high applicability.

2.4.3. Relative Spectral Discriminatory Entropy (RSDE)

Further, the RSDE of the spectral signature t with respect to the dataset ∆ is defined as

RSDE (t; ∆) = −∑K
k=1(Pt, ∆ (k) log(Pt, ∆ (k)) (13)

Small values of RSDE specify the superiority of the method.

2.5. Quantitative Evaluation of All Similarity Measures

For quantitative evaluation, the spectral similarity measures were tested using the two
patient databases. Their performances were evaluated using the three statistical methods
described previously. These experiments were conducted using a leave-one-patient-out
cross-validation (LOPOCV) method (Figure 2). We considered a dataset including the
tissue spectra of N patients. We selected the thyroid and colon as target tissues. For each
evaluation step, the target tissue spectra of one patient were tested, and the spectra of the
N-1 other patients were used as reference spectra. This operation was repeated N times, so
that each patient was tested independently. The mean spectra of a given tissue for each
patient are considered in the calculation of the spectral similarity measures.

2.6. Application of Similarity Measures to Support Tissue Annotation

An application to automatically support tissue annotations performed by users and
using the spectral similarity measures is presented. Firstly, the label of a target spectrum t
previously annotated by medical experts is checked. Secondly, a new label is automatically
suggested for the annotated target spectrum t, identified as incorrect. Both steps compare
the target spectrum with reference spectra whose labels, e.g., tissues A, B and C, are known,
using the spectral similarity measures. In order to speed up the process, the target spectrum
is not compared with all reference spectra, but with the centers of clusters of spectra
similarly labeled, obtained using the K-means clustering with two clusters.
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Figure 2. Systematic representation of the leave-one-patient-out cross-validation methodology based
on the HS data of 9 patients.

In the first step, a threshold-based check was performed. The thresholds TtissueA, m(r)
were calculated as the mean values of the spectral similarity measures m between the
cluster centers r and all other spectra labeled tissue A within the cluster. Afterwards, these
thresholds TtissueA, m(r) were used to check if a target spectrum t labeled tissue A was correct.
If the spectral similarity values between t and all other cluster centers labeled tissue A
were lower than the thresholds TtissueA, m(r), the label tissue A of the target spectrum t was
assumed to be correct. The spectra labeled thyroid and colon were checked. A LOPOCV on
both datasets separately was conducted to evaluate this approach.

The second steps suggested a tissue label for the target spectrum whose label was
identified as incorrect. The suggested label corresponded to the cluster with the smallest
spectral similarity measure value. For example, the target spectrum t was compared with
three clusters with labels tissue A, tissue B and tissue C. So, three spectral similarity values
were calculated. The label of the cluster with the smallest value was chosen as correct.
The predicted tissue label was compared with the annotation of t performed manually by
the physician, which was assumed to be correct. This was conducted for each biological
tissue in both databases and similarity measures. For the thyroid/parathyroid dataset, a
LOPOCV was performed. For the gastrointestinal dataset, a k-fold cross validation using
k= 10 was performed. The data were split according to patients, whereby the same patient
would not appear in two different folds. The folds had the same percentage of samples for
each class.

The performance of both steps was estimated using the accuracy. It was the proportion
of true positives and true negatives in all evaluated predictions.

3. Results

The spectral similarity measures SAM, SID, SID-TAN(SAM), SID-TAN(SCA), SID-JM-
TAN(SAM) and SID-JM-TAN(SCA) were evaluated statistically using the two different
datasets described in Section 2.1. The similarity measures were developed and evaluated
statistically using Python (version 3.7) and the pysptools library (version 0.15.0).

3.1. Study 1 (In Vivo Thyroid/Parathyroid Dataset)

In the first study, the thyroid tissue was selected as a reference and compared with
other human tissues, i.e., muscle, nerve, skin, parathyroid, surgical instruments and gauze.
The results of the computation of the spectral similarity measures are represented in
Figure 3. Gauze and instrument spectral data produce much higher similarity values in
comparison to other tissue spectral data (Figure 3D).
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Figure 3. Averaged similarity values calculated for thyroid as reference versus muscle, nerve,
parathyroid, thyroid, gauze, and instruments ((A) SAM and SID measures; (B) SID-TAN(SAM) and
SID-TAN(SCA) measures; (C) SID-JM-TAN(SAM) and SID-JM-TAN(SCA) measures; (D) SID-JM-
TAN(SAM) and SID-JM-TAN(SCA) for gauze and instruments against thyroid); n is the number
of spectra.

SID-TAN(SCA) and SID-JM-TAN(SCA) showed the lowest similarity values for thy-
roid versus parathyroid and thyroid versus skin in comparison to the other similarity
measures. The similarity value measured by SAM between thyroid versus thyroid and
thyroid versus parathyroid was very close; indeed, a remarkable difference was visible
while comparing skin, parathyroid, muscle, and nerve. On the other hand, the averaged
similarity value calculated by SID-JM-TAN(SCA) between thyroid versus thyroid was 1.1
times smaller than that between thyroid versus parathyroid. For dissimilar spectra, SID-
JM-TAN(SCA) produced the most significant value compared to the other five measures.
The SID-JM-TAN(SCA) method measured up to 6.7 times higher values for dissimilar
spectra. Contrarily, SAM measured only up to 1.5 times higher values for dissimilar spectra.
So, based on the smallest produced value, SID-JM-TAN(SCA) and SID-JM-TAN(SAM)
measures are both highly recommended. Most of the methods can analyze the similarity
found between two spectral signatures.

Figure 4A shows the RSDPW values calculated between two similar tissues, thyroid
and parathyroid, and a third one. The RSDPW values obtained with SID-JM-TAN(SAM)
and SID-JM-TAN (SCA) were relatively higher than the RSDPW values obtained with other
measures. A higher value of RSDPW shows the better discriminatory power of a measure.
Comparing RSDPWSID-JM-TAN(SCA)(thyroid-parathyroid-nerve) = 3.66, RSDPWSID-JM-TAN(SCA)

(thyroid-parathyroid-muscle) = 6.12, and RSDPWSID-JM-TAN(SCA) (thyroid- parathyroid-skin) = 1.21 implies
that the signatures of nerve, muscle, and skin are dissimilar. The results indicate that the
SID-JM-TAN(SAM) and SID-JM-TAN(SCA) measures are suitable for tissue discrimination.
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Figure 4. (A) Relative spectral probability (RSDPW) for different similarity measures. The thyroid
was selected as a target and compared to other tissues. (B) RSDPB value produced by different
measures (target tissue: thyroid). (C) RSDE values produced by different similarity measures (target
tissue: thyroid).

Figure 4B shows the RSDPB values that represent the relative capability of all spectra to
be discriminated from others and, therefore, evaluate the performance of different spectral
measure methods. It was quite noticeable that SID-JM-TAN(SCA) showed the lowest values
for muscle, nerve, parathyroid, and skin, and a relatively smaller value for thyroid, which
was our reference tissue. Lower RSDPB values showed that the target spectra matched the
spectra in the dataset. SID-JM-TAN(SCA) showed a 9-fold smaller relative difference than
the SAM for discriminating parathyroid against thyroid tissue. SID-JM-TAN(SCA) showed
a 8.5-fold smaller relative difference than SAM for discriminating skin against the thyroid.
So, SID-JM-TAN(SCA) is highly suitable for tissue classification.

Figure 4C shows the relative spectral discriminatory entropy. The RSDE calculated for
the SID-JM-TAN(SCA) was lower than for the other analyzed measures.

3.2. Study 2 (In Vivo Gastrointestinal Surgery Dataset)

In the second case study, the colon tissue was used as a reference and compared to the
tissue of other gastrointestinal organs.

Figure 5 compares the similarity values calculated by different similarity measures in
between available spectral signatures in the database and for colon. The similarity values
for spleen and gallbladder signatures against colon were significantly higher and remark-
able. Further, SAM, SID, SID-TAN(SAM), SID-TAN(SCA), and SID-JM-TAN(SAM) were
capable of discriminating colon signature against other available spectra in the database.
However, our proposed method, SID-JM-TAN(SCA), showed better performance, due
to the higher relative differences between tissues. For example, in the SAM method, the
relative difference was 1.5 times larger for the esophagus against colon than for colon
against colon. However, the SID-JM-TAN(SCA) method showed a relative difference that
was 2.5 times larger.
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Figure 5. Averaged similarity values calculated by different methods to compare colon tissue with
other tissues (e.g., esophagus, stomach, small intestine, colon, fat, pancreas, gallbladder, and spleen)
((A) SAM and SID measures; (B) SID-TAN(SAM) and SID-TAN(SCA); (C) SID-JM-TAN(SAM) and
SID-JM-TAN(SCA)).

Figure 6A shows the RSDPW values computed between two similar tissues, colon
and small intestine, and a third one. A higher value of RSDPW shows the better dis-
criminatory power of a measure. For any target signature, all of the above-mentioned
measures are suitable for discriminating other tissue signatures relative to the chosen
target tissue. RSDPWSID-JM-TAN(SCA) (colon-small intestine-spleen) = 18, RSDPWSID-JM-TAN (SCA)

(colon-small intestine-gallbladder) = 4 and RSDPWSID-JM-TAN (SCA) (colon-small intestine-esophagus) = 1.1
suggested that the signature of the spleen was quite different from that of small intestine
relative to gallbladder and esophagus. RSDPW (colon-small intestine-stomach) showed all values
between 1 and 2, representing the similar nature of small intestine and stomach tissue.
Regarding the evaluation of the measures, RSDPWSID-JM-TAN (SCA) showed relatively higher
values in comparison to SAM. This evidence also suggests that the combination of stochastic
and deterministic measures is more powerful than the individual measures.
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Figure 6. (A) RSDPW produced by different similarity measures. (B) RSDPB values calculated by
different similarity measures. (C) RSDPB values produced by the small intestine, colon, fat, pancreas,
and stomach. (D) RSDE values produced by different similarity measures (reference tissue: colon).
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Figure 6B,C represent the RSDPB values corresponding to the discriminatory capability
of the similarity measures. From the plots, it was assumed that the smaller value of RSDPB
represents the closeness of a reference to the target. Higher values of the RSDPB were
obtained between colon and spleen.

The relative spectral discriminatory entropy RSDE measured by SID-JM-TAN(SCA)
was lower when compared to other measures (Figure 6D). A smaller entropy value means
the target tissue spectra are correctly matched. Therefore, both measures proved to be a
better in discriminating tissue spectra.

3.3. Application to Support Tissue Annotation

We evaluated the approach to automatically support the annotations of tissues. The
first step used thresholds on the spectral similarity measures to check the tissue labels.
For the thyroid/parathyroid dataset, both hybrid measures showed the best results. The
SID-JM-TAN(SCA) correctly identified thyroid tissue in three out of seven patients. In
failure cases, thyroid was detected as parathyroid or skin. For the gastrointestinal dataset,
the hybrid measure SID-JM-TAN(SAM) showed the best results. It showed that in four
out of eight patients, the colon was correctly annotated. Only the hybrid measure SID-JM-
TAN(SCA) showed similar results with less accuracy. In the end, the similarity measures
could correctly check the annotations of the spectra in 73% of the total spectra labeled
thyroid and in 60% of the total spectra labeled colon. The hybrid similarity measures
showed higher performance.

In the second step, the tissue label corresponding to the reference spectra cluster
with the smallest spectral similarity measure value was suggested for the target spectrum
identified as incorrectly annotated in the previous step. The thyroid/parathyroid dataset
was evaluated in a binary classification, where only thyroid and parathyroid tissues were
labeled. The accuracies were similar for all spectral similarity measures and equal to 76%.
The accuracies obtained on the gastrointestinal dataset were similar for all similarity mea-
sures for all tissues, too. An accuracy of 78% for esophagus, 64% for intestine, 69% for fat,
66% for pancreas, 77% for colon, 53% for stomach, 85% for gallbladder, and 90% for spleen
was obtained. The results showed that automatic tissue labeling using spectral similarity
measures is feasible with acceptable accuracy.

4. Discussion

In this work, we developed two new hybrid spectral similarity measures to discrimi-
nate tissues. They combine SID, JM, and tan of SAM and SCA, respectively. We applied
them on HS images with thyroid/parathyroid and gastrointestinal tissues in a spectral
range from 540 nm to 995 nm. Our developed hybrid measures SID-JM-TAN(SAM) and
SID-JM-TAN(SCA) demonstrated their potential to identify the tissues. They produced
higher discrimination values, by up to 6.7 fold, than the other classical spectral similarity
measures, to discriminate dissimilar tissues. The RSDE values of the hybrid measures
(RSDESID-JM-TAN (SCA)= 1.58 for colon) showed better applicability than standard similarity
measures such as SAM (RSDESAM= 2.64 for colon).

The correct annotation of HS images with anatomical labels corresponding to tissues
is a necessary step for further automatic classification tasks. Therefore, an application of
the similarity measures to automatically support experts with the task of tissue labeling
was presented. Few works used the similarity measures for this task [33,35]. Furthermore,
they used only SAM to compare spectral signatures. In this study, we suggested different
similarity measures. In the first step for label checking, the correctness of tissue annotations
was established for 73% of the total spectra labeled thyroid and for 60% of the total spectra
labeled colon. The hybrid measures showed the best results. In the second step, which
suggested a label for a spectrum identified as wrongly annotated by the user, the task
was successfully performed with averaged accuracies of 76% for the thyroid/parathyroid
dataset and 83% for the gastrointestinal dataset. Although the approach still needs to be
improved, we were able to demonstrate that the similarity measures are simple tools to
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support the annotation of HS images. A great benefit of the spectral similarity measures
over machine learning approaches is that no further training is necessary. This automatic
tool is crucial to obtain high-quality datasets for artificial intelligence algorithms. Moreover,
manual data annotation is a very time-consuming and challenging task.

A limitation of our study was the limited number of thyroidectomy data. In further
studies, more data should be involved.

Similarity measures are highly dependent upon the number of samples and the quality
of data available. We can achieve more accurate spectral signatures in the spectral library
with respect to their specific classes by using this method. In future works, the capability
of spectral measurements to discriminate malign and healthy tissue should be analyzed.
However, the available HSI data are sufficient for preliminary study to investigate and
evaluate the measures.

5. Conclusions

The work presented in this paper evaluated spectral distance measures for the charac-
terization of tissues using HS imaging data. The enormous amount of spectral information
obtained from hyperspectral imaging is suitable for tissue detection. A comparative study
among six measures, SAM, SID, SID-TAN(SAM), SID-TAN(SCA), SID-JM-TAN(SAM), and
SID-JM-TAN(SCA), was performed.

Our newly improved hybrid measures, SID-JM-TAN(SAM) and SID-JM-TAN(SCA),
were shown to be the most suitable measures that can be used for tissue characterization.

We showed that spectral similarity measures have the potential to automatically
support tissue annotation tasks. It is worth noting that our proposed hybrid spectral
similarity measures delivered good accuracy.
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