0

@% diagnostics

Article

Multilevel Threshold Segmentation of Skin Lesions in Color
Images Using Coronavirus Optimization Algorithm

Yousef S. Alsahafi 1, Doaa S. Elshora 2, Ehab R. Mohamed 2 and Khalid M. Hosny 2%

check for
updates

Citation: Alsahafi, Y.S.; Elshora, D.S.;
Mohamed, E.R.; Hosny, KM.
Multilevel Threshold Segmentation
of Skin Lesions in Color Images
Using Coronavirus Optimization
Algorithm. Diagnostics 2023, 13, 2958.
https://doi.org/10.3390/
diagnostics13182958

Academic Editor: Ayman El-Baz

Received: 18 August 2023
Revised: 6 September 2023
Accepted: 12 September 2023
Published: 15 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

! Department of Information Technology, Khulis College, University of Jeddah, Jeddah 23890, Saudi Arabia;
ysalsahafi@uj.edu.sa

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University,
Zagazig 44519, Egypt; engineer_elshora@yahoo.com (D.S.E.); ehab.rushdy@gmail.com (E.R.M.)
Correspondence: k_hosny@yahoo.com or k_hosny@zu.edu.eg

Abstract: Skin Cancer (SC) is among the most hazardous due to its high mortality rate. Therefore,
early detection of this disease would be very helpful in the treatment process. Multilevel Thresholding
(MLT) is widely used for extracting regions of interest from medical images. Therefore, this paper
utilizes the recent Coronavirus Disease Optimization Algorithm (COVIDOA) to address the MLT issue
of SC images utilizing the hybridization of Otsu, Kapur, and Tsallis as fitness functions. Various SC
images are utilized to validate the performance of the proposed algorithm. The proposed algorithm
is compared to the following five meta-heuristic algorithms: Arithmetic Optimization Algorithm
(AOA), Sine Cosine Algorithm (SCA), Reptile Search Algorithm (RSA), Flower Pollination Algorithm
(FPA), Seagull Optimization Algorithm (SOA), and Artificial Gorilla Troops Optimizer (GTO) to
prove its superiority. The performance of all algorithms is evaluated using a variety of measures, such
as Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), Feature Similarity Index Metric
(FSIM), and Normalized Correlation Coefficient (NCC). The results of the experiments prove that the
proposed algorithm surpasses several competing algorithms in terms of MSE, PSNR, FSIM, and NCC
segmentation metrics and successfully solves the segmentation issue.

Keywords: image segmentation; COVIDOA; Otsu; Kapur; Tsallis; skin cancer images

1. Introduction

Nowadays, SC is a serious illness that may afflict anyone regardless of race, gender,
and age. The skin tissues’ aberrant growth is usually caused by exposure to Ultraviolet
Radiation (UVR) from the Sun or tanning beds. The significance of SC lies in its potential
to spread to other parts of the body if not detected and treated early [1]. According to
the World Health Organization (WHO), in 2022, UVR caused over 1.5 million cases of
SC. In 2020, there were 66,000 deaths from malignant melanoma and other SCs. In the
United States, there are an estimated 1.1 million annual cases of SC. Melanoma, basal
cell carcinoma, and squamous cell carcinoma are the three most frequent kinds of SC.
Melanoma is the deadliest form of cancer [2].

Malignant melanoma can also be less deadly and more treatable if found early. It
might be diagnosed in its early stages, preventing the need for an expensive treatment
that would cost millions of dollars. However, detecting and accurately segmenting SC
lesions pose significant challenges. One major challenge is the similarity between benign
and malignant lesions in appearance, which makes it difficult for healthcare professionals
to differentiate between them based on visual examination alone. Another challenge is the
variability in different individuals’ lesion size, shape, color, and texture. This variability
makes it challenging to develop a universal algorithm or model for accurate detection and
segmentation across diverse populations.

Furthermore, detecting skin cancer requires expertise and experience from dermatolo-
gists or trained healthcare professionals. The shortage of dermatologists in many regions
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can lead to delays in diagnosis and treatment. Researchers are exploring various Computer-
Aided Diagnostic (CAD) systems that utilize Artificial Intelligence (AI) techniques, such
as machine learning and deep learning algorithms, to address these challenges. These
systems aim to improve the accuracy and efficiency of skin cancer detection by analyzing
large datasets of images and identifying patterns indicative of malignancy. Additionally,
advancements in imaging technologies like dermoscopy have improved visualization capa-
bilities for clinicians. Dermoscopy allows for magnified examination of skin lesions using
specialized equipment that enhances surface details and structures not visible to the naked
eye [3]. Image segmentation techniques first define the lesion’s borders to identify skin
cancer. Image segmentation also refers to extracting interesting objects from images and
analyzing their behavior to reveal the presence of a problem or sickness [4]. According to
the literature, image segmentation techniques include edge detection [5], clustering [6], and
thresholding-based segmentation [7].

Edge detection algorithms can identify the boundaries of skin lesions by detecting
abrupt changes in pixel intensity. This technique is useful for identifying irregularities
in the shape and texture of skin lesions, which are important features for diagnosing
skin cancer. Edge detection can help differentiate between healthy skin and potentially
cancerous regions.

Clustering techniques group pixels based on their similarity in color or intensity values.
In the context of skin cancer detection, clustering algorithms can identify regions with
similar color characteristics as potential lesions.

Thresholding is the most common segmentation approach due to its ease of use, sim-
plicity, fast computation, and robustness against noise. Thresholding methods often have
mechanisms to handle noisy data points [8]. The limitations of this technique include
sensitivity to threshold selection: The choice of threshold(s) can significantly impact the
segmentation results and difficulty with complex textures or lighting variations. Thresh-
olding may struggle with complex textures or when the lighting conditions vary across
the image.

Despite the significance of image segmentation in identifying objects of interest from
medical images, some issues, such as noise contamination and artifacts from image capture,
cause mistakes in the segmentation of medical images. Various smoothing approaches
(for instance, developing an algorithm or tuning a filter) can decrease errors or eliminate
noise. Without this step, the exact segmentation of the image may not be easy [9]. Most
currently used segmentation methods depend greatly on several pre-processing methods
to avert the consequences of unwanted artifacts that could impair accurate skin lesion
segmentation [10].

Thresholding-based segmentation is split into two classes depending on how many
thresholds were utilized to segment the image: Bilevel and multilevel [11]. A threshold
value divides the image into homogenous foreground and background portions in the first
class. On the other hand, multilevel splits the image using a histogram of pixel intensities
into more than two portions. Since bilevel thresholding separates an image into two sections,
it cannot accurately recognize images with numerous objects on colorful backgrounds.
MLT is more suitable in these cases [12]. The essential step in the thresholding process is
determining the optimal threshold values that effectively define the image segments.

As a result, it is defined as an optimization issue that may be addressed by para-
metric or nonparametric techniques [13]. In the parametric technique, the probability
density function calculates parameters for every region to determine the optimal thresh-
old values. Through this, the nonparametric technique aims to maximize a function like
fuzzy entropy [14], Kapur’s entropy (maximizing class entropy) [15], and Otsu function
(maximizing between-variance) [13]. Regrettably, by those techniques, determining the
optimal threshold values for MLT is difficult and enormously raises the computational
cost, especially as the threshold levels increase. Therefore, an efficient new alternative
was necessary because of the substantial success of the meta-heuristic algorithms in nu-
merous domains, such as communications, engineering, social sciences, transportation,
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and business. Researchers have focused on them to solve the challenges of MLT image
segmentation [16-21].

Compared to a gray-level image, a color image depicts a scene in the real world
more accurately. In image processing, different color spaces represent and analyze images.
Each color space has advantages and disadvantages, making them suitable for specific
applications. One commonly used color space is the Red, Green, Blue (RGB) color space. It
represents colors by combining different intensities of red, green, and blue channels. RGB
is widely used in digital imaging systems as it closely matches how humans perceive colors.
However, RGB has limitations regarding image analysis tasks such as object detection
or segmentation since it does not separate color information from brightness. Another
popular color space is the Hue, Saturation, Value (HSV) color space. HSV separates the hue
(color), saturation (intensity of color), and value (brightness) components of an image. This
separation makes manipulating specific aspects of an image easier without affecting others.
For example, changing only the hue component can alter the perceived color without
changing brightness or intensity. HSV is often used in applications like image editing
or tracking objects based on their color. Cyan, Magenta, Yellow, Key/Black (CMYK) is
primarily used in printing processes where colors are represented using subtractive rather
than additive mixing like RGB. It plays a vital role in the graphic design and printing
industries. RGB is commonly defined and most gray-level segmentation techniques may
be applied directly to each component of an RGB image; nonetheless, few studies [22-24]
address how to apply MLT techniques to a color image. Borjigin et al. [22] concentrate on
the RGB color space, which is the most commonly used to segment images.

The following summarizes the key contributions of this paper:

COVIDOA is shown to deal with MLT in image segmentation.
The hybridization of Otsu, Kapur, and Tsallis as a fitness function was used to present
a skin cancer segmentation technique.

e  Various segmentation levels are employed to assess the proposed technique’s perfor-
mance.
The proposed technique is compared to numerous popular meta-heuristics techniques.
The effectiveness of the segmentation technique is validated by utilizing the MSE,
PSNR, FSIM, and NCC matrices.

e  The proposed technique may be expanded to accommodate various medical imaging
diagnoses and used for additional benchmark images.

The next sections of this study are arranged as follows: Section 2 shows the related
work. Section 3 presents the materials and methods. Section 4 describes the COVIDOA
with the proposed fitness function for MLT segmentation. Section 5 shows the results and
discussion. Section 6 provides conclusions and future work.

2. Literature Review

The most common meta-heuristic methods for dealing with the thresholding issue
are the Particle Swarm Optimization (PSO) algorithm [25], Whale Optimization Algorithm
(WOA) [26], Cuckoo Search Algorithm (CSA) [27], Harris Hawks Optimization Algorithm
(HHOA) [28], Gray Wolf Optimization Algorithm (GWOA) [29], and Equilibrium Opti-
mization Algorithm (EOA) [30]. In addition to these traditional methods, several newly
adopted meta-heuristic methods include Chimp Optimization Algorithm (ChOA) [31],
Manta Ray Foraging Optimization Algorithm (MRFOA) [32], Slime Mould Algorithm
(SMA) [33], Marine Predators Algorithm (MPA) [34], Black Widow Optimization Algorithm
(BWOA) [35], and artificial Gorilla Troops Optimizer (GTO) [16]. Khalid AM et al. [36]
introduced a recently developed algorithm (COVIDOA). It exceeded conventional and
contemporary rivals regarding the effectiveness of results.

The algorithms mentioned above have been tested on grayscale and color images.
This study aims to advance the field of color image segmentation by giving an improved
fitness function for COVIDOA. We believe this is the first use of the COVIDOA for image
segmentation in color skin lesions images.
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Numerous applications of meta-heuristics have been found. As a result, the papers
that follow offer some important recent works. Rai et al. [37] evaluated all nature-inspired
optimization techniques and the importance of such algorithms for MLT segmentation of
images from 2019 until 2021. Sharma et al. [38] found that Kapur, Tsallis, and fuzzy entropy
objective functions provided an efficient opposition-based modified firefly method for MT
image segmentation. In [39], an upgraded GWO known as the Multistage Grey Wolf Opti-
mizer (MGWO) is shown for MLT image segmentation. The proposed technique achieved
superior outcomes compared to other examined approaches. In [40], a novel proposal that
combines the WOA with the Virus Colony Search (VCS) Optimizer (VSCWOA) is given.
The VSCWOA's effectiveness in overcoming image segmentation issues has been proven.
The proposed algorithm has been demonstrated to be very successful. In [41], a neural
network-based method for segmenting medical images has been presented. The authors
of [42] have proposed an improved method for ant colony optimization. The segmentation
outcomes provided by the proposed method are more reliable and superior when compared
to other methods. The authors of [24] used an adaptive WOA and a prominent color compo-
nent for MLT of color images. A combination of lion and cat swarm optimization techniques
offered the best threshold value for efficient MLT image segmentation [43]. Bhavani and
Champa [44] presented a hybrid MPA and Salp Swarm Algorithm (SSA) to achieve optimal
MLT image segmentation. Using an updated Firefly Algorithm (FA) with Kapur’s, Tsallis,
and fuzzy entropy, an MLT image segmentation technique was given in [45]. In the EO
algorithm, an Opposition-Based Learning (OBL) mechanism and the Laplace distribution
were used [46] to create a modified EO method for segmenting grayscale images utilizing
MLT. In [47], an MLT image segmentation technique depending on the moth swarm algo-
rithm was suggested. The image segmentation findings demonstrate that their proposed
technique outperforms the other analyzed algorithms regarding efficiency. Also, in [48],
an improved Artificial Bee Colony (ABC) algorithm-based image segmentation using an
MLT technique for color images has been suggested. Dynamic Cauchy mutation and
OBL enhanced the elephant herding optimization method [49]. The WOA was presented
in [50] to solve the image segmentation problem using Kapur’s entropy technique. The
authors of [51] proposed a new MLT image segmentation technique depending on the
Krill Herd Optimization (KHO) algorithm. Kapur’s entropy is used as a fitness function
that needs to be maximized to reach the optimum threshold values. Furthermore, a new
meta-heuristic algorithm, galactic swarm optimization, has been adapted to tackle image
segmentation [52]. Anitha et al. [53] introduced a modified WOA to maximize Otsu’s and
Kapur’s objective functions to enhance the threshold selection for MLT of color images. This
proposed method surpassed various techniques, such as CS and PSO. In [54], RSA-SSA is a
new nature-inspired meta-heuristic optimizer for image segmentation employing grayscale
MLT based on RSA merged with the SSA. The authors of [55] developed an improved
SSA that combines iterative mapping and a local escaping operator. This method utilizes
Two-Dimensional (2D) Kapur’s entropy as the objective function and uses a nonlocal means
2D histogram to indicate the image information. A Deep Belief Network (DBN), depending
on an enhanced meta-heuristic algorithm known as the Modified Electromagnetic Field
Optimization Algorithm (MEFOA), was presented in [56] for analyzing SC. In [57], an
improved RSA for overall optimization and choosing ideal threshold values for MLT image
segmentation was used. The authors of [58] showed an innovative approach for skin
cancer diagnosis according to meta-heuristics and deep learning. The Multi-Agent Fuzzy
Buzzard Algorithm (MAFBUZO) combines local search agents in multiagent systems with
the BUZO algorithm’s global search ability. During optimization, a suitable balance of
exploitation and exploration steps is enabled. In [59], a new meta-heuristic algorithm for
2D and 3D medical gray image segmentation is proposed based on COVIDOA merged
with the HHOA to benefit from both algorithms’ strengths and overcome their limitations.
The COVIDOA is also used in [60] to solve the segmentation problems of satellite images.
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3. Materials and Methods

This section presents the required materials and methods to develop the proposed
technique. The multilevel thresholding is explained. The objective functions utilized in this
research are also shown.

3.1. Multilevel Thresholding

Image thresholding transforms the grayscale or color image into a binary image, apply-
ing a threshold value to the image’s pixel intensity [61]. Pixels below that threshold convert
into black, and those above it turn white. There are two classes of image thresholding:
Bilevel and multilevel. Bilevel uses a single threshold value (th) to assign each pixel P of
the image to one of two regions (R; and R) as stated below:

PeRyif0K<P<th )
PeRyifth<P<L-1

where L represents the maximal intensity level.
Multilevel, on the other hand, divides an image into numerous separate areas by
employing a variety of threshold values, as seen below:

PeRy if0§P<i'h1,
PeRyif thy <P <thy, ?)
P e R;if thy <P < thi,
P e Ry lf thy_1 < P <thy_4,

where {thy, thy, ..., thy_1} indicates various threshold values.

Maximizing a fitness function may determine the optimal values for thresholds. The
three common thresholding segmentation techniques are Otsu’s, Kapur’s, and Tsallis’s.
Every technique suggests a distinct fitness function that must be maximized to find the
ideal threshold values. The three techniques are explained in the next subsections briefly.
Additionally, red, green, and blue are the three main color components in an RGB image,
so these thresholding techniques are used three times to obtain the best threshold values
for each of the three colors.

3.1.1. Otsu’s (Between-Class Variance) Method

This method is a variance-based technique suggested in [13] to find the optimal
threshold values separating the heterogeneity of an image by maximizing the between-
class variance. It is referred to as a nonparametric segmentation technique that splits
the pixels of the grayscale or color image into various areas based on the pixel intensity
values [62].

Let us suppose that we have L as the grayscale image’s intensity level or each color
image’s channel with N pixels, and the number of pixels with gray level i is calculated by
x;. The gray level’s probability is given as:

c
pPC= X

L
i N,PZ-CZO,Zl,leiC::[ (3)

Bilevel thresholding divides the original image, and the between-class variance of two
categories is determined as:
xC(t)= 0§ +of 4)

o= S (k5 —45)’ (5)

o= wf (5 —4§)° ©
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G-1.
=Yl iPF )
The average level of bilevel classes is shown as follows:

G-11PF
Ho= Zi:O wlc ®)

0

ipC

C G-11P;
H1= 21’:1 jc ©)

1

The following is a representation of the classes” cumulative probability:

-1

wf= L P (10
G-1

wlcz Zi:m Pic (11)

Consequently, the optimal threshold #*C of Otsu is calculated by maximizing the class
variance as:
t'C = argmax (O'OC + af) (12)

The image is categorized into f classes and with f — 1 threshold values. The Otsu
between-class variance is shown as:

() =Y ot (13)

The optimal thresholding values (ti‘ C t;c, .. t;gl) are determined by maximizing

O‘g as follows:

(FC 6L, bE ) =arg {of (AS, 65, 65, ) } 04" <, 7P <L=1 (14)

0§:U§+01C+...+Uyc_l (15)
c c(,c_.c\> c_.c(,c_.c\> c c c c\?
0p = W (P‘o - P‘T) , 07 = Wi (#1 - VT) P Of =Wy (l‘f—1 - VT) (16)
The following are the average levels of f classes:
41 iPF
M= it ¢ (17)
0
t,—1 iPF
M= e (18)
1
pC
c _vL-1 iP
Hfa= Zi:tf_l “’](il (19)

Similarly, when applying Otsu’s method, C = 1, 2, 3, where C stands for the RGB image
channels and C = 1 represents the grayscale image.

3.1.2. Kapur’s Entropy (Maximum Entropy Method)

Another unsupervised automated thresholding approach is Kapur’s method, which
chooses the optimal thresholds depending on the entropy of split classes [15]. The entropy
is employed by computing the probability distribution of the gray-level histogram [63] to
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predict information from an image. The objective function for Kapur’s maximization in
bilevel thresholding is as follows:

x(t) = K§+K§ (20)
where c c
1P P
K§ = -y o) —In~i (1)
0 uf"ef
-1
wy = Yiico B (22)
L1 P¢ P
Kf ==Y ") —=ln—i (23)
0 wp
G-1
wf =Yl PF (24)
C— 1, 2{ 3'1f image is RGB (25)
1, if image gray scale
where
c h
Pr= et o (26)
LX)
The optimum threshold value is as follows:
£;¢(t) = argmax (KS + ch) (27)
Kapur’s multilevel thresholding extension is shown as follows:
-1
x(t) =Y 1, Hf (28)

The image is split into f classes by f — 1 thresholding values. Extension of Kapur’s
entropy for multilevel thresholding image segmentation is stated as:

C C
1 P¢ P
K§ = -y i (29)
T wy w
—1
wi =Yy PF (30)
_, P€  pc
KC — _y U D, i 31
1 Zz:tl W€l (1)
thy—1
wi =) 2, Pf (32)
C C
c_ ti—1 P: P;
Kr=-) : jc nw—lC (33)
] ]
C tiri—1 ¢
wp =)L P (34)

KE . =— i 35

F =L, o (35)
c ZG_l C

C(inl = l':tf,] Pi (36)
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The optimal multilevel thresholding in multidimensional optimization issues is uti-
lized to calculate f — 1 optimum threshold values, t;, tp,..., t 1- Consequently, the
objective function of Kapur’s entropy is presented as follows:

(t; S, t}gl): arg max (Zzy:_ol Kf:) (37)

3.1.3. T’sallis Entropy Method

T’sallis entropy is also called nonextensive entropy. It has the benefit of using the
global and objective properties of the images [64]. Depending on the multifractal theory,
Tsallis entropy can be represented using a common entropic formula:

1_21 1(P)q

Si= 254

(38)
where k denotes the image’s total number of possibilities and g is the T’sallis parameter or
entropic index.

T’sallis entropy can be characterized by a pseudo additively entropic rule based on
Equation (39):

Sq(AC +BC) = 54(A%) +54(BC) + (1 )5, (A)5, (B) (39)

c— { 1,2, 3if RGB image (40)

1if Gray Scale image

Assume that {1,2,..., G} represents the image gray levels and {P; = Py, P,,...,Pg}
is the gray intensity points’ probability distribution. Two classes, A and B, may be cre-
ated for the background and the object of interest, respectively, followed by the supplied
Equation (41).

C C C C C
P(}A, I Pfc,andpg— Pia Tz Po (41)
P PCA PCA PCB’ pCB PCB

P§=

where PC4 = Z PC and PCB = ZG:tH P.C.
Tsallis entropy can be classified as the following for each class:

1— Y (PE/PeY)Y GCBpy_ 1~ S a1 (PE/PP)

SA(H) = ==Lt () 5

(42)

The optimum threshold value for bilevel thresholding may be obtained by using the
objective function with minimal computational effort for the gray level for which this
occurs:

Topi= argmax [quA(t) +SCB(H) + (1 - q)~5,§f‘(t).s,§3(t)} (43)
Subject to the enumerated restriction:

|PCA4 4+ PCB| —1 < 5§ < 1— PS4+ PCB|
where (1) = [SEA(t) + SSB(£) + (1 — g)-SCA(1)-SCB (1] (44)
The formulation mentioned above may easily be expanded for multilevel thresholding
utilizing Equation (45).

STH(E) + SE2(E) + ... + SEM(t
[Tl,Tz,m,Tm]:argmx[ CL(E) 4+ SC2(8) + ...+ SSM (1) +

(1= )-S5 (1)-8E2(1) .. SEM (1 )
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Where 1 C /pC1)1 2 C /pC2\1
Sgl(t)z I-Yin (ljil/P ) , SCZ(t): 1*):i:t1+17(Pi /P ) , and
7 ! 1 46
ey 1-EE (PE/PN) (46)
Sg(t) = T , M=m+1
Subject to the enumerated restriction:
|PC1+PC2|_1<SC1<1_|PC1+PC2”|PC2+PC3 —1<SC2

pCm) 4 pClm+1) (47)

< 1= [P+ PE3|, and [P 4 e —1 < g7 <1 -

Here, in Equation (47), PCl, Pcz, el PC(’”H), corresponding to SCl,SCZ, ey, SCM, can
be obtained using Ty, Ty, . . ., Tin.

3.1.4. Proposed Fitness Function

A hybrid fitness function determines the fitness of COVIDOA solutions in image
segmentation issues. This hybrid function is created by applying weights to the Otsu,
Kapur, and Tsallis functions, as shown in Equation (48).

FHybrid: aFotsy + bFKapur + cFsanis (48)

where g, b, and ¢ €[0, 1] are the weights related to the three fitness functions, anda + b + ¢ = 1.
The suggested fitness function concurrently optimizes the Otsu, Kapur, and Tsallis methods
and carries this out more accurately. We tried several different combinations of 4, b, and ¢
values. We found that the most effective outcomes were obtained with these values: a = 0.6,
b=0.3, and c = 0.1. We carried out some experiments on a collection of skin cancer color
images to prove these values are the best. In Section 5, the results are displayed.

4. COVID Optimization Algorithm with the Proposed Fitness Function

Recently, the population-based optimization method COVIDOA was proposed to
model coronavirus replication as it enters the human body [36,65].
Coronavirus replication comprises four major phases, which are listed below:

1. Virus entry and uncoating

Spike protein, one of the structural proteins of the coronavirus, is responsible for the
particles” attachment to human cells when a person becomes infected with COVID-19 [66].
When a virus enters a human cell, its contents are released.

2. Virus replication

The virus attempts to replicate itself to hijack other healthy human cells. The frameshift-
ing approach is the virus’s method of reproduction [67]. Frameshifting is the process of
shifting the reading frame of a virus’s protein sequence to another reading frame, which
results in the synthesis of numerous new viral proteins, which are subsequently combined
to produce new virus particles. There are several different sorts of frameshifting techniques;
nonetheless, the most common is +1 frameshifting, which is the following step [68]:

m  +1 frameshifting technique

The parent virus particle (parent solution) elements are shifted one step in the right
direction. The first element is lost as a result of +1 frameshifting. The first element in the
proposed algorithm is assigned a random value within the limit [Lb, Ub] in the following
manner:

Sk(1) = rand (Lb, UD) (49)

S¢(2:D)=P(1:D—1) (50)

where Lb and Ub are the lower and upper limits for the variables in each solution, P
represents the parent solution, S is the kth produced viral protein, and D is the problem
dimension.
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3. Virus mutation

Coronaviruses exploit mutation to avoid detection by the human immune system [69].
The proposed algorithm applies the mutation on a previously formed viral particle (solu-
tion) to generate a new one in the following manner:

7 = {r if rand(0,1) < MR 51)

X; otherwise

The symbol X denotes the solution before mutation, Z is the mutated solution, X;
and Z; are the ith element in the old and new solutions, i =1, ..., D, r is a random value
from the limit [Lb, Ub], and MR is the mutation rate.

4 New virion release

The newly formed virus particle exits the infected cell for more healthy cells. In the
proposed algorithm, if the fitness of the new solution is greater than the fitness of the parent
solution, the parent solution is replaced with the new one. Otherwise, the parent solution
is still in place.

The COVIDOA flow chart with the proposed fitness function for MLT segmentation
of skin lesion images is depicted in Figure 1.

Read the
Input test
color Image

Divide the image to
its components (Red,
Green and Blue)

¥

Compute the
histogram of the

R-G-B images
Calculate the Calculate the
probability of proposed fitness

1
histogram function for the 7 > For i= 1:npop, do ]<

Generate initial
random
population

Output the produce new virus
optimal (solution) using
threshold value uniform crossover Yes
v
Apply mutation ( 5
A 4 to the produced
End solution using
Equation (51) No

ﬂ— population using
Equation (48)
Initialize the Select parent
parameters of solution
algorithm Yes ¢
¢ Apply frame shifting to

produce number of
proteins using
Equations (49) and (50)

Combine proteins to

Figure 1. Flow chart of the COVIDOA with proposed fitness function.
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Computational Complexity Analysis

According to the structure of COVIDOA, it mostly involves initialization, fitness eval-
uation, and updating of COVIDOA solutions. Where the number of solutions is N, D is
the dimension of the problem, and T is the maximum number of iterations. The calculation
is as follows: The time complexity for initialization is O(N). Additionally, the COVIDOA
calculates the fitness of each solution with a complexity of O(T x N x D), and the com-
putational complexity of the update of the solution vector of all solutions is O(N x D).
Consequently, the total computational complexity of COVIDOA is O(N x T x D).

5. Experimental Results and Discussion

This section begins with a summary of the datasets utilized for testing. Then, we illus-
trate the parameter settings for the proposed and state-of-the-art algorithms, followed by
the evaluation metrics utilized to compare the outcomes. The numerical outcomes of testing
the proposed algorithm and its competitors are then shown. Finally, we accomplished a
comparative study of the collected outcomes.

5.1. Dataset

This paper uses SC images from the International Skin Imaging Collaboration (ISIC).
This multinational collaboration has created the biggest public archive of dermoscopic skin
images globally [70] and it is used to evaluate the proposed algorithm’s performance. More
than 12,500 images across three tasks are included in this dataset.

Our experiments involve segmenting 10 color images for SC using two, three, four,
and five threshold levels. Those images are selected randomly from the ISIC datasets to
validate the performance of COVIDOA.

Table 1 depicts the histograms of each component and the original image, as red, green,
and blue represent the three components of a color image. It is important to mention that
the taken images are given new names like img1, img?2, img3, img4, and so on.

Table 1. The original SC images and their histogram of constituent colors (red, green, and blue).
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5.2. Parameter Setting

The proposed algorithm’s MLT segmentation outcomes are evaluated using various
criteria and compared to five popular meta-heuristic algorithms. These algorithms are
AOA [71], SCA [72], RSA [73], FPA [74], SOA [75], and GTO [16].

These algorithms were chosen for comparison for the following reasons:

e They have demonstrated their superior capacity to solve several optimization chal-
lenges, particularly image segmentation.

The majority of them are current and have been published in reliable sources.

Their MATLAB implementations are freely accessible on the MATLAB website (https:

/ /matlab.mathworks.com/ accessed on 18 August 2023).

All experiments were conducted using a laptop equipped with an Intel (R) Core (TM)
i7-1065G7 CPU, 8.0 GB of RAM, and the Windows 10 Ultimate 64-bit operating system. All
of the algorithms were created with the MATLAB R2016b developing environment. As
previously stated, all algorithms are tested across 30 independent runs with a population
size of 50 and a maximum iteration count of 100 for each input SC test image. For all
algorithms, the simulation setting is the same.

5.3. Performance Evaluation Criteria

The proposed algorithm’s performance is evaluated by four performance metrics:
MSE, PSNR, FSIM, and NCC [76]. These metrics are summarized below:

5.3.1. Mean Square Error (MSE)

MSE is frequently employed to calculate the difference between the segmented and
original images. It is computed in the following manner:

1

E:
MS M x N

S YR G ) — ) (52)

Here, F(i,]), f(i,]) are the intensity level of the original and segmented image within
the ith row and jth column, respectively. M and N are the image’s row and column numbers,
respectively.


https://matlab.mathworks.com/
https://matlab.mathworks.com/
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5.3.2. Peak Signal-to-Noise Ratio (PSNR)

Another metric known as PSNR is frequently employed to quantify image quality.
It refers to the ratio of the square of the maximum gray level 255%, and the MSE
between the original and separated one is computed as follows:

255°
PSNR = 10| ——
SNR = 10 (MSE) (53)
MSE is computed using the equation mentioned above. Increasing PSNR is necessary
to obtain higher quality.

5.3.3. Feature Similarity Index Metric (FSIM)
FSIM is utilized to compute the structural similarity of two images in the following

manner: ¥ 51(X).PCon(x)
FSIM(F, ) = £x€Q L1 mit 54

D) = L PCuls) oY

where S; (X) indicates the resemblance between the two images, PC is the phase con-

gruence, and () relates to the image’s spatial domain. The FSIM'’s highest possible value,
representing total similarity, is 1. A higher FSIM value enhances the thresholding process’s

performance [77].

5.3.4. Normalized Correlation Coefficient (NCC)

NCC is a metric for determining how closely two images are connected. NCC’s
absolute value varies between 0 and 1. A value of 0 shows no relationship between the two
images, and 1 denotes the most powerful possible relationship. The greater the absolute
value of NCC, the stronger the association between the two images. NCC between the
original image F(i, j) and segmented images f (i, j) is estimated in the following manner:

o TG G ) < f(i,))]

NCC =
VESTENG R ) % £ j)] % EMGTENGRG ) x G )]

(55)

5.4. Experimental Results

This subsection displays the numerical outcomes of testing the COVIDOA to choose
the optimal threshold values utilizing the proposed fitness function. These outcomes are
evaluated against the state-of-the-art AOA, SCA, RSA, FPA, SOA, and GTO algorithms.
The experiments used two, three, four, and five threshold values. We ran the COVID
optimization algorithm with classic Otsu, Kapur, and T’sallis methods, and then the
outcomes of these fitness functions were compared with those of using the proposed fitness
function.

The outcomes are represented in Table 2, and Figure 2 depicts the average. From
these results, we confirmed that the proposed fitness function surpasses all other fitness
functions.

We used the proposed fitness function, as seen in Equation (48). Table 3 displays
COVIDOA segmented images for all SC test images utilized in the experiments. Table 4
displays the graphs illustrating the optimal COVIDOA threshold values for RGB channels
for the last test image for levels 2, 3, 4, and 5.

Tables 5-8 provide the average findings of the corresponding MSE, PSNR, FSIM, and
NCC evaluation matrices. The highest values of the thresholding approach, which produces
the best results, are bolded in these tables. They show the optimal quality segmentation.
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Table 2. The results of the COVIDOA with all fitness functions.

I MSE PSNR FSIM NCC
mage Th

8 Otsu Kapur  T’sallis Hybrid Otsu Kapur T’sallis Hybrid Otsu Kapur T’sallis Hybrid Otsu Kapur T’sallis Hybrid
2 176.899 229458  231.769 244547 13.6755 13.8419 12.5877 12.8173  0.7278 0.7259 0.7268 0.7387 0.9463 0.9030 0.8988 0.9152
Imel 3 201.123  191.807 198.215 196.075 15.1048 154739 17.6411 16.2881  0.7543 0.7320 0.7387 0.7654 0.9365 0.9083 0.9055 0.9238
J 4 153.886 193.375 167.093 196.123  16.5593 17.5392 20.7069 20.9091 0.7577  0.7528  0.7866  0.7999  0.9304 09173  0.9303  0.9372
5 136.530 177.843 197954 162939 19.1578 189927 21.7588 22.6851  0.7868 0.7584 0.8109 0.8179 0.9371 0.9244 0.9396 0.9530
2 229.326 235223  245.039 241.141 14.5593 149518 15273  15.3446  0.6429 0.6352 0.6436 0.6503 0.9584 0.9304 0.9534 0.9627
Ime? 3 230973 234952 231555  222.253 18.0646 16.2142 17.7582 18.1292  0.6773 0.6528 0.6646 0.6688 0.9732 0.9596 0.9799 0.9808
& 4 213.243 211400 215.130 206.814 19.4249 18.6225 19.6770 19.4283  0.7082 0.6696 0.7021 0.7018 0.9836 0.9772 0.9849 0.9852
5 225.660 195.168 198232  186.758 20.7957 19.8970  20.2702 20.6270  0.7367  0.6966  0.7180  0.7244 09872  0.9832  0.9862  0.9879
2 229.326 235223  245.039 241.141 14.5593 149518 15273  15.3446  0.6429 0.6352 0.6436 0.6503 0.9584 0.9304 0.9534 0.9627
Ime3 3 230973 234952 231555 222.253 18.0646  16.2412 17.7582  18.1292  0.6673 0.6528 0.6646 0.6688 0.9732 0.9596 0.9799 0.9808
& 4 213.243 211400 215130 206814 19.4249 18.6225 19.6770 19.4283  0.7082 0.6696 0.7021 0.7018 0.9836 0.9772 0.9849 0.9852
5 172591 187.591 117.673 167.079 17.7406 19.7514  21.058  21.3038  0.7268 0.7090 0.7370 0.7308 0.9444 0.9598 0.9667  0.96804
2 225398 232498 234.029 202.004 13.8852 125221 15.8050 14.4077  0.6709 0.6771 0.6831 0.6717 0.9167 0.7978 0.9205 0.9292
Ime4 3 202.052  224.445 211.753 196.021 17.4387 17.7139 189657 19.5479  0.6943 0.6893 0.7111 0.7169 0.9535 0.9485 0.9594 0.9621
& 4 193.891 222139 212506 187.264 20.2741 18.8596 19.9225 20.7163  0.7443 0.7117 0.7178 0.7359 0.9719 0.9624 0.9676 0.9693
5 158.853 183.872  171.182 21.6327 21.5364 21.5364 21.8322 21.1087  0.7657 0.7505 0.7461 0.7643 0.9748 0.9760 0.9739 0.9763
2 175.242  225.645 231.323 223.039 124456 119108 12.6701 12.8356  0.6563 0.6351 0.6576 0.6830 0.9646 0.9099 0.9613 0.9658
Ime5 3 205.294 223118 220.808 189.994 13.6245 14.7228 154734 15.5796  0.7088 0.6913 0.7326 0.7141 0.9578 0.9657 0.9474 0.9506
& 4 175.611  189.348 208.988 167.488 16.5684 16.4125 20.0959 21.1263  0.7286 0.6869 0.7745 0.7572 0.9641 0.9648 0.9620 0.9692
5 163.711  198.021 150.913 172.097 17.750 182216  22.6659 22.8863  (.7464 0.7092 0.7886 0.8277 0.9706 0.9741 0.9772 0.9802
2 247.319  233.448 239.073 232.398 13.7352  14.2525 14.4127 14.2946  0.6704 0.6500 0.6861 0.6681 0.9436 0.9367 0.9621  0.94803
Ime6 3 224428 235524 227418 221.359 16.2308 16.2704 17.2171 18.3288  0.7005 0.6772 0.7212 0.7161 0.9701 0.9656 0.9790  0.98003
& 4 228.110 222288 213.250 197.527 19.9904 18.8871 19.7375 20.3376  0.7274 0.7152 0.7426 0.7464 0.9825 0.9797 0.9847  0.98443
5 166.596  168.018 173.173  188.119 20.9364 21.0873 21.3780 21.7540  0.7445 0.7456 0.7496 0.7801 0.9858 0.9853 0.9887 0.9884
2 219.250 220.827 234.351 197.279 15.1137 18.7515 18.0671 18.4292  0.6839 0.7035 0.6965 0.7096 0.9146 0.9237 0.9379 0.9415
Ime7 3 210507 213.080 191.698 183.035 20.2030 17.8985 21.1190 21.2213  0.7755  0.6989  0.7290  0.7200  0.9591  0.8945  0.9526  0.9589
& 4 112.010 227143  163.328 148.629 20.4950 20.3347 22.7456  23.1965  0.7654 0.7041 0.7469 0.7731 0.9627 0.9602 0.9563 0.9680
5 131.061  201.400 123.087 126.241 23.0062 21.9584 23.0524 23.8382  0.8116 0.7197 0.8050 0.8041 0.9617 0.9651 0.9369 0.9688




Diagnostics 2023, 13, 2958

16 of 30

Table 2. Cont.

I MSE PSNR FSIM NCC

mage Th Otsu Kapur  T’sallis Hybrid Otsu Kapur T’sallis Hybrid Otsu Kapur T’sallis Hybrid Otsu Kapur T’sallis Hybrid
2 145.128  244.11  244.005 224.643 17.3964 16.5393 164024 16.5517  0.7213 0.6558 0.6601 0.6806 0.7792 0.8071 0.8040 0.8245

Img8 3 152,507 226.214 206.732  179.34  19.1499 183084 20.3699 21.2332  0.7624 0.6933 0.7557 0.7739 0.8436 0.8263 0.8623 0.8704
4 218.206  223.677 181.118 157.058 19.7812  19.1445 22.6370 23.0862  0.7774 0.7077 0.8201 0.8464 0.9114 0.8387 0.8902 0.9064
5 116.378 203.504 172312 117.823 23.5620 21.2489 23.1626  25.2347  0.8702 0.7796 0.8343 0.8712 0.9384 0.8771 0.9005 0.9176
2 216.044 232.309 234950 215.202 159663 17.1397 18.3113 18.8499  0.6649  0.6607  0.6869  0.6962  0.9278  0.9222  0.9501 0.9583

Img9 3 198.979  238.836 229.886 184.955 17.9418 16.6143 18.9293 21.2396  0.6867 0.6671 0.7076 0.7444 0.9495 0.9232 0.9634 0.9729
4 158.772  234.294 221921 157.763 21.4965 18.4320 19.7220 22.6152  0.7671 0.6854 0.7271 0.7872 0.9739 0.9602 0.9671 0.9785
5 121.525 204.242 163.736  134.367  22.886  20.7396  21.4092 23.8510  0.808 07397 07386  0.8225 09789 09712  0.9550  0.9829
2 249483 165.215 243583 170.210 153763 20.3859  19.4787  20.8147  0.7201 0.7388 0.7290 0.7381 0.8960 0.9308 0.9489 0.9470

Imgl0 3 165.470 218479 243311 136.404 21.7684 18.7126 19.4453  23.9158  0.7348 07296 0.7346 0.7617 0.9500 0.9110 0.9509 0.9581
4 172,672  198.025 217.935 133.846 24.6356 21.2853 19.3489 24.9056  0.7969  0.7360  0.7369  0.7672 09614  0.9417  0.9532  0.9665
5 181.790 189.018 206.890 116.888 25.8329 223978 20.8161 252335  0.7139 0.7393 0.7484 0.7814 0.9729 0.9458 0.9451 0.9743
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Figure 2. The average results of (a) MSE, (b) PSNR, (c) FSIM, (d) NCC for the COVIDOA with all
fitness functions.
Table 3. COVIDOA-acquired segmented images at Th = 2, 3, 4, and 5 with proposed fitness function.
Original Image Th2 Th3 Th4 Th5
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Table 3. Cont.
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Table 4. COVIDOA example for segmented image (image 10) and RGB channel histograms computed
atTh=2,3,4,and 5.
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Table 4. Cont.
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Higher mean values for PSNR, FSIM, and NCC indicate a more accurate and effective
algorithm, while the lowest mean value denotes the optimum MSE value.

Table 5 lists the average values for the MSE metric. The best MSE result has the lowest
mean value. It is important to note that COVIDOA surpasses all other algorithms (as
previously indicated), particularly in img7 and img9, which have fewer values with all
threshold levels. The SCA has lower MSE values in img1 (levels 5) and img6 (level 3), as
well as the FPA in img1 (level 4), img?2, and img10 (level 2).

The PSNR values are shown in Table 6 for every algorithm; a higher mean value
implies superior segmentation quality. It should be noted that the COVIDOA surpasses all
other algorithms in most cases.

The FSIM measure’s mean values are displayed in Table 7. This statistic examines and
analyzes how well an image’s features are retained after processing. The SCA presents
superior results in imgl (level 2) and img2 (level 5). Except for a few cases, the test
images are not much improved by the AOA, SCA, RSA, FPA, and SOA. In comparison, the
COVIDOA surpasses other algorithms in terms of FSIM on most test images.

The mean NCC values and NCC outcomes of the proposed technique (COVIDOA)
outperform the other comparable algorithms, as shown in Table 8. The RSA provides a
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better value at only one level in img3 (level 3), GTO in img?2 (levels 2 and 5), and the AOA
in img2 (level 2) and img7 (level 3). The SCA gives higher results in only one image, img1
(levels 2 and 4).

The results of comparing the COVIDOA to other algorithms are shown in Figure 3 for
the overall average values for MSE, PSNR, FSIM, and NCC.

Table 5. Based on the average MSE values, a comparison of COVIDOA and the other chosen

180.4451 249.6355 241.0450 177.0260 193.8249 177.1338 133.8458

algorithms.
Image Th AOA SCA RSA FPA SOA GTO COVIDOA
2 247.6006 246.1469 247.8406 245.1597 246.5855 245.7669 244.5473
Imel 3 225.2764 214.8453 205.2064 212.5436 223.9644 208.1518 196.0748
& 4 221.2930 180.7156 203.4535 141.8333 205.8136 196.2350 196.1226
5 241.1227 144.8201 214.7789 186.0322 198.2510 176.3300 162.9383
2 241.9144 241.8842 246.9748 240.1664 245.1630 242.1664 241.1411
Ime? 3 238.1451 237.3881 237.8582 239.1858 240.1110 239.1467 222.2529
& 4 223.7759 233.3980 226.9811 228.1738 231.0375 220.5672 206.8136
5 245.6072 216.9570 201.0338 205.5512 218.0571 209.0686 186.7584
2 236.8195 236.9835 222.2556 237.1442 237.0373 237.1505 228.0216
Ime3 3 216.8246 230.1775 209.0135 217.5782 217.9692 218.2340 201.2815
& 4 207.5125 207.5971 205.1720 206.8667 207.8523 199.8962 195.8324
5 223.7134 188.6496 190.1130 192.8761 193.0601 188.1727 167.0796
2 227.0835 230.8520 227.5441 230.5200 231.4647 230.5200 202.0041
Imed 3 211.8023 220.8783 216.0401 224.9724 195.7951 221.5360 196.0211
& 4 200.8875 223.9088 219.8616 206.1327 223.6879 216.2579 187.2641
5 247.7828 201.5145 203.8915 206.1327 205.0691 207.6387 171.1820
2 222.5750 229.2426 238.2147 226.4986 227.2117 227.2265 223.0393
Ime5 3 209.4685 230.7308 177.2353 218.2365 226.2237 221.8623 189.9940
& 4 215.9736 231.2013 222.5808 212.2887 218.8509 208.3670 167.4879
5 250.5794 198.7918 182.3691 199.6067 197.7102 198.5641 172.0972
2 232.2780 233.2146 237.3292 235.6143 236.0539 235.6143 232.2780
Ime6 3 225.3670 219.0977 227.9831 226.8610 228.2006 228.8451 221.3586
& 4 215.5507 226.2049 212.0640 217.9596 219.7537 210.2340 197.5274
5 236.4972 226.2049 214.2859 202.7830 204.4251 199.7237 188.1148
2 222.5029 226.2049 248.0666 213.2920 219.6254 215.7291 197.2790
Ime?7 3 212.5238 243.0814 239.0463 217.4714 222.2559 211.3120 183.0348
& 4 189.3138 185.1541 204.6421 202.6493 206.4996 208.6859 148.6285
5 205.7216 186.6668 231.7075 174.5481 219.3802 202.3541 126.2406
2 227.6083 251.3774 219.0853 232.5211 229.8166 229.8120 224.6433
Ime8 3 204.9689 221.0381 247.8927 217.7156 224.2208 216.4100 179.3438
8 4 153.7039 229.0897 214.5952 212.1802 202.8934 208.5816 157.0576
5 163.6398 198.8157 154.5615 207.6764 187.3008 197.6310 117.8226
2 222.6554 224.6326 247.6065 223.4470 224.5672 223.4491 215.2015
Ime9 3 204.5241 228.3561 237.1668 224.3819 214.2435 211.5460 184.9549
5 4 189.5535 219.7749 180.9008 199.3643 219.6227 202.3142 157.7634
5 246.8424 203.0891 187.9011 171.0936 201.3815 198.2314 134.3671
2 193.9262 219.9844 241.2282 167.2653 201.5983 191.9097 170.2101
3 164.1696 251.9099 207.3865 183.4998 195.1959 193.4991 136.4044
Img10 4
5

249.0814 219.0693 239.9401 218.1823 196.4945 152.3470 116.8888
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Table 6. Based on the mean PSNR values, the COVIDOA and the other chosen algorithms are

compared.
Image Th AOA SCA RSA FPA SOA GTO COVIDOA
2 12.6916 12.7582 12.7703 12.8928 12.5227 12.7635 12.8157
Imel 3 15.479 15.6818 15.5330 15.3459 14.6225 15.5920 16.2881
& 4 11.9246 21.1715 18.3366 20.4388 20.7199 19.6530 20.9091
5 14.1807 20.0059 17.0006 21.8298 21.3421 22.9359 22.6851
2 15.2921 15.1074 13.4111 15.1709 14.5427 15.1708 15.3446
Ime? 3 16.6603 17.1524 17.1305 16.8841 16.7627 16.9005 18.1292
& 4 18.1235 17.7695 19.6477 18.5581 18.3501 18.5623 19.4283
5 13.5758 19.5727 18.8905 20.1187 19.6857 20.2480 20.6270
2 10.2965 10.3048 09.9944 10.3140 10.9370 10.3359 10.8181
Ime3 3 14.3920 13.1320 13.1290 14.6335 14.7912 14.9568 16.6610
& 4 14.4746 16.8630 17.2929 19.0142 18.8696 19.0124 19.3445
5 13.8634 17.3687 18.5697 20.7029 20.0024 21.3329 21.3038
2 14.0519 14.0302 14.5456 14.0325 14.0121 14.0325 14.4077
Imed 3 18.1824 18.4383 17.1256 18.3327 18.1885 18.9654 19.5479
& 4 18.8780 17.8194 17.3093 20.0309 18.4881 19.6989 20.7163
5 10.9544 20.4764 18.0280 21.0277 20.6490 21.3457 22.1088
2 12.8383 12.7648 12.2583 12.8072 12.7768 12.7933 12.8356
Ime5 3 14.4969 14.1322 14.8782 15.6127 16.3258 16.4677 15.5796
& 4 16.8143 14.6929 17.1395 20.4125 20.2356 21.0231 21.1263
5 12.4279 20.8377 20.0745 21.7622 21.7227 21.9568 22.8863
2 14.1149 14.2493 12.4859 14.1924 14.2035 14.1924 14.2946
Ime6 3 17.6128 17.5604 15.9501 17.9081 17.8064 18.0124 18.3288
& 4 19.2894 16.3362 18.0414 20.4329 19.2129 19.9823 20.3376
5 13.6432 15.9573 17.5619 21.1660 21.3138 21.5138 21.7540
2 17.8573 9.0647 15.1141 18.1887 18.1174 18.2218 18.4292
Ime?7 3 20.9240 15.7042 18.4234 20.9894 20.7422 20.4210 21.2213
& 4 23.5151 20.3822 18.7204 21.9646 22.1361 22.0069 23.1965
5 18.4159 21.7143 19.3929 22.9927 21.0572 22.8410 23.8382
2 16.3356 13.4726 14.8376 16.4363 16.6193 15.0121 16.5517
Ime8 3 20.7668 16.5391 16.4506 20.4295 20.1469 19.2310 21.2332
& 4 22.6643 16.7415 17.0362 21.4753 21.7739 21.6554 23.0862
5 22.2005 20.0964 23.0482 21.4175 22.7238 22.4057 25.2347
2 18.5839 18.5990 15.9292 18.9314 18.5884 18.6395 18.8499
Ime9 3 20.7089 16.8991 16.5721 19.5291 20.3260 21.0314 21.2396
& 4 21.4919 16.5244 19.9028 21.0434 20.3115 21.9869 22.6152
5 15.8094 15.2637 20.4012 21.9074 21.5602 22.3567 23.8510
2 20.5999 15.2959 18.0531 20.6405 20.4843 20.5994 20.8147
Ime10 3 23.2996 12.6441 19.8027 23.1252 23.9542 23.0295 23.9158
J 4 22.7509 12.7175 18.8998 24.1067 23.5074 24.2329 24.9056
5 15.2400 14.9047 18.5323 22.5299 23.9037 25.0195 25.2335
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Table 7. Based on the mean FSIM values, a comparison of the COVIDOA and the other chosen

algorithms.
Image Th AOA SCA RSA FPA SOA GTO COVIDOA
2 0.7378 0.7389 0.7359 0.7382 0.7230 0.7387 0.7387
Imel 3 0.7586 0.7628 0.7356 0.7627 0.7227 0.7667 0.7654
J 4 0.7506 0.7814 0.7649 0.7734 0.7707 0.7982 0.7999
5 0.7365 0.7861 0.7556 0.8125 0.7608 0.8159 0.8179
2 0.6497 0.6501 0.6586 0.6503 0.6339 0.6503 0.6503
Ime? 3 0.6696 0.6666 0.6610 0.6685 0.6658 0.6683 0.6688
& 4 0.6967 0.6892 0.6825 0.6892 0.6724 0.7002 0.7018
5 0.6284 0.7244 0.6993 0.7168 0.7141 0.7205 0.7244
2 0.6684 0.6675 0.6716 0.6690 0.6524 0.6689 0.6612
Ime3 3 0.6919 0.6560 0.6823 0.6832 0.6906 0.6894 0.6870
& 4 0.6873 0.6975 0.7124 0.7156 0.7134 0.7134 0.7159
5 0.6762 0.7130 0.7365 0.7457 0.7194 0.7432 0.7308
2 0.6588 0.6618 0.6549 0.6623 0.6629 0.6623 0.6717
Imed 3 0.7117 0.7060 0.7022 0.6990 0.6835 0.6936 0.7169
& 4 0.7258 0.6906 0.7113 0.7378 0.7113 0.7151 0.7359
5 0.6525 0.7331 0.7326 0.7312 0.7375 0.7521 0.7643
2 0.6807 0.6828 0.6745 0.6830 0.6827 0.6827 0.6830
Ime5 3 0.7324 0.6673 0.6870 0.7285 0.6942 0.7296 0.7141
& 4 0.7255 0.7066 0.7574 0.7766 0.7721 0.7512 0.7572
5 0.6582 0.7875 0.7831 0.8198 0.8117 0.8100 0.8277
2 0.6680 0.6690 0.6635 0.6716 0.6708 0.6716 0.6681
Ime6 3 0.7140 0.6868 0.7054 0.7161 0.7156 0.7013 0.7161
8 4 0.7397 0.7382 0.7676 0.7423 0.7435 0.7469 0.7464
5 0.6986 0.7468 0.7508 0.7617 0.7722 0.7961 0.7801
2 0.7007 0.6736 0.6888 0.7054 0.7032 0.7051 0.7096
Ime?7 3 0.7142 0.6890 0.7097 0.7138 0.7120 0.7112 0.7200
& 4 0.7320 0.7407 0.7005 0.7415 0.7250 0.7253 0.7731
5 0.7088 0.7406 0.7087 0.7814 0.7403 0.7821 0.8041
2 0.6745 0.5882 0.6317 0.6726 0.6881 0.6780 0.6806
Ime8 3 0.7562 0.6674 0.6525 0.7459 0.7359 0.7532 0.7739
& 4 0.8245 0.6624 0.7052 0.7736 0.7860 0.7801 0.8464
5 0.8077 0.7626 0.8324 0.6869 0.8106 0.8061 0.8712
2 0.6925 0.6916 0.6740 0.6903 0.6869 0.6928 0.6962
Ime9 3 0.7320 0.6903 0.7999 0.7055 0.7234 0.7564 0.7444
8 4 0.7516 0.6767 0.7241 0.7386 0.7219 0.7801 0.7872
5 0.6561 0.6966 0.7493 0.7728 0.7545 0.8210 0.8225
2 0.7364 0.7254 0.7298 0.7374 0.7362 0.7369 0.7381
Ime10 3 0.7437 0.7188 0.7245 0.7454 0.7439 0.7437 0.7617
J 4 0.7687 0.7198 0.7377 0.7507 0.7507 0.7522 0.7672
5 0.7212 0.6696 0.7377 0.7490 0.7844 0.7785 0.7814
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Table 8. Based on the mean NCC values, a comparison of the COVIDOA and the other chosen

algorithms.
Image Th AOA SCA RSA FPA SOA GTO COVIDOA
2 0.9150 0.91607 0.9155 0.9142 0.9125 0.9160 0.9152
Imel 3 0.9105 0.9197 0.9080 0.9231 0.9148 0.9232 0.9238
J 4 0.3242 0.9372 0.9280 0.9271 0.8974 0.9312 0.9372
5 0.9138 0.9420 0.8947 0.9404 0.9417 0.9651 0.9523
2 0.9628 0.9624 0.9504 0.9627 0.9497 0.9628 0.9627
Ime? 3 0.9778 0.9777 0.9785 0.9787 0.9719 0.9788 0.9808
& 4 0.9812 0.9815 0.9794 0.9841 0.9778 0.9821 0.9852
5 0.9483 0.9840 0.9746 0.9872 0.9700 0.9881 0.9879
2 0.9055 0.9060 0.9058 0.9063 0.9064 0.9063 0.9146
Ime3 3 0.9272 0.7407 0.9359 0.9276 0.9215 0.9332 0.9332
& 4 0.9031 0.9299 0.9326 0.9585 0.9515 0.9573 0.9542
5 0.9030 0.9163 0.9452 0.9668 0.9519 0.9728 0.9684
2 0.9162 0.9172 0.9103 0.9174 0.9176 0.9174 0.9292
Imed 3 0.9550 0.9532 0.9499 0.9535 0.9509 0.9364 0.9622
& 4 0.9579 0.9394 0.9201 0.9677 0.9629 0.9578 0.9693
5 0.8117 0.9676 0.9527 0.9757 0.9715 0.6756 0.9763
2 0.9655 0.9641 0.9550 0.9648 0.9627 0.9646 0.9658
Ime5 3 0.9598 0.9351 0.9521 0.9686 0.9664 0.9684 0.9506
& 4 0.9620 0.9117 0.9625 0.9656 0.9674 0.9675 0.9692
5 0.9476 0.9710 0.9682 0.9715 0.9762 0.9754 0.9802
2 0.9459 0.9478 0.9269 0.9478 0.9481 0.9478 0.9480
Ime6 3 0.9773 0.9783 0.9612 0.9796 0.9797 0.9634 0.9800
8 4 0.9820 0.9673 0.9808 0.9850 0.9819 0.9805 0.9844
5 0.9499 0.9498 0.9739 0.9859 0.9854 0.9900 0.9884
2 0.9384 0.7331 0.9254 0.9407 0.9379 0.9408 0.9415
Ime?7 3 0.9589 0.9295 0.9456 0.9576 0.9578 0.9521 0.9589
& 4 0.9636 0.9318 0.9127 0.9629 0.9647 0.9643 0.9680
5 0.9180 0.9506 0.9492 0.9657 0.9606 0.9621 0.9688
2 0.8210 0.7439 0.8228 0.8193 0.8220 0.8159 0.8245
Ime8 3 0.8635 0.8379 0.7984 0.8593 0.8572 0.8501 0.8704
& 4 0.9032 0.7676 0.7643 0.8732 0.8812 0.8784 0.9064
5 0.8846 0.8582 0.8829 0.8790 0.8930 0.8897 0.9176
2 0.9569 0.9574 0.9473 0.9550 0.9566 0.9574 0.9583
Ime9 3 0.9703 0.9285 0.9468 0.9659 0.9694 0.9713 0.9729
8 4 0.9727 0.9261 0.9530 0.9665 0.9691 0.9790 0.9785
5 0.9255 0.8852 0.9727 0.9705 0.9728 0.9799 0.9830
2 0.9402 0.8591 0.9199 0.9406 0.9405 0.9405 0.9470
Ime10 3 0.9579 0.8472 0.9350 0.9500 0.9642 0.9648 0.9582
J 4 0.9552 0.8387 0.8822 0.9629 0.9679 0.9694 0.9665
5 0.8850 0.8219 0.9426 0.9677 0.9420 0.9672 0.9543
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Figure 3. The average results of (a) MSE, (b) PSNR, (c) FSIM, (d) NCC for all algorithms.
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According to Figure 3, the COVIDOA has the lowest average MSE for skin lesion
images. All four measures’ bar charts indicate that the COVIDOA is superior. The highest
PSNR, FSIM, and NCC values produced by COVIDOA reflect the superior caliber of the
segmented images.

6. Conclusions and Future Work

SC is among the most prevalent kinds of cancer; consequently, early detection can
significantly lower the related mortality rate. Image segmentation is essential to any CAD
system for extracting regions of interest from SC images to enhance the classification phase.
One of the most successful and effective techniques for segmenting images is threshold-
ing. This work addresses the challenge of choosing the appropriate threshold value for
segmenting images in MLT. The COVIDOA with the proposed fitness function was ap-
plied to a collection of color SC images. The COVIDOA's performance is validated using
10 skin lesion images and compared to six other meta-heuristic algorithms, AOA, SCA,
RSA, FPA, SOA and GTO using a range of two to five different threshold values. The
performance of the proposed algorithm has been evaluated using the following metrics:
MSE, PSNR, FSIM and NCC. The outcomes of the experiments proved that the proposed
fitness function improves the COVIDOA with classic Otsu, Kapur, and T’sallis fitness
functions for the segmentation issue. According to the results, the COVIDOA surpasses
all other algorithms regarding MSE, PSNR, FSIM, and NCC segmentation measures. The
proposed method may solve various image processing difficulties and improve applica-
tions, including visualization, computer vision, CAD, and image classification. Future
research should widen the examined image dataset and raise the threshold values to obtain
accurate results. Furthermore, the proposed method must be evaluated with other differ-
ent meta-heuristic optimization and deep learning methods to enhance the outcomes of
segmentation techniques.

Future studies might involve combining the innovative COVIDOA with one of the
existing meta-heuristics to address the MLT problem for skin lesion segmentation in color
images. The COVIDOA developed here can solve more complex, real-world optimization
problems. The proposed COVIDOA's accuracy and resiliency may be further evaluated in
various engineering and real-world situations with an unknown search space.
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Abbreviations

SC Skin Cancer

UVR Ultraviolet Radiation

MLT Multilevel Thresholding

COVIDOA  Coronavirus Disease Optimization Algorithm
AOA Arithmetic Optimization Algorithm

SCA Sine Cosine Algorithm

RSA Reptile Search Algorithm

FPA Flower Pollination Algorithm

SOA Seagull Optimization Algorithm

GTO Gorilla Troops Optimizer

MSE Mean Square Error

PSNR Peak Signal-to-Noise Ratio

FSIM Feature Similarity Index Metric

NCC Normalized Correlation Coefficient

CAD Computer-Aided Diagnosis

Al Artificial Intelligence

PSO Particle Swarm Optimization

WOA Whale Optimization Algorithm

CSA Cuckoo Search Algorithm

HHOA Harris Hawks Optimization Algorithm
GWOA Gray Wolf Optimization Algorithm

EOA Equilibrium Optimization Algorithm
COA Chimp Optimization Algorithm

MRFOA Manta Ray Foraging Optimization Algorithm
SMA Slime Mould Algorithm

MPA Marine Predators Algorithm

BWOA Black Widow Optimization Algorithm
MGWO Multistage Grey Wolf Optimizer

VCSs Virus Colony Search

SSA Salp Swarm Algorithm

FA Firefly Algorithm

OBL Opposition-Based Learning

ABC Artificial Bee Colony

KHO Krill Herd Optimization

DBN Deep Belief Network

MEFOA Modified Electromagnetic Field Optimization Algorithm
MAFBUZO  Multi-Agent Fuzzy Buzzard Algorithm
ISIC International Skin Imaging Collaboration
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