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Abstract: We compared the performance of deep learning (DL) in the classification of optical co-
herence tomography (OCT) images of macular diseases between automated classification alone
and in combination with automated segmentation. OCT images were collected from patients with
neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, diabetic macular
edema, retinal vein occlusion, cystoid macular edema in Irvine-Gass syndrome, and other macular
diseases, along with the normal fellow eyes. A total of 14,327 OCT images were used to train DL
models. Three experiments were conducted: classification alone (CA), use of automated segmentation
of the OCT images by RelayNet, and the graph-cut technique before the classification (combination
method 1 (CM1) and 2 (CM2), respectively). For validation of classification of the macular diseases,
the sensitivity, specificity, and accuracy of CA were found at 62.55%, 95.16%, and 93.14%, respectively,
whereas the sensitivity, specificity, and accuracy of CM1 were found at 72.90%, 96.20%, and 93.92%,
respectively, and of CM2 at 71.36%, 96.42%, and 94.80%, respectively. The accuracy of CM2 was
statistically higher than that of CA (p = 0.05878). All three methods achieved AUC at 97%. Applying
DL for segmentation of OCT images prior to classification of the images by another DL model may
improve the performance of the classification.

Keywords: OCT; macular disease; image classification

1. Introduction

Optical coherence tomography (OCT) is a noninvasive imaging technique which
provides high-resolution, cross-sectional images of macula, optic nerve head, or anterior
segment structures in an eye. This device relies on the principle of light interference using
the reflection of low-coherence light projected on the retina and other eye structures to
construct images [1,2]. OCT images have been widely used in retina clinics worldwide to
assist in diagnosis, monitoring, and treatment of macular diseases. They were also used in
many pivotal clinical trials for macular diseases, such as age-related macular degeneration
(AMD) [3], diabetic macular edema (DME) [4], and retinal vein occlusion (RVO) [5], to
measure biomarkers at the macula as the outcomes of the trials.

Deep learning (DL) is a subset of machine learning in artificial intelligence (AI), which
allows automated feature extraction [6]. Composed of multiple layers of artificial neural
networks, DL led to a breakthrough in processing various important tasks in medicine,
such as automated classification of tuberculosis on chest radiographs [7] or automated
interpretation of echocardiography [8], with accuracies on par with medical experts in
the field.
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In ophthalmology, DL has been used for classification of color retinal photographs to
detect referrable diabetic retinopathy (DR) with robust performance [9]. For OCT images
of macula, DL has been successfully used for classification between normal and AMD [10],
and for classification of patterns in OCT images of DME, such as diffuse retinal thickening,
macular edema, and serous retinal detachment [11]. In another study using a big dataset
of 162,721 OCT images from multiple eye centers in 5 countries, the DL software, called
Pegasus-OCT, could distinguish between normal and abnormal OCT images with areas
under the receiver operating characteristic curves (AUC) over 98%. Between AMD and
DME, the minimum AUC values were 99% and 98%, respectively. The performance of
this DL software was generally lower when the analysis was on images with insufficient
quality [12]. In the classification of macular OCT images of more than two subtypes,
typically of four common macular diseases (Drusen, neovascular AMD, DME, and normal),
many studies achieved an accuracy, a precision, and a recall of more than 95% [13–15].

Image segmentation is used to separate an image into small regions, such as fore-
ground and background. It is a key task in computer vision and has been utilized in scene
understanding, image analysis, and object recognition [16]. The segmentation method can
be separated into two main approaches: a region-based segmentation and a boundary-
based segmentation. The region-based method considers the similarity of pixels’ features,
such as intensity or texture of connected pixels, as one region. The boundary-based method
finds the discontinuity of surrounding pixels to define edges.

DL was also used to perform automated segmentation of retinal layers and biomarkers
on OCT images [17–19]. A study by Maloca et al. showed that the average intersection
over union (IOU) scores for compartmentalization by DL of the vitreous, retina, choroid,
and sclera were 0.9929, 0.9890, 0.8817, and 0.9768, respectively, when compared to the
images compartmentalized by retinal specialists [17]. Particular techniques of automated
segmentation by DL, such as active contour segmentation [18] or graph-cut theory [19],
were utilized in these studies, with acceptable accuracy. Whereas automated classification
of macular OCT images may be useful in the early detection of diseases, automated
segmentation of the images may be useful for disease monitoring to decrease the burden of
retinal specialists in busy clinics.

In a study by De Fauw et al., the authors aimed to classify macular OCT images into
different diseases for providing referral recommendations of sight-threatening conditions
to patients, accordingly. Using more than 15,000 macular OCT scans, the authors performed
automated segmentation trained on 877 scans first, then performed automated classification
trained on 14,884 of the pre-segmented macular OCT scans [20]. They could achieve robust
performances on classifying eight common macular diseases, including normal OCT scans.
Since image segmentation is a key task in computer vision and there were studies on DL
for classification of OCT images without performing automated segmentation, a research
question is posed on whether automated segmentation of the macular OCT images prior
to automated classification would improve the performance, compared with using DL
to perform automated classification alone without prior automated segmentation. In
addition, the results of a region-based and a boundary-based segmentation are compared to
demonstrate an appropriate method for preprocessing macular OCT images. We therefore
conducted this study to address this question.

2. Materials and Methods

This study was approved by the Ethics Committee, Rajavithi Hospital, which is
organized and operates according to the Declaration of Helsinki, The Belmont Report, the
Council for International Organizations of Medical Sciences (CIOMS) Guidelines, and the
International Conference on Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use—Good Clinical Practice (ICH-GCP) (Protocol number is
46170 and date of approval is 5 July 2021).

An overview of the models is depicted in Figure 1. Each OCT image was preprocessed
to improve the images’ quality by reducing noise and cropping only the macular area. The
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images were used as input for training the three models, where each utilized a different
image segmentation method. The results of the three models were compared to evaluate
the effect of the image segmentation on the classification’s performance.
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Figure 1. Workflow diagram.

The dataset used in this study was extracted as OCT images from Heidelberg Spectralis
(Heidelberg Engineering, Berlin/Heidelberg, Germany), including the images of patients
with common macular diseases in one eye from 1 January 2015 to 31 December 2020. The
OCT images contain the radial scans from 6 lines per eye, as shown in Figure 2. They were
retrieved from the visits before the patients received an intravitreal anti-VEGF injection.
The OCT images from the normal fellow eyes were also retrieved in the dataset. The
common macular diseases diagnosed to the eyes in the dataset were neovascular AMD
(nAMD), polypoidal choroidal vasculopathy (PCV), DME, retinal vein occlusion (RVO),
cystoid macular edema (CME) from Irvine-Gass syndrome, and other macular diseases
that received intravitreal anti-VEGF injections at the Eye Clinic, Rajavithi Hospital. The
function “Others” in the dataset refers to other relatively uncommon macular diseases,
such as Stargardt’s disease, which is a hereditary disease. The appearances of the macula
of these diseases are different from those of common diseases, such as PCV, DME, or RVO.
We obtained a total of 14,327 OCT images, and a scan was counted as an image, as shown
in Table 1.

Table 1. The distribution of OCT images assigned to each class.

Classes Number of Images

nAMD 3761
PCV 2729
DME 1455
RVO 175
CME 192

Normal 4901
Others 1114
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Figure 2. Radial OCT scan of a retina and example of an OCT image of the light green line.

In the step of OCT image preprocessing and image segmentation, each OCT image
was cropped to a rectangular box that contains the region of the macula as much as possible,
as depicted in Figure 3b. To demonstrate the effects of the image segmentation on the
classification result, a mean filter was applied to each OCT image to remove noise. To
improve the performance of the image segmentation in terms of the speed and quality
of the segmented result, the denoised OCT image was subdivided into 12 small images
(see Figure 3c). Each small image was used by the segmentation algorithm to separate the
macular layers, where the size was decided from our preliminary study.

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 10 
 

 

  

Figure 2. Radial OCT scan of a retina and example of an OCT image of the light green line. 

Table 1. The distribution of OCT images assigned to each class. 

Classes Number of Images 
nAMD 3761 

PCV 2729 
DME 1455 
RVO 175 
CME 192 

Normal 4901 
Others 1114 

In the step of OCT image preprocessing and image segmentation, each OCT image 
was cropped to a rectangular box that contains the region of the macula as much as pos-
sible, as depicted in Figure 3b. To demonstrate the effects of the image segmentation on 
the classification result, a mean filter was applied to each OCT image to remove noise. To 
improve the performance of the image segmentation in terms of the speed and quality of 
the segmented result, the denoised OCT image was subdivided into 12 small images (see 
Figure 3c). Each small image was used by the segmentation algorithm to separate the mac-
ular layers, where the size was decided from our preliminary study. 

  
(a) (b) 

 
(c) 

Figure 3. Example of original and preprocessed OCT image. (a) Original OCT, (b) Cropped OCT 
image, and (c) Denoised and subdivided OCT image. 
Figure 3. Example of original and preprocessed OCT image. (a) Original OCT, (b) Cropped OCT
image, and (c) Denoised and subdivided OCT image.

After the modification, the images were introduced to the segmentation process. This
study applied two open-source automated segmentation methods: (1) a deep convolutional
neural network-based segmentation, called RelayNet [21], and (2) a boundary segmentation
using the graph-cut technique [19]. The open-source RelayNet provides a set of ground-
truth images that allows model training without preparing our own labels. On the other
hand, the graph-cut method does not require any model training and ground truth. A
comparison of the segmented results can be found in Figure 4.
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RelayNet [21] is a region-based segmentation method that applies a deep convolutional
neural network to assign each pixel to a particular label. It applies an encoder and a decoder
to perform segmentation. The encoder is responsible for extracting important features
from an input image. A contracting path of convolutional blocks, in which the size of
the blocks in each layer was reduced, was employed to learn the hierarchy of contextual
features and the preserved relation of the neighboring pixels. In this way, the decoder
locates pixels of similar features extracted from the same region. With the contraction path
of convolution blocks, the obtained segmented region was smooth due to the availability of
spatial information. Lastly, each segmented region was classified by a layer classification
model to assign the type, such as fluid pool and coloring the whole region, see Figure 4b
for illustration.

Graph-cut [19] is an optimization image segmentation that finds the boundary among
the regions in the image using the max-flow min-cut theorem [22]. It has been utilized in
cardiac MR images [23]. Unlike RelayNet, graph-cut does not require prior knowledge,
which are labels of each macular layer in each OCT image. Graph-cut finds the boundary of
the regions using pixels’ intensity by computing a max-flow and a min-cut. The max-flow
obtains when the connected pixels have a similar intensity level. These connected pixels
are considered as one region. On the other hand, the min-cut obtains when the intensity
of adjacent pixels is different. In other words, the flow of values between the pixels is
discontinued, which is also called a cut. By discovering the cut, the boundary between
the regions is found, as shown in Figure 4c. Caserel [24] is a computer-aided graph-cut
segmentation of macular layers in OCT images that we used in this study as the second
segmentation method.

Since a high-resolution OCT image was employed in this work, each small-preprocessed
image of Figure 3c was used as an input to the two image segmentation algorithms. The
segmented result of each small image was merged to acquire the image of the whole
retina layer, as demonstrated in Figure 4b,c. The denoised OCT image without segmen-
tation (classification alone method) and the segmented images from RelayNet (combined
method 1) and graph-cut (combined method 2) were used as input for the OCT image
classification model.

We applied a DL architecture called ResNet50 [25], implemented in Fastai [26], to
create a multi-class classification model for assigning labels. An adaptive learning rate
was employed for adjusting weights of the deep neural network during model training.
Considering a training set of segmented images, each image was previously assigned using
seven classes (class 0 = nAMD, 1 = PCV, 2 = DME, 3 = RVO, 4 = CME, 5 = Normal, and
6 = Others).

The 50-layered ResNet architecture (ResNet50) was applied with the pre-training
model to assign an initial weight. For each training iteration, the images were trained
with a batch size of 32, 50 epochs (iteration), adaptive learning, and the best learning rate,
which was found using the cyclical learning method with stochastic gradient descent with
restarts. K-fold cross-validation, where K = 5, was adopted in the experiment for training
the model and determined appropriate values for each parameter, such as the learning
rate. The training set was separated into five folds, where the distribution of each disease
was equally distributed. The model was conducted using 80% of the obtained images for
training and the remaining 20% for testing. For each fold, all six OCT images taken from
each eye were assigned to be in the same fold. The experiment using each setting was
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conducted in five iterations, where a different fold was employed as a test for each iteration.
The experiments were conducted separately to evaluate the three separate models for each
image preprocessing and image segmentation method, which were denoised OCT images,
segmented images using RelayNet, and segmented images using the graph-cut technique.

Sensitivity, specificity, F1-score, and accuracy were used as measurements of model
performance. A 95% confident interval (CI) of the accuracy was also applied to evaluate the
performance of each class. To validate the performance of the proposed models to classify
OCT images, a receiver operating characteristic (ROC) curve and an area under the curve
(AUC) were also depicted.

3. Results

After the model training, we achieved an average sensitivity of 62.55%, specificity of
95.16%, and accuracy of 93.14%, with 95% CI (92.99, 93.30), for classification of the seven
classes of macula conditions in the validation using the classification alone model. The
model trained using the combined method 1 with segmented OCT images processed from
RelayNet as the inputs achieved an average sensitivity of 72.90%, specificity of 96.20%,
and accuracy of 93.92%, with 95% CI (93.78, 94.07), which were generally higher than the
model using classification alone. The model trained using the combined method 2 with
segmented OCT images processed from the graph-cut technique as inputs achieved an
average sensitivity, specificity, and accuracy of 71.36%, 96.42%, and 94.80%, respectively,
which were generally higher than the classification alone model.

The average accuracy of the combined method 2 was higher than both the classification
alone and the combined method 1. When compared between the average accuracy of the
combined method 2 and the classification alone group using the dependent t-test, the
difference in the accuracy was statistically significant at p-value = 0.0488 (p-value < 0.05).
The F1-scores were found to follow similar trends as the accuracies for the classification
of each of the conditions. Similar trends were found in the classification of each of the
major macular conditions: AMD, PCV, DME, RVO, and Others, when compared among the
three models.

Table 2 shows the performances of seven classes using the three DL models and the
p-values of the combined methods 1 and 2, compared with the classification alone method.
The ROC curves and AUC of each ROC curve of the three models for the classification of
each of the seven classes showed a similar AUC at 97%. The ROC curves of each class are
shown in Figure 5.

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 10 
 

 

   
(a) (b) (c) 

Figure 5. ROC and AUC of the three models: classification alone (a), combined method 1 (RelayNet) 
(b), and combined method 2 (graph-cut) (c). 

Table 2. Performance of the three models using the testing set: classification alone, combined 
method 1, and combined method 2 in the classification of the macular conditions. 

Class 

Classification Alone Combined Method 1 (RelayNet) Combined Method 2 (Graph-Cut) 

Sen. 
(%) 

Spec. 
(%) 

F1 
(%) 

Acc. 
(%) 

95% 
CI 

Sen. 
(%) 

Spec. 
(%) 

F1 
(%) 

Acc. 
(%) 

95%  
CI 

Sen. 
(%) 

Spec. 
(%) 

F1 
(%) 

Acc. 
(%) 

95%  
CI 

nAMD 71.89 92.09 74.08 86.79 
[86.24, 
87.35] 

70.75 95.78 77.50 89.21 
[88.71, 
89.72] 

78.25 95.16 81.58 90.72 
[90.25, 
91.20] 

PCV 55.73 98.15 68.14 90.07 
[89.59, 
90.56] 

65.99 96.86 73.60 90.98 
[90.51, 
91.45] 

70.75 97.00 77.11 92.00 
[91.56, 
92.45] 

DME 62.88 99.11 73.67 95.43 
[95.09, 
95.78] 

83.09 96.90 78.96 95.50 
[95.17, 
95.84] 

76.15 98.87 81.80 96.56 
[96.26, 
96.86] 

RVO 32.57 100.0 49.13 99.17 
[99.03, 
99.32] 

71.42 99.84 77.63 99.49 
[99.15, 
99.43] 

60.57 99.92 72.35 99.43 
[99.31, 
99.56] 

CME 45.83 99.96 61.75 99.23 
[99.33, 
99.57] 

39.06 99.96 55.14 99.14 
[99.00, 
99.30] 

45.83 99.90 59.86 99.18 
[99.03, 
99.32] 

Normal 98.28 79.03 82.38 85.62 
[85.05, 
86.20] 

89.90 92.26 87.80 91.45 
[91.00, 
91.91] 

96.95 86.10 86.69 89.82 
[89.32, 
90.31] 

Others 70.64 97.77 71.70 95.66 
[95.33, 
96.00] 

90.12 91.80 62.73 91.67 
[91.22, 
92.13] 

71.00 97.98 72.83 95.88 
[95.56, 
96.21] 

Average 62.55 95.16 68.69 93.14 
[92.99, 
93.30] 

72.90 96.20 73.34 93.92 
[93.78, 
94.07] 

71.36 96.42 76.03 94.80 
[94.66, 
94.94] 

p-Value         0.5106     0.0488  

4. Discussion 
We found in this study that the performance of the DL model for classification of 

common macular diseases from OCT images may be better when the OCT images are 
segmented before the classification. It was shown that the boundary-based image segmen-
tation algorithm, i.e., the graph-cut technique, had better performance than the region-
based method when used in combination with the automated classification. Moreover, 
this could be achieved without assigning a label to each segmented region on OCT images. 
It is possible that the segmented images of the graph-cut technique enable the DL to easily 
learn the texture information of each layer on the macular due to a clearly defined bound-
ary. Compared to the results from RelayNet, each layer was replaced by a color, and the 
details of the macular were discarded. 

Currently, the use of OCT for the diagnosis and treatment of macular diseases is 
ubiquitous, not only in retina clinics but in general eye clinics and in major clinical trials. 
With multiple scans, from 6 in routine clinical use to 128 in research, per eye, and advance-
ments in computation power of computer hardware, an abundance of OCT images is 

Figure 5. ROC and AUC of the three models: classification alone (a), combined method 1 (RelayNet)
(b), and combined method 2 (graph-cut) (c).



Diagnostics 2023, 13, 189 7 of 10

Table 2. Performance of the three models using the testing set: classification alone, combined method
1, and combined method 2 in the classification of the macular conditions.

Class
Classification Alone Combined Method 1 (RelayNet) Combined Method 2 (Graph-Cut)

Sen.
(%)

Spec.
(%)

F1
(%)

Acc.
(%)

95%
CI

Sen.
(%)

Spec.
(%)

F1
(%)

Acc.
(%)

95%
CI

Sen.
(%)

Spec.
(%)

F1
(%)

Acc.
(%)

95%
CI

nAMD 71.89 92.09 74.08 86.79 [86.24,
87.35] 70.75 95.78 77.50 89.21 [88.71,

89.72] 78.25 95.16 81.58 90.72 [90.25,
91.20]

PCV 55.73 98.15 68.14 90.07 [89.59,
90.56] 65.99 96.86 73.60 90.98 [90.51,

91.45] 70.75 97.00 77.11 92.00 [91.56,
92.45]

DME 62.88 99.11 73.67 95.43 [95.09,
95.78] 83.09 96.90 78.96 95.50 [95.17,

95.84] 76.15 98.87 81.80 96.56 [96.26,
96.86]

RVO 32.57 100.0 49.13 99.17 [99.03,
99.32] 71.42 99.84 77.63 99.49 [99.15,

99.43] 60.57 99.92 72.35 99.43 [99.31,
99.56]

CME 45.83 99.96 61.75 99.23 [99.33,
99.57] 39.06 99.96 55.14 99.14 [99.00,

99.30] 45.83 99.90 59.86 99.18 [99.03,
99.32]

Normal 98.28 79.03 82.38 85.62 [85.05,
86.20] 89.90 92.26 87.80 91.45 [91.00,

91.91] 96.95 86.10 86.69 89.82 [89.32,
90.31]

Others 70.64 97.77 71.70 95.66 [95.33,
96.00] 90.12 91.80 62.73 91.67 [91.22,

92.13] 71.00 97.98 72.83 95.88 [95.56,
96.21]

Average 62.55 95.16 68.69 93.14 [92.99,
93.30] 72.90 96.20 73.34 93.92 [93.78,

94.07] 71.36 96.42 76.03 94.80 [94.66,
94.94]

p-Value 0.5106 0.0488

4. Discussion

We found in this study that the performance of the DL model for classification of
common macular diseases from OCT images may be better when the OCT images are seg-
mented before the classification. It was shown that the boundary-based image segmentation
algorithm, i.e., the graph-cut technique, had better performance than the region-based
method when used in combination with the automated classification. Moreover, this could
be achieved without assigning a label to each segmented region on OCT images. It is
possible that the segmented images of the graph-cut technique enable the DL to easily learn
the texture information of each layer on the macular due to a clearly defined boundary.
Compared to the results from RelayNet, each layer was replaced by a color, and the details
of the macular were discarded.

Currently, the use of OCT for the diagnosis and treatment of macular diseases is ubiq-
uitous, not only in retina clinics but in general eye clinics and in major clinical trials. With
multiple scans, from 6 in routine clinical use to 128 in research, per eye, and advancements
in computation power of computer hardware, an abundance of OCT images is available
for research in AI. The better performance for AI to perform classification of OCT images
should be helpful for identification of referrals when the OCT devices are available in
primary care settings without retinal specialists. For detecting diseases in clinical care,
high sensitivity is generally preferable to detect more cases. Although the AUC of the
classification alone method in this study was as high as the methods with prior image
segmentation, the sensitivity of the classification alone method is generally lower than the
latter. From the results in Table 2, the classification of five out the six disease classes, partic-
ularly the common diseases: nAMD, PCV, DME, and RVO, had much higher sensitivity
than the classification alone method. Therefore, we suggest automated segmentation prior
to automated classification if DL is applied to classify OCT images for screening purposes.

The performances of classification of macular diseases using DL for the classification
task alone in this study seemed to be worse than the performances reported in other
studies on DL for classification of macular diseases. However, majority of these studies
performed the classification for only two classes, whereas the classification in this study
was for seven classes. The study by De Fauw et al. [20], in which the authors also aimed
to classify macular diseases in up to eight classes, used two DL algorithms for referral
recommendations: the first algorithm was for segmentation whereas the second was for
classification of the segmented maps from the first algorithm. They applied an ensemble
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model of both segmentation and classification tasks. Five segmentation models using
three-dimensional OCT images were for ensemble and the other five models were used
for classification. The result of the model had an accuracy of 94.5%. Compared to the two
best retina specialists, they achieved 93.3% and 93.2% accuracy. The model accuracy of
each of the four referral classes, which are urgent, semi-urgent, routine, and observation,
were 96.4%, 98.7%, 95.4%, and 98.4%, respectively. The semi-urgent class achieved the
highest sensitivity and specificity, of 97.3% and 99.2%. Though the outcome of the previous
work cannot directly compare to this work, the performance of the classification with the
segmented images has confirmed the necessity of the application.

A possible explanation for the relatively low sensitivity from the classification model
is this study when compared to the specificity and accuracy of the previous study, such
as the study from De Fauw et al. [20], may be the use of six-line scans of OCT images for
each eye. The use of six-line scans may cause a bias of having some OCT scans which
may appear normal labeled as having a disease, since we labeled all the scans of the same
eye as having the same disease. It is common that some scans of OCT from the diseased
eye may appear normal since the scan may not pass through the lesion area. This image
capture format may not provide enough data for DL to be trained. However, the objective
of this study was not primarily to validate the performance of the classification model but
rather to compare the performance between the classification alone and the classification in
combination with segmentation models.

There are three strengths of this study. The role of image segmentation in the OCT
classification was demonstrated in this study. Both region-based and boundary-based
segmentation methods can improve the OCT classification performance, especially the
sensitivity. Providing ground-truth images for training a DL model is known to be a
labor-intensive task. Additionally, a precise ground truth affects the segmentation model’s
performance. In this way, experienced ophthalmologists are needed. To cope with these
problems, this work employed a graph-based image segmentation method that does not
require any ground-truth and training processes. Considering an input image, it applies
a min-cut and max-flow algorithm with the pixels’ value to automatically find the edge
between the two regions. Lastly, utilizing six-line scan, OCT produced an acceptable result.
We believe that it can be improved by assigning labels to each scan.

The limitation of this study, besides the six-line scan, is the imbalanced dataset among
the number of patients with certain diseases. There were some diseases, such as CME from
Irvine-Gass syndrome, that had a much smaller number of patients and OCT images. We
did not use an augmentation process in this study since the number of images in each class
had a high degree of difference. More data, and more balance of the data, might improve
the diagnostic metrics, such as the sensitivity, specificity, and accuracy of the DL model, in
future studies. The OCT device in this study was only from one brand. The applicability of
the DL models to OCT images from other devices is not known. The lack of validation of
our models in external datasets may be another limitation.

5. Conclusions

This study demonstrated that to perform automated classification of diseases on
OCT images, a DL algorithm to perform automated segmentation of the images and then
input the segmented images into another DL algorithm for classification of the diseases
may be required to improve the performance of the classification task, even if additional
computation time is a tradeoff. Future studies on the comparison of the DL models with
and without automated segmentation for classification of macular diseases in new external
datasets may also be required to support the findings in this study.
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