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Abstract: One of the most common types of cancer among in women is cervical cancer. Incidence and
fatality rates are steadily rising, particularly in developing nations, due to a lack of screening facilities,
experienced specialists, and public awareness. Visual inspection is used to screen for cervical cancer
after the application of acetic acid (VIA), histopathology test, Papanicolaou (Pap) test, and human
papillomavirus (HPV) test. The goal of this research is to employ a vision transformer (ViT) enhanced
with shifted patch tokenization (SPT) techniques to create an integrated and robust system for
automatic cervix-type identification. A vision transformer enhanced with shifted patch tokenization
is used in this work to learn the distinct features between the three different cervical pre-cancerous
types. The model was trained and tested on 8215 colposcopy images of the three types, obtained from
the publicly available mobile-ODT dataset. The model was tested on 30% of the whole dataset and it
showed a good generalization capability of 91% accuracy. The state-of-the art comparison indicated
the outperformance of our model. The experimental results show that the suggested system can be
employed as a decision support tool in the detection of the cervical pre-cancer transformation zone,
particularly in low-resource settings with limited experience and resources.

Keywords: cervical cancer; vision transformer; ViT; shifted patch tokenization

1. Introduction

Cervical cancer is the second most prevalent cancer affecting the female reproductive
system [1]. To date, it continues to cause significant morbidity and mortality in developing
countries such as China. This has a profound impact on the overall health and quality of
life of women [2]. Cervical cancer originates in the cells that line the cervix, which is the
lower portion of the uterus or womb. The cervix connects the upper part of the uterus
where a fetus develops to the vagina or birth canal. Cancer develops when cells in the body
begin to grow uncontrollably [1]. To gain further insight into how cancer originates, and
spreads, further research and studies may be necessary.

The cervix is comprises two distinct parts, each covered by different types of cells. The
endocervix, which is the opening of the cervix that leads to the uterus and is covered by
glandular cells. The exocervix (also known as the ectocervix) is the outer part of the cervix,
which is visible during a speculum exam and is covered by squamous cells [1,3].

The location in the cervix where the glandular and squamous cells meet is referred
to as the transformation zone. The exact position of the transformation zone can shift as
a woman ages or after giving birth. The majority of cervical cancers develop from cells
within the transformation zone.

The transformation zone cells do not abruptly transform into cancerous cells. Instead,
the cervical cells typically experience a gradual progression from normal to abnormal
changes, which are referred to as pre-cancerous [1-5]. These pre-cancer changes can be
graded via colposcopies divided into three different types or grades (See Figure 1):

Type 1: Cervical intraepithelial neoplasia (CIN);
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Type 2: Squamous intraepithelial lesion (SIL);

Type 3: Dysplasia.

Cervical cancer is known to originate from pre-cancerous cells, but not all women with
pre-cancerous cervical cells will develop the disease [2,3]. In fact, a majority of women with
pre-cancerous cells will not require any treatment, as the cells often regress spontaneously.
However, for some women, pre-cancerous cells may progress to invasive cancer. The timely
treatment of cervical pre-cancers has demonstrated a significant impact in the prevention
of cervical cancer, with nearly all cases being preventable through early detection and
appropriate medical intervention.

Numerous factors can influence the precision of cervical biopsies in clinical practice,
such as the colposcopist’s experience, lesion location, size, depth, and the menstrual status
of the patient [1,6]. Even in the hands of experienced colposcopists, the sensitivity of
colposcopy can vary significantly. Consequently, enhancing the accuracy of colposcopy is a
critical concern in screening cervical cancer.

Deep learning and artificial intelligence in general have positively affected computer-
assisted medical diagnosis, especially with the availability of large quantities of clinical
data that can help artificial intelligence models to achieve remarkable performance on
various medical tasks [7]. Research has indicated that medical artificial intelligence (AI)
and computer-assisted diagnosis (CAD) may aid in the detection of cervical lesions and
enhance diagnostic accuracy through the use of deep learning and medical image process-
ing technology, combined with possible physiological and pathological knowledge [8-10].
Investigations in the areas of optical coherence tomography [11], radiology [12], comput-
erized tomography scan [13], colonoscopy [14], and pathologic slides [9] have suggested
that computer algorithms, trained on a large number of medical images in a convolutional
neural network (CNN), may approach or even exceed the diagnostic accuracy of clinicians.

The objective of conducting cervical cancer screening is to detect any signs of pre-
cancer or cancer at an early stage when it can be more effectively treated and cured.
By undergoing regular screening, individuals can potentially avoid developing cervical
cancer altogether and ultimately, save lives. Hence, screening the transformation zone and
accurately identifying the type of the cervix can be a key element in managing how the
change will occur and whether an abnormality /malignancy transformation may happen.
Thus, in this work, we aim to identify the type of cervix using a Vision Transformer ViT-
based model trained on colposcopy images of the three different types, obtained from the
Kaggle Public cervical cancer screening dataset [15]. For this purpose, we employ the use
of ViT architecture with enhanced features such as Shifted Patch Tokenization and Locality
Inductive Bias adopted from [16], which can help such model improve its performance
even if trained on small datasets [16]. The objective of the study was to develop a new
colposcopy-based diagnostic system that could effectively and precisely detect/identify
the type of the pre-cancerous transformation zone in a colposcopy raw image which can be
a helpful tool for medical professionals to better prevent the occurrence of cervical cancer.
The contributions of the paper include:

The fusion of two powerful technologies- improved vision transformers and shifted
patch tokenization is proposed for cervical cancer classification.

- The structure of the cervical image classification system is proposed. The integration
of transformers with a shifted patch tokenization mechanism is presented and a finer
granularity of analysis is achieved.

- The presented system is designed using a cervical image data set and implemented for
diagnosing cervical cancer. The synergy of vision transformers and shifted patch tok-
enization culminates in an unprecedented methodology for classifying three distinct
types of the cervical pre-cancerous colposcopy images.

- The proposed system has shown better accuracy performance in comparison with
other models which improved the effectiveness of cervical cancer classification system.

This paper is structured as follows: Section 1 is an introduction of the work describing
the objectives and motivations behind this study. Section 2 is the literature review part.
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Section 3 is the materials and methods where ViT and SPT are discussed. Section 4 is
the model development and parameters tuning, while Section 5 discusses the results and
findings of the model. Section 6 is the discussion and results comparison, and, finally,

Section 7 is the conclusion.
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Figure 1. Transformation zone [17].
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2. Related Works

In 2009, Acosta et al. [18] utilized the K-NN algorithm to differentiate normal and
abnormal cervical tissue in aceto-white patterns and obtained a sensitivity of 71% and
specificity of 59%. Later, Asiedu et al. [19] achieved a sensitivity, specificity, and accuracy of
81.3%, 78.6%, and 80.0%, respectively, in distinguishing CIN+ and benign tissues. Liming
Hu et al. [20] established a cohort and conducted a 7-year follow-up using images captured
via cervicography to train and validate a deep learning algorithm, which demonstrated
higher accuracy compared to pap smear. Additionally, Bing Bai et al. [21] applied the
K-means algorithm to automatically segment the cervical region, indicating the feasibility
of cervical segmentation.

In a study more related to ours, [22] proposed a deep learning approach to classify
colposcopy images into three types (type 1, type 2, and type 3) for automatic detection of
cervical cancer. The researchers used a widely used cervical screening dataset to train and
test their model. They introduced a deep network named “Colposcopy Ensemble Network”
(CYENET) which outperformed other models such as VGG16 and VGG19 in terms of
accuracy. The CYENET achieved an accuracy of 92.3% in their testing phase. However, it is
important to note that the number of testing images used in this study was relatively low
(1884), which may have contributed to the high accuracy.

Furthermore, Mustafa and Dauda [23] proposed a deep learning method for classifying
cervical images into healthy or cancerous using three different deep convolutional neural
networks (DCNNs) with various optimizers, including stochastic gradient descent (SGD),
Root Mean Square Propagation (RMSprop), and Adaptive Moment Estimation (Adam). To
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discover the ideal optimizer for obtaining optimal network performance, the model was
trained and tested using malignant and healthy cervical images.

The research papers [24-27] used deep learning-based approaches for classifica-
tion cervical cancers. The study [24] introduces an innovative CAD framework termed
“CerCan-Net” [24] for automating cervical cancer diagnosis. CerCan-Net adopts a unique
approach by employing three lightweight CNN architectures—MobileNet, DarkNet-19,
and ResNet-18—with fewer parameters and shallower depths compared to traditional
models. This strategic selection aims to streamline the classification process and reduce
complexity. A key to CerCan-Net's efficacy is the utilization of transfer learning, harnessing
the power of deep features extracted from the last three layers of each CNN, rather than
relying solely on a single layer’s features. This approach allows for a more comprehensive
representation of the data’s intricacies.

In another approach, a study [25] delves into a crucial and sensitive issue: cervical
cancer’s profound impact on medical, psychological, and social facets of women'’s lives. Fo-
cused on the dataset from the Intel and MobileODT Cervical Cancer Screening competition
on Kaggle, the study tackles both the multi-class classification problem and the multi-label
classification problem while incorporating image size optimization.

The authors start by highlighting the urgency of the cervical cancer problem and its
multidimensional implications. They employ a dataset with updated six-class labels to
formulate their investigations. Notably, they employ state-of-the-art deep neural networks
(DNN:Ss), including standard DNN5s like MobileNetV2 and NASNetMobile, as well as the
EfficientNetB0 model, to address these challenges.

In the realm of multi-class classification, the authors ingeniously leverage pretrain-
ing on the ImageNet dataset to initialize standard DNNs. Their results manifest that
this approach yields improved metrics, highlighting the potential of utilizing compact
DNN versions. This insight holds significance, potentially facilitating resource-efficient
implementations without compromising performance.

Transitioning to the multi-label classification problem, the study adopts the Efficient-
NetB0 model as a case study. The authors explore the efficacy of enhancing metrics through
image size optimization—a noteworthy pursuit in medical imaging. Through meticulous
experimentation, they ascertain that tweaking the input image size produces tangible im-
provements. Notably, they achieve a notable enhancement of mean AUC values, a 2.7-2.8%
increase compared to conventional 224 x 224 pixel sizes. Importantly, this improvement
is observed within a range of standard deviations (0.3-1.8%), enhancing the reliability of
their findings.

A particularly intriguing facet of the study is the proposal of an innovative strategy
for image size optimization. By amalgamating metrics derived from diverse DNN training
regimes (with and without data augmentation) and validation/testing procedures for
varying image sizes, the authors present an effective approach. Extrapolating trends from
these metrics’ variations, they lay the foundation for potential image size optimization in
diverse contexts beyond cervical cancer classification.

3. Materials and Methods
3.1. Vision Transformers (ViT5)

Transformers, originally developed for natural language processing (NLP), have been
found to be promising for image identification and understanding [28]. However, due
to the large number of pixels in images, it was challenging to apply transformers to this
task since every pixel relates to every other pixel in a self-attention mechanism, unlike
text [29]. Recent studies have proposed various approaches to incorporating transformers
into computer vision, including combining convolutional neural networks (CNNs) with
self-attention [30], and employing transformers on top of CNNs to process visual tokens
and generate powerful features [31].

One notable contribution in this area is the Vision Transformer (ViT) introduced by
Dosovitskiy et al. [32], which partitions images into patches that are treated as tokens
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and converted into embeddings to be processed by a transformer encoder. This approach
allows models to learn image structure independently, and class labels for the image can be
predicted [32,33]. The ViT encoder consists of several blocks, each with a normalization
layer to adjust to training image differences, a multi-head attention layer to create attention
maps, and a multi-layer perceptron (MLP) to process the embeddings. The last MLP
block, known as the MLP head, produces the output, which can be subjected to Softmax to
produce the probabilities of the categorization labels [34].

This structure enables the ViT to retain more spatial information than CNNs, which can
help it learn high-quality intermediate representations with large amounts of data. Atten-
tion maps, similar to those found in conventional computer vision literature
(e.g., saliency maps and alpha-matting) [34,35], are created from the embedded visual
tokens, allowing the network to focus on the most critical areas of the image, such as
objects. The second layer of the MLP classification network usually consists of two layers
of Gaussian Error Linear Units (GELU) [34].

3.2. Shifted Patch Tokenization (SPT)

The Vision Transformer (ViT) [32] has been shown to be a data-hungry model, re-
quiring pretraining on large datasets such as JFT300M and fine-tuning on medium-sized
datasets like ImageNet to surpass state-of-the-art convolutional neural network (CNN)
approaches. However, when fine-tuned on small datasets, ViT’s performance suffers due
to the lack of locality inductive bias in its self-attention layer. In contrast, CNNs leverage
spatial sliding windows to achieve better results with smaller datasets. Nonetheless, the
conventional ViT can be outperformed by CNNs when dealing with small datasets.

To address this issue, a recent study [16] proposes a modified ViT architecture that
incorporates shifted patch tokenization (SPT) and locality self-attention (LSA) to enhance its
performance on small datasets. The SPT technique involves moving the image diagonally
and combining the original and shifted images to extract patches, which are then flattened
and projected after normalization. The proposed architecture has been shown to perform
better than CNNs and regular ViT on small datasets, as demonstrated by the Cervical
screening dataset used in the study. The application of SPT and LSA allows ViT to effectively
capture local correlations between image pixels, leading to improved performance even
with limited data.

Figure 2 illustrates the process of shifted patch tokenization applied on the Type 2
colposcopy image dataset, while Figure 3 shows the shifted images of a sample Type 3
colposcopy image.

The primary difference between a regular Vision Transformer (ViT) and the one with
patch tokenization is the way the input image is processed. In a regular ViT, the input image
is typically split into non-overlapping patches, and each patch is treated as a sequence of
flattened pixels, which are then fed into the transformer network [34]. The transformer
network then processes these patches to learn relationships between different patches and
make predictions.

In contrast, a ViT with patch tokenization further preprocesses, each patch using
adding an additional “class” token at the beginning, similar to how a BERT [35] model
processes text by adding a “start of sentence” token at the beginning of each sentence
as shown in Figure 4. This class token represents the entire patch, and its embedding is
learned along with the embeddings for the individual pixels within the patch.

By adding this class token, the ViT with patch tokenization is able to incorporate
spatial information about the position of each patch within the image, which can improve
its ability to recognize complex visual patterns. Additionally, using patch tokenization
can reduce the number of patches required to represent an image, making the ViT more
computationally efficient.
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Figure 3. The shifted images of one Living room images during the process of shifted patch tokeniza-
tion. (a) Original image, (b) left-up, (c) left-down, (d) right-up, (e) right-down.
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Figure 4. A sample of three different types of cervical pre-cancerous conditions from the dataset [15].
Type 1: Cervical intraepithelial neoplasia (CIN), Type 2: Squamous intraepithelial lesion (SIL),
Type 3: Dysplasia.

3.3. Dataset Description

The dataset used for training and testing the employed cervical cancer screening
model consists of 8215 colposcopy images obtained from the public cervical screening
data collection dataset by Intel and Smartphone ODT [15]. Different types of cervix were
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considered. The raw colposcopy images are classified by the experts, considering the
transition zone visible in every image. These images include the three types of cervical
pre-cancerous transformation zones. These images were then split into a 70:30 learning
scheme, where 70% were used for training the network while the remaining images were
used for evaluation purposes. A total of 5750 images were used for training and the rest for
testing. Table 1 shows the learning scheme used for training and testing the models.

Table 1. Total number of images collected from the dataset.

Ratio Total Number of Images
Total 100% 8215
Train 70% 5750
Test 30% 2464

The images were all resized to 224 x 224 x 3 pixels for the reduction in computational
costs. Figure 4 shows a sample of colposcopy images of the three different types of cervical
pre-cancer conditions. In this study, we chose colposcopy as the primary modality for
cervical cancer screening due to its distinct advantages over other available modalities.
Colposcopy offers several unique features that align with the objectives of our research and
provide a comprehensive assessment of cervical health. These reasons why we selected
colposcopy over other modalities are as follows:

1.  Direct Visual Examination: Colposcopy allows for a direct visual inspection of the
cervix under magnification. This facilitates the identification of subtle morphological
changes and abnormalities that might not be visible with other screening techniques.

2. Precise Localization: One of the key strengths of colposcopy is its ability to accu-
rately localize abnormal areas on the cervix. This precise targeting is essential for
guiding biopsies and subsequent interventions, ensuring accurate diagnosis and
appropriate treatment.

3. Real-Time Assessment: Colposcopy provides a real-time evaluation of cervical tissue,
enabling immediate decision-making regarding further investigations or interventions.
This rapid assessment is critical for timely patient management.

4.  Tissue Biopsy: Through colposcopy, targeted biopsies can be performed to obtain tis-
sue samples from suspicious areas. This biopsy-guided approach enhances diagnostic
accuracy and aids in determining the severity and nature of cervical abnormalities.

5. Clinician Expertise: Colposcopy is typically conducted by trained healthcare profes-
sionals with expertise in visual assessment. Their experience contributes to accurate
interpretation and reduces the risk of misdiagnosis.

3.4. Evaluation Metrics

When evaluating a machine learning model, numerous metrics such as accuracy,
precision, recall, and Fl-score are used to analyze its performance. These metrics provide
information about many aspects of the model’s generalization capabilities and help to
determine its overall efficacy [16].

In this work, we used four different metrics to evaluate our model: Accuracy, Precision,
Recall, and F1-Score.

Accuracy is a fundamental evaluation metric in classification tasks as it quantifies the
proportion of correctly identified cervical types among all three types. However, accuracy
alone may not always be enough to evaluate a model’s performance, especially when
the classes are imbalanced, or the costs of false positives and false negatives fluctuate
dramatically and can have a negative impact on the diagnosis results, especially in the
medical field. Hence, we also used more metrics that opt to show the real performance
of the employed model and for a fair comparison with the literature, in classifying the
colposcopy images into three types.
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Accuracy = N ¢y
T
where N is the number of correctly identified colposcopy image types during testing, T is
the total number of images used for testing the model.

Precision is a metric that measures the proportion of true positive predictions made by
the model out of all positive predictions. It focuses on the accuracy of positive predictions,
stressing the model’s capacity to avoid false positives. A high precision score indicates that
the model is good at identifying positive cases while producing a few false alarms.

The fraction of true positive predictions out of all real positive instances in the dataset
is measured by the recall, also known as sensitivity or true positive rate. Recall highlights
the model’s capacity to correctly detect positive instances, ensuring that fewer positives are
missed. A high recall score suggests that the model is good at capturing positive events
and has a low rate of false negatives.

Fl-score is a metric that combines precision and recall into a single metric to provide a
balanced measure of the model’s performance. It is the harmonic mean of precision and
recall and ranges from 0 to 1, with 1 being the highest attainable result. F1-score is especially
beneficial when the dataset is skewed since it takes into account both false positives and
false negatives.

Specificity is a measure that can indicate the accuracy of a test in correctly identifying
those without a particular condition (true negatives).

The Mathew correlation coefficient (MCC) stands out as an optimal singular classifi-
cation metric, serving to condense the information presented in a confusion matrix or an
error matrix. Within a confusion matrix, four elements are encompassed.

TP
Precision = ———— 2
recision TP+ EP )
TP

F1 — score — 2 x Precz.szlon X Sensz.tz.w'ty @)

Precision + Sensitivity

e TN
ty = v
Specificity TN - EP ©)
T TP—-F FP

MCC — N x N x ©)

\/(TP+FP)(TP+ FN)(TN + FP)(TN + FN)

where TP (True Positive) represents the count of correctly predicted positive instances, while
TN (True Negative) represents the count of correctly predicted negative instances. On the
other hand, FP (False Positive) indicates the count of wrongly predicted positive instances,
and FN (False Negative) indicates the count of wrongly predicted negative instances.

4. Model Development and Parameters

Several critical phases were involved in developing our vision Transformer (ViT) with
shifting patch tokenization for classifying cervical pre-cancerous colposcopy images into
three types. First, images were collected, reprocessed, and divided into their appropriate
types. To maintain uniformity in the input data, the images were scaled to a constant
resolution of 224 x 224 x 3 pixels. The ViT architecture is then built, following the basic
16 x 16 patches size structure with one Encoder block. This structure separates the input
image into equal-sized patches, each of which represents a token in addition to the class
token which is added at the beginning of the input sequence and carries information
about the whole image. During the self-attention computation in the transformer layers,
the class token interacts with the patch tokens, allowing the model to attend to relevant
features and make predictions based on the global context of the image. The patch tokens
are then supplied into the Transformer model, along with their positional encodings.
However, in our case of shifted patch tokenization, a modification is introduced to enhance
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the Transformer’s ability to capture spatial information. In contrast to the regular ViT
which uses non-overlapping patches, the patches in our case are shifted by a certain
stride to partially overlap. This allows the model to capture contextual information across
neighboring patches, thus improving its understanding of spatial relationships in the image.

Figure 5 shows the Vision Transformer with shifted patched tokenization architecture.
As seen, our Transformer encoder consists of a multi-head attention mechanism, normal-
ization layers, and multilayer perceptron (MLP). The output of this encoder is then passed
through a feed-forward neural network, which allows the model to learn correlations and
patterns in the image and classify them using SoftMax activation function.
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Figure 5. The vision Transformer architecture for classifying cervical colposcopy images into
three types.

5. Results

The training procedure begins once the model architecture is defined. Using a stratified
sample strategy, the labeled dataset is divided into training and validation sets. The training
set is used to iteratively optimize the model’s parameters. The goal of optimization is to
minimize a preset loss function, categorical cross-entropy, which quantifies the difference
between the predicted and true labels. It was critical to divide the dataset into training
and testing phases. All divisions were carried out with the goal of dividing the three
different colposcopy classes as evenly as feasible. As a result, data leakage and imbalance
between the training and testing sets are avoided. The training step was repeated for
each hyperparameter combination that was generated during the subsequent optimization
phase. The purpose of hyperparameter adjustment was to increase model efficacy and
decrease classification errors. The dataset was divided into 70% training and 30% testing. It
should be noted that the training and testing pipelines for the developed ViT model were
built using the TensorFlow 2.5 framework.

The Adam optimization method has been shown to outperform its competitors among
those now available. As a consequence, the Adam optimization strategy with a gradient
decay value of 0.9 was utilized to train the model. The initial learning rate was set to
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0.001 and the regularization factor was set at 0.0001. The model was eventually trained for
100 epochs with a minibatch size of 64 due to memory restrictions.

Figure 6 depicts the best model performance’s training accuracy and loss. The model’s
lowest error occurred at epoch 100, when learning halted due to the implementation of the
Early Stopping method during training to prevent overfitting.
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Figure 6. Accuracy and loss variations during the training process. (a,b) show the loss and accuracy
variations over the number of epochs of the ViT model, while (¢,d) show the loss and accuracy change
in the improved ViT with SPT.

As previously stated, the model was evaluated on 30% of the data, and to demonstrate
the practicality of the SPT, we also trained and tested a regular ViT without SPT on the same
dataset. The testing results of the regular ViT and the ViT augmented with shifting patch
tokenization and location self-attention are shown in Table 2. It is widely acknowledged
that the use of SPT increased the ViT’s performance. Figure 7 shows some type 3 colposcopy
images which were incorrectly predicted as Type 1 and Type 2. The reason the Type 3 class
has more incorrectly classified images than other classes could be that this class has more
complex images where devices or other objects (metal objects) are included in the image
which makes it hard for the model to extract the relevant features to such class. Moreover,
this can be due to the complexity and similarity of Type 3 compared to Type 1 and 2
colposcopy images. Figure 7 shows some of the incorrectly predicted colposcopy images.
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Table 2. The performance of the model during testing.

ViT with SPT and LSA
Accuracy 91.02%
Precision 91%
Specificity 90%
Recall 92%
Fl-score 94%
Mathew Coefficient 0.82

(a) Label: Type 3 (b) Label: Type 3
Predicted label: Type 1 Predicted label: Type 1

(c) Label: Type 3 (d) Label: Type 3
Predicted label: Type 2 Predicted label: Type 2

Figure 7. A sample of incorrectly predicted type 3 colposcopy images: (a) Type 3 image predicted
as Type 1, (b) Type 3 images predicted as Type 1, (¢) Type 3 images predicted as Type 2, (d) Type 3
images predicted as Type 2.

To gain a better understanding of the model’s performance, we further analyze activa-
tion maps that indicate the specific areas the model concentrated on while making grading
decisions for each image (refer to Figure 8). To compute and visualize these activations, we
utilized a technique called gradient weight class activation mapping (Grad-Cam). These
activation maps employ heatmaps, where regions suspected to be associated with a pre-
dicted class are displayed using a jet colormap. In this colormap, the areas with the highest
activation are depicted as deep red, while the areas with the lowest activation are shown as
deep blue.
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Figure 8. The Grad-CAM technique, based on the ViT with SPT (Shifted Patch Tokenization), was
utilized to obtain localizations on testing cervical colposcopy images. In the presented visualizations,
the first row showcases the original images, while the second row displays the corresponding
classification activation maps overlaid on the images. These activation maps highlight the regions
within the images that contributed most significantly to the classification decision made by the model.
The colors in a Grad-CAM heatmap usually range from red-to-blue color scale, where red signifies
the highest importance and blue signifies the lowest importance. The intensity of the color represents
the degree of importance.

6. Discussion
6.1. Results of Comparison

Cervical cancer is the major cause of cancer death in poor nations among women [1].
The condition can be effectively treated if detected early [3]. As a result, computerized
cervical screening to diagnose the transformation zone has a significant clinical impact in
underdeveloped nations, particularly in locations where medical resources are sparse.

Cervical cancer screening is considered a critical task as it benefits patients to prede-
fine their pre-cancerous transformation zone and find the suitable treatment at the right
time [1,5]. A growing number of researchers have produced promising results when using
deep learning technologies to classify cervical cancer [7,36-38] or to help in predicting its
occurrence [37,38]. However, there are large discrepancies in classification performance
among researchers, with accuracy, sensitivity, and specificity ranging from 50 to 99, 60-98,
and 70-98, respectively [7,37,38].

This study aims to introduce a simple, yet effective Vision Transformer-based model
trained to surpass the performance of other complex architectures proposed for identify-
ing cervical pre-cancerous types from colposcopy raw images. Our approach involved
enhancing the ViT architecture with SPT, which resulted in an impressive overall accuracy
of 91.02%, precision of 91%, and Fl-score of 94% (as shown in Table 2) for classifying
cervical pre-cancerous types. This performance is highly promising, as our model achieved
comparable results to other related studies (as demonstrated in Table 3) when considering
accuracy as the comparative metric, which was the most commonly reported metric in
previous studies.
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Table 3. Comparative results.

Method Dataset Accuracy
Mustafa and Dauda (2019) [23] ~ Adam based CNN Raw colposcopy 90%
images
Yuan et al. (2020) [7] ResNet Histopathological 84.1%
Liu et al. (2021) [37] ResNet Raw colposcopy 80.7%
images
Peng et al. (2020) [38] ResNet Raw colposcopy 80.4%
1mages
Peng et al. (2020) [38] DenseNet Raw colposcopy 76.4%
images
Peng et al. (2020) [38] VGG16 Raw colposcopy 86.3%
images
Current research (Our paper) ViT with SPT Raw colposcopy 91%

images

Furthermore, the results presented in Table 3 demonstrate that our trained Transformer
model’s accuracy aligns with state-of-the-art studies in grading cervical pre-cancerous
colposcopy images. Despite the simplicity of our proposed transfer learning approach,
we have demonstrated that with a well-curated dataset and a sophisticated shifted patch
tokenization technique applied to input images, Vision Transformer can be successfully
utilized in medical image diagnostic research. In the pursuit of innovative solutions,
this study presents a pioneering approach to cervical cancer pre-screening. The core
novelty resides in the strategic fusion of two powerful technologies: improved vision
transformers and shifted patch tokenization. The synergy of these elements culminates in
an unprecedented methodology for classifying three distinct types of cervical pre-cancerous
colposcopy images.

The primary contribution of this study lies in the creative adaptation of vision
transformers—a technology initially formulated for image classification tasks—into the
realm of cervical cancer diagnosis. By enhancing these transformers with a shifted patch
tokenization mechanism, a finer granularity of analysis is achieved. This granular insight
allows for the classification of subtle differences among pre-cancerous colposcopy images,
a feat that was previously challenging with traditional methodologies.

In summary, our work offers the following results:

e Surpassing the performance of several state-of-the-art techniques used for auto-
matic grading of cervical pre-cancer types from colposcopy images, achieving higher
accuracy compared to previous studies [7,37,38] conducted on two different col-
poscopy datasets.

e Demonstrating that selecting an appropriate, efficient, yet simple model architecture
can yield better results than relying on highly complex architectures [23,37,38], or
using transfer learning for grading cervical pre-cancer types.

e  Presenting the activation map using Grad-Cam, which serves as an additional tool for
diagnosing KOA (knee osteoarthritis).

e  Publicly releasing our model architecture to ensure reproducibility and facilitate
further research in the field.

6.2. Limitations and Challenges

The primary goal of this CAD is to assist colposcopists in improving their diagnostic
abilities, not to replace them. The CAD diagnosis result is viewed as a “second set of
eyes” of human colposcopists, and human colposcopists are ultimately responsible for the
final diagnosis result. Despite the computer-aided diagnosis (CAD) excellent performance
in colposcopy imaging, there are still significant problems and obstacles to overcome.
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Colposcopy raw images for patients with cervical canal lesions and Type 3 transformation
zone must still be taken in more appropriate methods where no gadgets or other objects
can be visible.

In this work, we analyzed three types of transformation zone which all have some
very similar features, particularly Type 3 which was challenging for the model to be graded
distinctly due to the complexity of the images found in that category and the similarity
between its images and images from other types. Despite the multi-head attention of our
model, it is still a data hungry model and to grasp the features needed for making the
optimum possible efficiency, such model still needs a huge number of images to train. We
attempted to solve this problem by embedding the shifted patch tokenization techniques
into our model architecture which helped in achieving better accuracy with a relatively
small dataset, however training this model on a larger dataset can more likely lead to a
better generalization capability which can tackle some challenges faced during testing such
as identifying images with metal objects inside, or similar features images (Type 3).

Finally, this study is retrospective research. Prospective studies are required to validate
the performance of our model. Fourth, the clinical characteristics we included in the study
were insufficient; smoking history, age at first sex, and number of sexual partners should
also be considered. Figure 9 shows the confusion matrix of the best result achieved by our
ViT with the SPT model. Figure 10 shows the Receiver Operating Character (ROC) and
Area Under Curve (AUC) of the three cervical colposcopy Types.

Confusion Matrix
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Figure 9. Confusion matrix of the best result for our three classes ViT with SPT model.

Receiver Operating Characteristic

1.0
08
L
& 08
]
=
= /
S 04/ /
o /
]
=
= o2 .
— ROC curve of the Type 1 (AUC = 0.91)
/ ROC curve of the Type 2 (AUC=0.87)
00 -~ ROC curve of the Type 3 (AUC=0.81)
00 02 04 06 08 1.0

False Positive Rate

Figure 10. Receiver operating character (ROC) and area under curve (AUC) of the three cervical
colposcopy types.
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7. Conclusions

In this study, we created a Vision Transformer-based classification system that can
assist colposcopists in recognizing cervical precancerous colposcopy image types. Despite
the small dataset on which the model was trained, our model architecture incorporated
the use of shifting patch tokenization, which helped improve its performance. The final
evaluation results of the model showcased the potential for providing an objective diagnos-
tic foundation for colposcopists and yielding clinical application value. Moving forward,
our future endeavors will involve collecting multicenter data and conducting more com-
prehensive research. The aim is to further refine and adapt this model for clinical practice
by incorporating additional metrics alongside the colposcopy images. This expansion will
enable a more comprehensive and robust analysis, enhancing the model’s overall utility
and effectiveness in real-world medical settings.
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