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Abstract: Malignant lateral lymph nodes (LLNs) in low, locally advanced rectal cancer can cause
(ipsi-lateral) local recurrences ((L)LR). Accurate identification is, therefore, essential. This study
explored LLN features to create an artificial intelligence prediction model, estimating the risk of
(L)LR. This retrospective multicentre cohort study examined 196 patients diagnosed with rectal cancer
between 2008 and 2020 from three tertiary centres in the Netherlands. Primary and restaging T2W
magnetic resonance imaging and clinical features were used. Visible LLNs were segmented and
used for a multi-channel convolutional neural network. A deep learning model was developed and
trained for the prediction of (L)LR according to malignant LLNs. Combined imaging and clinical
features resulted in AUCs of 0.78 and 0.80 for LR and LLR, respectively. The sensitivity and specificity
were 85.7% and 67.6%, respectively. Class activation map explainability methods were applied and
consistently identified the same high-risk regions with structural similarity indices ranging from
0.772-0.930. This model resulted in good predictive value for (L)LR rates and can form the basis
of future auto-segmentation programs to assist in the identification of high-risk patients and the
development of risk stratification models.

Keywords: lateral lymph nodes; rectal cancer; artificial intelligence; MR imaging; deep learning;
explainability

1. Introduction

Traditionally, patients with low locally advanced rectal cancer (LARC) have been
treated with the combination of neoadjuvant (chemo)radiotherapy (n(C)RT) and a total
mesorectal excision (TME) procedure [1]. The incorporation of these procedures over the
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last few decades has caused overall local recurrence (LR) rates to drop to 5-10% [2]. How-
ever, patients with low LARC have an increased risk of spreading to lateral lymph nodes
(LLNs), which surround the internal iliac and obturator vessels. Recent research shows that,
if these LLNs are enlarged and treated inadequately, the lateral local recurrence (LLR) risk
is significantly increased [3-5]. The treatment of LLR is challenging and associated with
significant morbidity and mortality rates [2,3], with 5-year overall survival rates around
35% [4]. Unfortunately, the current proportion of LLRs is increasing and accounts for
approximately 50% of all LRs [3,6]. This increase, compared to the relative reduction in
overall LRs, suggests that current treatment of LLNs is insufficient. These high rates of
recurrence, combined with the challenging treatment of recurrent disease, demand better
primary identification of malignant LLNs.

One major problem is that specific diagnostic criteria for suspicious LLNs are limited,
and it is largely unknown which features of LLNs are predictive of LLR. The Lateral Node
Consortium study found that LLNs with a primary short-axis (SA) diameter of >7 mm
resulted in a 5-year LLR rate of 19.5% [7]. Furthermore, Ogura et al., found that the
incorporation of the size and location on the restaging MRI after neoadjuvant therapy was
essential. Patients with an internal iliac LLN primarily >7 mm and that remained >4 mm
on the restaging MRI resulted in a 52.3% LLR rate at 5 years [8]. These enlarged LLNs
benefited from a lateral lymph node dissection (LLND). This procedure entails the complete
removal of all lymphatic tissue from the lateral compartments and resulted in a 5-year LLR
rate of only 6% [8]. These data not only indicate that the short-axis diameter of LLNs is
most likely an important prognostic factor, but implies that an LLND may be crucial in the
successful reduction of LLR rates in this patient group [9,10].

Considering these results, adequate awareness, knowledge, and treatment of malig-
nant LLNs are essential. Presently, the main diagnostic criteria of size and location are
assessed by radiologists. However, a recent study of 53 Dutch radiologists demonstrated
significant inter-physician variation in the classification of the anatomical location and
short-axis size of LLNs [11]. Similar research regarding mesorectal lymph nodes also found
challenges in intra- and inter-observer agreement for mesorectal lymph node size, with low
reproducibility of morphological characteristics [12]. These studies demonstrate the human
factor involved in radiology, allowing for variation to occur during the evaluation of LLNs.
To our knowledge, diagnostic criteria for suspicious LLNs in LARC patients using MRI
scans have never been investigated before using deep learning AI methods, though similar
deep learning models have explored nodal detection in other cancer types with promising
results for clinical application [13-16].

This study aimed to create an Al prediction model with data from three expert centres
to identify malignant LLNs with a higher risk of LLR. This incorporated the identification
of imaging and clinical features that are associated with a high risk of (L)LR.

2. Materials and Methods
2.1. Study Population and Design

This multicentre retrospective cohort study included patients from three expert hos-
pitals in the Netherlands: Amsterdam UMC, location VUmc (AUMC), the Netherlands
Cancer Institute (NKI), and Catharina Hospital (CH). Patients from the NKI and CH were
selected from the retrospective Lateral Node Consortium study [7], and patients from
AUMC were included from a retrospective study of LARC patients [17]. Both studies
only included patients with primary rectal carcinoma, of at least cI2 stage, diagnosed
between July 2008 and November 2020. Patients with synchronous distant metastases or
a non-curative dissection were excluded. None of the patients underwent formal LLND.
Exclusion criteria were the absence of good-quality MRI scans unsuitable for segmentation,
no restaging images, or missing clinical features required for the deep learning model
(Figure 1).
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427 diagnosed with locally
advanced rectal cancer between
2008-2020 in three Dutch
centres

231 patients excluded:
No restaging images (n=132)
Bad quality MRI scans (n=60)
Insufficient clinical data (n=33)

196 patients included for
analysis in artificial intelligence
and deep learning models

Figure 1. Patient selection.

The primary outcome was the prediction of (L)LR via Al models and was correlated
with LLN features. For patients without surgery, the date of the primary MRI was used
as the start of follow-up. All data were obtained from electronic health records. The
study received central approval by the Institutional Review Board (IRB) of the Netherlands
Cancer Institute on 2nd June 2021. Each participating centre reviewed the study protocol
and provided approval. Informed consent was waived by the central IRB and by each
participating centre during local ethical review and approval.

2.2. Initial MRI Re-Review

Primary and restaging MRIs of all patients were evaluated during the original studies
by at least one expert radiologist in each centre. The expert radiologist in each centre was
a specialized abdominal radiologist with vast experience and proven knowledge within
colorectal assessment. Assessment of the LLNs was based on the largest node on the
primary MRI and included the short- (SA) and long-axis (LA) diameter (measured on the
transversal, coronal, or sagittal plane), the presence of malignant features (heterogeneity,
border irregularity, loss of fatty centre, and shape), and anatomical location. During
re-review, radiologists used a colour atlas to help determine the anatomical location of
the LLN [8]. Lymphatic tissue located between the mesorectal fascia (MRF) and the
lateral border of the main trunk of the internal iliac artery was considered the internal
iliac compartment, and tissue ventral of the external iliac vessels was the external iliac
compartment. The obturator compartment contained all lymphatic tissue lateral of the
main trunk of the internal iliac artery, and once the internal iliac artery exited the pelvis, all
remaining tissue was also regarded as the obturator compartment (Figure 2).

A (

Figure 2. Lateral lymph node compartments. Progression through a T2 transversal pelvic MRI scan
from (A-C) cranial to caudal. Red: external iliac compartment, blue: internal iliac compartment,
green: obturator compartment, yellow: internal iliac artery.

If an (L)LR occurred during follow-up, the imaging was re-assessed to define the exact
location of the (lateral) local recurrence.
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2.3. Image Segmentation

The LLNs documented during re-review were identified by the central researchers
in order to establish a region of interest (Rol). In an attempt to avoid intra-observer bias
and limit variation, two independent assessors evaluated the scans (T.C.S., M.H.). If the
LLN was not easily identified, a senior researcher (M.K.) was contacted for advice. The Rol
was created using segmentations (Figure 3) made on the transverse planes of T2-weighted
MR imaging, with a maximum slice thickness of 5 mm. All visible LLNs were manually
delineated on all slices of the MRI, checked by two researchers, and labelled on the primary
and restaging MRI (Figure 3), using 3D slicer [18]. This segmentation distinguished the Rol
from background tissue at the voxel level. This resulted in the creation of a binary mask
with the same dimensions as the original image for each node.

Figure 3. Segmentation. Caudal progression through T2 transversal MRI scan (from A-F). Five
labelled LLNs.

2.4. Feature Extraction and Classification

A deep learning model was trained using a multi-channel convolutional neural net-
work (CNN), with the MR images as the input for the CNN. Three-dimensional images
were created for the primary and restaging MRI scans by resampling the transversal, coro-
nal, and sagittal planes to an isotropic voxel size of 1 mm?®. A 6 mm buffer in each direction
of healthy tissue was created around the Rols on the primary MRI. A multi-channel input
image was then created consisting of the primary MRI, the restaging MRI, and the LLN
Rols. To create a standardised input size for the CNN, each Rol was resized using cubic
spline interpolation to a 64 x 64 x 64 voxel volume.

The imaging model was trained using the in-house DTOR package, which uses the
PyTorch framework [19]. The deep learning model was trained and adapted for the present
LLN dataset by the implementation of transfer learning. Several backbone architectures,
including both 2D and 3D models, were investigated to determine which performed best
for the current dataset. For the case of 2D models, the axial slice with the largest LLN
area from the manual segmentation was used. The 2D VGG19 backbone [20] was found to
perform best, and a pre-trained version of the VGG19 model was used based on weights
from the ImageNet dataset [21]. The intensities of the preprocessed Rols were normalised
to match the intensity distribution of the ImageNet data used for pretraining. During
the subsequent transfer learning stage, model performance was optimised for the present
dataset by the implementation of several optimisations. These consisted of early stopping
(discontinuation of analyses when test performance did not improve), a decaying learning
rate, a focal loss and class weighting (to account for imbalanced datasets), sharpness-aware
minimisation (in which the smoothness of the loss function was taken into account to ensure
convergence was not to an unphysical minimum) [22], and input data augmentations. The
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data augmentations consisted of random affine transformations, Gaussian blurring, and
random rotations with a ten-degree standard deviation. Hyperparameter tuning was per-
formed using 3-fold cross-validation, in which all of the patients were randomly assigned
to be part of the test set of one of the folds. The first fold was used for hyperparameter
tuning, during which a tree-structured Parzen estimator algorithm was applied. The tuned
parameters included the learning rate decay, the focal loss parameters, the number of fixed
layers of the pre-trained model, the early stopping threshold, and the learning rate. The
optimised hyperparameters were used for the remaining 2 folds. Performance was found
to be consistent between all three folds.

The model training with the tuned hyperparameters used patients from AUMC and
CH, with the NKI forming a separate and independent test dataset. The trained model was
used to calculate prediction scores of the risk on an (L)LR for each LLN.

Model performance was assessed by calculating the area under the curve (AUC)
of the receiver operating characteristics (ROC) curves for these prediction scores. The
performance of the Al prediction model was also evaluated using the precision, sensitivity,
and F1 scores, where the F1 score is defined as:

F1 =2 x (precision x sensitivity) / (precision + sensitivity)

For the case of the F1, sensitivity, and specificity results, the optimal cut-off point was
chosen separately for the imaging and clinical models according to:

TP x (1 — FP)

where TP and FP refer to the number of true positives and false positives, respectively.

For the trained models, a variety of explainability methods were used in order to
provide local explanations of predictions. These methods included saliency compared to
multiple different class-activation-mapping (CAM) methods [23]. This uses the gradients
of any target concept, in our case the prediction of LR, flowing into the final convolutional
layer to produce a coarse map, highlighting the important regions in the image for pre-
dicting (lateral) locoregional recurrence. The CAM methods included in this study were
GradCAM, which weights 2D activations by the average gradient; FullGrad, which uses
the sum of the gradients of biases from all over the network; XGradCAM, which uses
gradients scaled according to the normalised activation functions; and EigenCAM, which
uses the principal component of the activation functions. In order to compare the different
explainability methods, the structural similarity index (SSIM) and mean-squared error
(MSE) metrics were used. The SSIM metric is defined as

(2;4%;15 + cl) (203 +2)
(y% + g+ cl) (a,% +07+ cz)

SSIM(x,y) =

7

where 0, is the standard deviation of x(y), ji,(,) is the mean of x(y), oy is the covariance
between x and y, and the c constants are variables used to stabilise the division. Therefore,
perfect agreement between two images would result in an SSIM of 1 and an MSE of 0.

2.5. Models

In total, three models were created, one based only on imaging features (Model 1),
another based only on clinical features (Model 2), and a combined model with both imaging
and clinical features from both sources (Model 3) (Figure 4). Imaging features included in
Models 1 and 3 were the total LLN volume on baseline and restaging imaging (from manual
segmentations) and the anatomical location of the LLN (according to MRI re-review).
Models 2 and 3 included clinical information, such as the application of neoadjuvant
treatment and, if so, which schedule was applied (chemoradiotherapy (25 x 2 Gy) with
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concomitant oral capecitabine or short-course radiotherapy (5 x 5 Gy)), the type of primary
operation, and whether there were any pathologically positive resection margins (Table 1).
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Figure 4. Schematic creation of prediction models with input from imaging and/or clinical sources.

Table 1. Baseline characteristics.

N=196 N (%)
Male 127 (64.8)
Female 69 (35.2)
Age in years, mean (SD) 64.1 (10.8)
BMI, mean (SD) 26.0 (4.9)
Centre
Catharina Hospital (CH) 116 (59.2)
Netherlands Cancer Institute (INKI) 24 (12.2)
Amsterdam UMC (AUMC) 56 (28.6)
ASA-score
1 27 (15.3)
2 128 (72.7)
3 20 (11.4)
4 1(0.6)
Distance tumour to anorectal junction in cm, mean (SD) 3.0 (2.8)
Clinical T-stage
cT2 5 (2.6)
cT3 113 (57.7)
cT4 78 (39.8)
Clinical N-stage
cNO 48 (24.5)
cN1 77 (39.3)
cN2 71 (36.2)
Positive mesorectal fascia or T4 on primary MRI 99 (50.5)
Anatomical location of largest lateral lymph node *
Internal iliac 19 (9.7)
External iliac 18 (9.2)
Obturator 159 (81.1)
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Table 1. Cont.

N =196 N (%)
Mean lateral lymph node size on primary MRI, mm (SD) * 55(2.7)
Mean number of lateral lymph nodes on primary MRI (SD) 3.6(2.1)
Neoadjuvant treatment *
Short-course radiotherapy 34 (17.3)
Chemoradiotherapy 162 (82.7)
Operation
No surgery/wait and see 6(3.1)
TEM /local excision 1(0.5)
TME/LAR 108 (55.1)
APR 79 (40.3)
Pelvic exenteration 2 (1.0)
Lateral lymph node dissection (LLND)
No 186 (94.9)
LLND 3(1.5)
Node-picking 7(3.6)
Positive resection margins * 15(7.7)

Abbreviations: SD: standard deviation, AJN: anorectal junction, MRF: mesorectal fascia, RT: radiotherapy, TEM:
transanal endoscopic microsurgery, TME: total mesorectal excision, LAR: low anterior resection, APR: abdominal
perineal resection. * Features used for input in clinical and combined model.

2.6. Statistical Analyses

Baseline analyses were performed using SPSS Statistics, Version 26.0 (SPSS, Chicago,
IL, USA [24]). The AUC of ROC curves was calculated to assess the quality of the LLN
features in the prediction of LR and LLR. For the case of the clinical model (no imaging
features), the AdaBoost classifier [25] was used to determine the probability of (L)LR. The
same features used in the clinical model were concatenated with the deep learning features
to make a combined prediction model (Figure 5).

VGG18

> ‘4>  > e > ([ 121 1 > [

Convolution layer

Max pooling layer Sy S,

Dense layer

Clinical features
Figure 5. Diagram representing the deep learning model and the combination with clinical features.

3. Results
3.1. Patient Characteristics

A total of 427 patients diagnosed with LARC between July 2008 and November 2020
were eligible for the current study; however, 231 patients had to be excluded. This was
due to no restaging MRI (n = 132), the absence of good-quality MRI scans sufficient for
evaluation in the Al model (1 = 60), or insufficient clinical data (1 = 33) required for model
development (Figure 1). This means that a total of 196 patients were included for analysis.
The baseline characteristics are displayed in Table 1. The median follow-up time was
49 months (interquartile range (IQR) 21-70 months), and the total 4-year locoregional
recurrence (LR) rate was 13.9% with an ipsi-lateral LR (LLR) rate of 5.5%. When only using
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the data derived from MRI re-review according to the short-axis size, AUCs of 0.57 (95%
CI: 0.45-0.69) and 0.64 (95% CI: 0.47-0.81) were found for LR and LLR, respectively.

3.2. Deep Learning Model and Oncological Outcomes

An AUC of 0.67 (95% CI: 0.40-0.95) was found for the prediction of LR using the 2D
VGG model described previously. For the case of LLR, this was determined to be 0.57 (95%
CI: 0.046-1.00). Using only the clinical features described previously, the AUCs from the
AdaBoost classifier were determined to be 0.68 (95% CI: 0.47-0.89) and 0.73 (95% CI: 0.46,
1.00) for LR and LLR, respectively. The use of the combined model, which was trained
using both T2W MR imaging and clinical features, resulted in AUC values of 0.78 (95% CI:
0.60-0.96) and 0.80 (95% CI: 0.49-1.0) for LR and LLR, respectively. The ROC curve for the
test dataset is shown in Figure 6. The full results of the AUC values per centre are shown in
Table 2A,B for the LR and LLR endpoints, respectively.

1.0

0.8

o
o

Sensitivity

o
IS

0.2

—— imaging, AUC = 0.67
—— clinical, AUC = 0.68
0.0 —— combined, AUC = 0.78

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure 6. ROC curve for the prediction of LR for the test centre.

Table 2. Performances of the different models for the prediction of LR (A) and LLR (B).

Centre AUC (Imaging) AUC (Clinical) AUC (Combined)
A:local recurrence
NKI 0.67 (95% CI: 0.40-0.95) 0.68 (95% CI: 0.47-0.89) 0.79 (95% CI: 0.60-0.96)
AUMC 0.85 (95% CI: 0.75-0.95) 0.82 (95% CI: 0.70-0.93) 0.68 (95% CI: 0.53-0.83)
CH 0.60 (95% CI: 0.53-0.67) 0.79 (95% CI: 0.73-0.84) 0.50 (95% CI: 0.43-0.58)
B: lateral local recurrence
NKI 0.57 (95% CI: 0.46-1.00) 0.73 (95% CI: 0.46-1.00) 0.80 (95% CI: 0.49-1.00)
AUMC 0.82 (95% CI: 0.70-0.94) 0.81 (95% CI: 0.70-0.93) 0.61 (95% CI: 0.44-0.78)
CH 0.64 (95% CI: 0.56-0.71) 0.78 (95% CI: 0.71-0.84) 0.53 (95% CI: 0.45-0.62)

3.3. Sensitivity and Specificity

Using a database-generated, primary LLN short-axis size of >7 mm, as determined
during MRI re-review, the sensitivity and specificity for developing an LR were 32.7% and
86.6%, respectively. When using imaging data from the current deep learning model, the
corresponding sensitivities and specificities for the LR and LLR rates were 71.4% and 50.7%,
which improved to 85.7% and 47.9% when also examining clinical features in combination
with imaging features.

According to the database-generated >7 mm benchmark, the sensitivity and specificity
for developing an LLR were 43.5% and 86.0%, respectively (Appendix A). When using
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imaging data from the current deep learning model, the corresponding sensitivities and
specificities for the LR and LLR rates were 66.7% and 45.6%. When combining clinical and
imaging features, this improved to 66.7% and 68.4%. The full results for each centre are
provided in Table 3.

Table 3. F1, precision, and recall scores for the models, given in the order imaging (1st number),
clinical (2nd number), and combined (3rd number) for the prediction of LR (A) and LLR (B).

Centre F1 Specificity Sensitivity
A:local recurrence
NKI 0.21/0.24/0.24 50.7%/67.6%/47.9% 71.4%/57.1%/85.7%
AUMC 0.20/0.25/0.16 51.7%/79.4%/44.4% 91.7%/58.3%/83.3%
CH 0.26/0.43/0.22 59.1%/71.0%/57.2% 47.8%/71.6%/41.8%
B: lateral local recurrence
NKI 0.11/0.17/0.13 45.6%/68.4%/52.6% 66.7%/66.7%/66.7%
AUMC 0.18/0.21/0.14 53.4%/77.9% /45.5% 88.9%/55.6%/77.8%
CH 0.28/0.42/0.24 58.6%/72.7% /58.6% 53.7%/66.7%/44.4%

Similar improvements in sensitivity were seen for all versions of the deep learning
model in the test centre, when only based on imaging or clinical features or a combination
of both.

3.4. Explainability

In order to test the explainability of the models, three examples from the test set were
chosen in which the model was confident of a positive recurrence, unsure of the presence of
a recurrence, and was confident no recurrence was present. These are depicted in Figure 7
along with the confidence values of the model. The results of the explainability methods
described previously are shown in Figure 8. The corresponding SSIM and MSE values are
provided in Table 4. Good agreement can be seen between the GradCAM, XGradCAM,
and EigenCAM methods, with SSIM values ranging from 0.772-0.930 for these methods.
The corresponding MSE values were found to be between 0.024 and 0.003. The saliency
and FullGrad methods were found to show significantly less agreement. This is likely due
to the pixel-based mapping for the case of saliency. For the case of FullGrad, the sum of
gradients of all biases appeared to saturate the image.

Prob 0.96
_

Figure 7. Cont.
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& *

Figure 7. Three examples of an input data point corresponding to a positive recurrence with high

confidence (top row), positive recurrence with low confidence (middle row), and no predicted
recurrence with high confidence (bottom row). The left column depicts the node before treatment,
the middle column after treatment, and the right column the manual delineation. Overlaid also are
the predicted probabilities of recurrence provided by the deep learning model.

Saliency GradCAM FullGrad XGradCAM EigenCAM

GradCAM FullGrad XGradCAM EigenCAM

Positive

Saliency

Unsure

FullGrad XGradCAM EigenCAM

0.2
0.0

GradCAM

Saliency

Figure 8. Comparison of the various explainability methods as defined in the text. Each method
was applied to the three example cases of Figure 7. Each image was created by first plotting the
post-treatment channel with the corresponding local attribution values subsequently added with fifty
percent transparency.

Table 4. Structural similarity indices and mean-squared error values in the comparison of various
explainability methods to standard GradCAM.

Case Saliency GradCAM FullGRAD XGradCAM EigenCAM

SSIM

Positive 0.235 1.000 0.225 0.772 0.792

Unsure 0.220 1.000 0.233 0.839 0.912

Negative 0.271 1.000 0.266 0.930 0.916
MSE

Positive 0.214 0.000 0.281 0.024 0.024

Unsure 0.245 0.000 0.347 0.014 0.003

Negative 0.212 0.000 0.346 0.010 0.008

4. Discussion

Given the increased risk of developing a locoregional recurrence due to either the
insufficient treatment of or the failure to diagnose malignant lateral lymph nodes (LLNs),
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it is essential that malignant LLNs are adequately identified and treated appropriately.
We created a deep learning model for the prediction of (L)LR rates in patients without an
LLND, based on imaging features from segmented Rols on T2ZW MRI images and combined
these with clinical input features. This combined model was able to predict LR with an
AUC of 0.78 and LLR with an AUC of 0.80, with a sensitivity of up to 85.7% for predicting
LR and LLR in the test centre. However, while the sensitivity of local recurrence in the test
set was high (85.7%), the corresponding specificity was found to be 47.9%. This is due to
the class imbalance of the dataset and, as such, would be expected to improve with the use
of larger datasets in future analyses.

The impact of Al in medical research has substantially increased over the past few
years and is valuable for an accurate and standardised identification of patterns in medical
data, as well as the combined assessment of biomedical images with integrated features,
which are often too intricate for human discernment [26,27]. Artificial intelligence models
have been used for the investigation of lymph node staging in colorectal cancer, where
it was found that AI models outperformed radiologists in the assessment of lymph node
metastasis [27]. Bedrikovetski et al., showed a pooled area under the ROC curve of 0.917
for deep learning models in the assessment of lymph node metastasis in rectal cancer and
0.808 for radiomics, both significantly higher than the AUC of 0.688 for the assessment by
radiologists [27]. This is similar to the current results, where the AUCs for LR and LLR
according to the deep learning models were 0.78 and 0.80, respectively, while the AUCs
for LR and LLR according to short-axis measurements from radiologists were 0.57 and
0.64, respectively.

The current study is, to our knowledge, one of only three studies to use deep learning
models for the investigation of LLNs. The other two studies used either CT scans or ex-
cluded patients who underwent neoadjuvant therapy. This means that the current study,
where segmented MRI scans were incorporated for the prediction of (L)LRs in patients
treated with (chemo)radiotherapy without an LLND, is very appropriate for Western co-
horts. This is in contrast to traditional Japanese protocols, where neoadjuvant treatment is
usually not provided. Nakanishi et al. [28] and Kasai et al. [29] used an Al prediction model
for pathologically enlarged LLNs related to pathological outcomes after an LLND. The
radiomics model by Nakanishi et al., evaluated CT scans of 247 patients with rectal cancer
and enlarged LLNs treated with n(C)RT and an LLND. The model was superior in the
discrimination of malignant LLNs compared to the conventional diagnostic criteria by radi-
ologists (AUC 0.91 vs.0.83, respectively) [30]. However, Nakanishi et al., used pre-treatment
CT images for the segmentation and development of the prediction model, limiting the
generalisability and external validity, considering that MRI is the standard staging method
for rectal cancer [28]. Kasai et al., created a prediction model for a validation cohort of
56 patients with LLNs from MR images [29]. The Al prediction model was significantly
more accurate in the prediction of recurrence compared to conventional methods using only
the LLN SA size (AUC 0.85 versus 0.75, respectively). However, patients were excluded if
they underwent neoadjuvant therapy, again limiting generalisability to a Western cohort.
The current study has high external validity for Western patients by using MR images and
patients who underwent neoadjuvant therapy. The AUC predictions of 0.78 and 0.80 for
LR and LLR, respectively, are similar to those found by the aforementioned studies.

In the current method, explainability images were created to identify areas of the pelvis
most at risk for recurrence. These maps are aimed to aid radiologists in the identification
and tracking of “at-risk” areas, to ensure thorough evaluation. This may be useful in
situations where LLNs change shape or size, for example after neoadjuvant therapy, or
when multiple suspicious LLNs are present. In such situations, it can be challenging
to consistently ensure that the suspicious LLNs are visible on imaging series over time.
This approach, to register image series to the baseline scan, would benefit the tracking of
high-risk areas and provide more-accurate comparisons of changes over time and allow
for this region to be closely monitored during intensive and frequent follow-up. This may
be especially useful when LLNSs are not well visualised on follow-up imaging series or
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when the pelvic anatomy has slightly changed since radiation and/or surgical treatment.
Though lacking in supporting evidence, this interesting ability of the model should be
explored further in the future. Our study indicates that standard saliency is potentially
unsuitable for the identification of at-risk areas as residual disease is likely identified
through combinations of voxels, while saliency considers the impact of individual voxels.
The saturation effect of the FullGrad algorithm through the summation of bias gradients
also appears to be unsuitable for the current use case.

This model was able to combine a select group of multicentre patients from three
expert Dutch centres with LLNs to create prediction scores for locoregional recurrence.
This can in the future be used as a foundation for larger, more-detailed, machine learning
models for this patient population. Considering the wide range of MRI fields used, this
model appears to be rather robust. This study was also able to support the limited number
of similar studies, showing that deep learning Al models can predict LR and LLRs relatively
accurately based on imaging and clinical features, with a high sensitivity. Future research
can apply this model to multiple and diverse validation cohorts to accumulate new infor-
mation and prediction scores. This can then, in turn, aid the creation of risk stratifications,
prediction models, and auto-segmentation networks. The strengths of this study lie in the
future possibilities. Similar deep learning models can be created for the auto-segmentation
of LLNs, which would not only decrease the chances of inter-variability between human
observers, but allow for automated identification of LLNs, which could assist radiologists
in their diagnostic process. Furthermore, auto-segmentation would increase the sensitivity
of similar models and provide more-refined feature identification and selection of Rols,
improving the overall input channels [27,31]. This would also allow for a start-to-finish
Al-based situation, decreasing the chances of human error or inter-physician variation.
However, the logistical and theoretical challenges when implementing an Al model for
clinical use should not be overlooked or underestimated. A broad foundation of support
would be necessary within the medical community, especially between radiologists, with
an understanding of what the model represents and how it can aid the diagnostic process.

This study had some limitations. Firstly, the current model required both primary
and restaging imaging features for the development of prediction scores, which meant that
many patients without restaging images had to be excluded. There was also heterogeneity
present in patients between centres; however, the current model did perform the best for
the test centre, which is reassuring. Another limitation was that some MRI scans differed
in quality, limiting precision and accuracy during segmentation, and it Is possible that,
because this study included retrospective data from different hospitals, different MRI
protocols were adhered to, which might affect the obtained results. Furthermore, the
current sample is rather limited, which may be reflected in the found sensitivity data.
With a larger dataset, the sensitivity results could be largely improved. Even though two
independent assessors evaluated the scans, in an attempt to limit intra-observer bias and
variation, manual segmentation may still have been affected and auto-segmentation of
LLNs with feature classification would have been ideal. Lastly, besides T2-weighted MRI,
no other series, such as diffusion-weighted images, were incorporated into the model to
further influence accuracy in recurrence predictability. Lastly, due to the fact that patients
did not undergo an LLND, the clinical outcome and model development could not be
linked to the pathological results.

5. Conclusions

A deep learning model was trained to predict the local recurrence and ipsi-lateral local
recurrence risk based on magnetic resonance imaging and clinical features of 196 patients
with lateral lymph nodes in rectal cancer. The predictive model using T2W imaging and
clinical features resulted in AUC scores of 0.78 and 0.80 for LR and LLR, respectively.
Explainability methods were found to identify the high-risk regions of the input, with
a high level of consistency between the different methods. Future research is needed to
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validate the model in external cohorts and to develop new research directions such as
auto-segmentation and risk stratification.
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Appendix A

Table Al. Sensitivity, specificity, positive predictive value, and negative predictive value in the
prediction of local recurrence (A) and lateral local recurrence (B) for different short axis cut-off values.

MRI SA Cut-Off Value Sensitivity Specificity PPV NPV
A: local recurrence
Primary 5 mm 49.0% 60.4% 14.0% 90.0%
Primary 6 mm 40.8% 78.0% 19.6% 90.9%
Primary 7 mm 32.7% 86.6% 24.2% 90.8%
Restaging 4 mm 55.6% 63.7% 18.3% 90.7%
Restaging 5mm 47.2% 80.0% 25.8% 91.2%
Restaging 6 mm 36.1% 90.2% 35.1% 90.6%
B: lateral local recurrence

Primary 5 mm 60.9% 60.5% 8.1% 96.4%
Primary 6 mm 56.5% 77.7% 12.7% 96.9%
Primary 7 mm 43.5% 86.0% 15.2% 96.4%
Restaging 4 mm 76.5% 63.6% 11.9% 97.7%
Restaging 5mm 64.7% 79.2% 16.7% 97.2%
Restaging 6 mm 52.9% 89.4% 24.3% 96.7%

These results are database-generated and based on the measurements by radiologists during MRI re-review.
Abbreviations: SA: short-axis, PPV: positive predictive value, NPV: negative predictive value.
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Appendix B

Combined confusion matrix
-35

-30

True

Predicted

Figure A1. Confusion matrix for the test centre, where 0 indicates no recurrence and 1 the presence
of a recurrence.
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