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Abstract: Parkinson’s disease (PD) is a chronic and progressive neurological disease that mostly
shakes and compromises the motor system of the human brain. Patients with PD can face resting
tremors, loss of balance, bradykinesia, and rigidity problems. Complex patterns of PD, i.e., with
relevance to other neurological diseases and minor changes in brain structure, make the diagnosis
of this disease a challenge and cause inaccuracy of about 25% in the diagnostics. The research
community utilizes different machine learning techniques for diagnosis using handcrafted features.
This paper proposes a computer-aided diagnostic system using a convolutional neural network
(CNN) to diagnose PD. CNN is one of the most suitable models to extract and learn the essential
features of a problem. The dataset is obtained from Parkinson’s Progression Markers Initiative (PPMI),
which provides different datasets (benchmarks), such as T2-weighted MRI for PD and other healthy
controls (HC). The mid slices are collected from each MRI. Further, these slices are registered for
alignment. Since the PD can be found in substantia nigra (i.e., the midbrain), the midbrain region of
the registered T2-weighted MRI slice is selected using the freehand region of interest technique with
a 33 × 33 sized window. Several experiments have been carried out to ensure the validity of the CNN.
The standard measures, such as accuracy, sensitivity, specificity, and area under the curve, are used
to evaluate the proposed system. The evaluation results show that CNN provides better accuracy
than machine learning techniques, such as naive Bayes, decision tree, support vector machine, and
artificial neural network.

Keywords: Parkinson’s disease; convolutional neural networks; MRI

1. Introduction

Parkinson’s disease (PD) is one of the brain diseases that occur due to disorder in the
neurological system of the brain. The thalamus is a region in the human brain that contains
neurons and has an important role in transmitting sensory information to the brain. Another
region of the human brain is the substantia nigra, which contains dopaminergic neurons.
Dopamine, a neurotransmitter essential for motor coordination and control, is produced
and released by these neurons [1]. Dopamine provides signals to the brain and other parts
of the body related to movement and coordination. During Parkinson’s disease, dopamine
chemical generation decreases and causes neuron death [2]. Parkinson’s disease symptoms
include shakes, slowness in muscle movement, stiffness, imbalance, or postural instability.
There are some other symptoms as well, such as slowness in thinking, voice disorder,
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fatigue, anxiety, and depression. Sleep may also become disturbed and concentration may
be lost [3]. There is no medical lab or medical test to diagnose this disease [4]. Traditionally,
medical experts have used past records and neurological investigations. However, this
approach is not that accurate because of many reasons and similar neurodegeneration
diseases. It is difficult to diagnose after much loss of dopamine chemicals. The correct
detection of PD is very important. If a patient is diagnosed as healthy, with time, this
disease becomes worse, which is difficult to control. Machine learning is widely used in
many medical disease diagnoses, like heart disease detection, cancer detection, Alzheimer’s
disease detection, and many more. Regarding PD, there are many symptoms that can
be present in a Parkinson’s disease patient. These symptoms or features can be age,
voice, brain images, etc., in different patterns. So, on the basis of these features, we can
classify this disease as PD if a patient has these features or symptoms by using machine
learning techniques. In the current era of technology, the trend of making everything
automated has been started, which is reaching medical diagnosis as well. Automation can
increase the speed and precision of medical diagnosis. Healthcare professionals can gain
from the helpful decision making assistance that automated technologies can provide. By
employing vast amounts of medical information and data, these technologies can assist
physicians in making informed decisions, providing likely diagnoses, and prescribing
appropriate tests or treatments. This can help in standardizing diagnostic processes,
ensuring consistency in evaluations, and reducing diagnostic variability. These tools can aid
in the early identification and prevention of sickness. Automation enables scalability and
improved accessibility of medical diagnostics. Different automated and semi-automated
systems have been developed for disease classifications [4–9]. In the same way, different
researchers have attempted to classify PD by using machine-learning-based techniques.
Most of these techniques are suport vector machine, neural network, Bayesian learning,
decision tree method, etc. In articles [10–12], different machine-learning-based approaches
that have been applied on people with PD are discussed. A research work in [13] applied the
random forest approach on a dataset adopted from ADRC, which contains voice recordings
of people with PD and healthy controls. The simulation results showed a 99.25% accuracy
rate. However, this technique is not applied on different features and datasets.

Parkinson’s Classification Based on Machine Learning (ML) and Deep Learning (DL) Techniques

This section is dedicated to recent literature on Parkinson’s classification using different
machine learning (ML) and deep learning (DL) techniques. Most of the techniques are fully
automated, while some are semi-automated.

A work in [14] proposed a novel intelligent model using DL techniques that analyzes
gait information. In order to build deep neural network architecture, a 1D convolutional
network is used. The model receives 18-ID signals from foot sensors, which measure
vertical ground reaction force (VGRF). The algorithm is tested on Parkinson’s detection and
prediction of severity of Parkinson’s. The authors claimed an accuracy of 98.7% achieved
by the proposed model.

In [15], the authors introduced an intelligent system that can detect PD from vowels.
The features from the vowels are extracted by using singular value decomposition (SVD)
and minimum average maximum (MAMa) tree. Further, 50 distinctive features are selected
using feature selection techniques. For classification purposes, they used KNN classifier
and obtained 92% accuracy.

In [16], they presented a CNN-based model for classification of PD and HC from
neuromelanin-sensitive magnetic resonance imaging (NMS-MRI). Neuromelanin-sensitive
MRI is a medical imaging technique that allows experts to study the abnormities with
detail in substantia nigra pars compacta (SNc). The dataset used in this study comprises
the NMS-MRI of 45 subjects in total, where 25 are PD and 35 are HC. The authors claim a
superior testing accuracy of 80%.

In [17], the authors proposed a novel intelligent system, where all regions of the brain
are covered by a network. Feature vectors are collected from every region of the brain and
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random forest is used to select relevant features. Lastly, support vector machine is applied
in order to combine all the futures along with the ground truth. This model is trained and
tested on the Parkinson’s Progression Markers Initiative (PPMI) dataset, including 169 HC
and 374 PD subjects. The authors claimed an accuracy of 93%.

The article in [18] proposed a machine-learning-based technique to diagnose Parkin-
son’s disease by developing a multilayer feed forward neural network (MLFNN). They
obtained the dataset from Oxford Parkinson’s datasets, which include the voice measure-
ments of 31 subjects, where 21 of them are PD patients, while rest of the subjects are healthy
controls. In total, eight different attributes on the basis of frequency (tremor) are selected.
For classification, the k-means algorithm is used. The simulation results showed sensitivity
83.3%, specificity 63.6%, and accuracy 80%.

In [19], another model of PD classification was introduced. The dataset used in this
study is adopted from the UCI repository. The swarm optimization technique has been
applied for features extraction, while naive Bayes has been applied for classification. The
authors claimed 97.5% accuracy.

In [20], the authors used non-motor features for diagnosis purposes of PD. These fea-
tures are the collection of olfactory loss, sleep behavior disorder, and rapid eye movement
(REM). Further, the non-motor features were combined with dopaminergic imaging mark-
ers and cerebrospinal fluid measurement features. The dataset used in the experiments
was obtained from PPMI, in which 401 were PD subjects while 183 were healthy controls.
Boosted tree, SVM, random forest, and Bayes were used for classification purposes. The
results showed 96.4% in terms of accuracy with SVM. In the literature, it was studied that
non-motor symptoms, including cognitive decline, trouble sleeping, mood problems, and
autonomic dysfunction, may show up in the early stages of Parkinson’s disease (PD), even
before the appearance of motor symptoms. By considering non-motor traits in addition to
motor symptoms, clinical experts can make a more accurate and speedy diagnosis, leading
to appropriate treatment and therapy. In addition to Parkinson’s disease, other neurologi-
cal illnesses can also cause non-motor symptoms. The specific pattern and combination
of non-motor symptoms can assist differentiating PD from other disorders to aid in the
differential diagnosis process. In PD, non-motor symptoms could manifest before those
that are motor.

In [21], the author proposed a novel intelligent model for classifation of PD. This
approach is based on GA)-Walvet kernet(WK)-Extreme learning machine (ELM). The
neural network was trained by ELM. WK-ELM uses three different parameters, which
are adjustable. The ideal values for parameters are calculated with the support of genetic
algorithm. The authors obtained a 96% accuracy rate with a dataset taken from the UCI
library, which contains voice measurements of 31 subjects, where 23 are PD patients.

In [22], a CNN model, AlexNet, was presented for classifation of PD. The model is
trained on 2820 HC and 3296 PD MR images and tested on 705 HC and 824 PD MR images
using the transfer learning technique. The PPMI dataset was used in this study. This model
achieved 88.9%, 89.30%, and 88.40% results in terms of accuracy, sensitivity, and specificity,
respectively.

In [13], the authors performed experiments on Parkinson’s and Alzheimer’s diseases.
A fully automated system was introduced based on different intelligence and deep learning
algorithms, such as decision tree, random forest, boosted tree, bagging, and MLP. The
dataset used in the research was adopted form Alzheimer’s Disease Research Center
(ADRC), which contained a total of 890 subjects’ data, where 65% of cases belonged to
Alzheimer’s, while 40% were PD subjects. According to this paper, alcohol, genes, and age
are the main influencing factors regarding AD and PD. According to the author, accuracy
of 99.25% has been achieved on random forest and MLP. A research work in [23] worked
on susceptibility weighted imaging (SWI) scan. SWI is a medical imaging technique in
MRI. This technique has the capability to visualize the susceptible variations in detail
for many issues like blood iron, with the support of contract enhancement. SVM is used
for classification of Parkinson’s and Parkinsonisms at an isolated level and obtained an
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accuracy of 86%. A local dataset is used, having 36 subjects’ records, where 16 were PD
patients and 20 were Parkinsonisms.

In [24], the authors worked on three classes of classification regrading PD, progressive
supranuclear palsy (PSP), and HC. The advanced stage of PD is PSP; its progression is
very high and it is less reactive to medication. The dataset used in this study consists
of the MRIs of 84 subjects. The authors applied principal computer analysis (PCA) for
feature extraction, while SVM was used as a classifier. Their accuracy is about 88% on an
average basis.

In [25], a multimodel on MR images was proposed. In this study, SVM was applied
as a classifier. This model obtained the results 86.96 %, 92.59 %, and 78.95% in terms of
accuracy, specificity, and sensitivity, respectively. A local dataset was used in this research,
which contained a total of 46 subjects, where 19 belonged to PD and 27 belonged to HC.

An author in [26] worked on TRODAT and SPECT images to detect the PD. In this
regard, the authors presented an ANN-based model. Striatal and striatum pixel values
were obtained from images, and these were then fed to ANN as input. This model obtained
an accuracy of 94%.

A comprehensive analysis of prior work is presented in Table 1.

Table 1. Summary of literature review results.

Reference Data Type Number of Subjects Methods Used Accuracy Year

[24] MRI Scans PD (n = 28) Voxel-based morphometry PD vs. HC: 83.2 2014
HC (n = 28) Principal component analysis PSP vs. PD: 84.7
PSP (n = 28) Support vector machine PSP vs. HC: 86.2

[27] MRI Scans Tremor dominant PD (n = 15) Voxel-based morphometry 100 2014
ET with rest tremor (n = 15) Diffusion tensor imaging

Support vector machine

[28] MRI Scans PD (n = 518) Self-organizing maps 99.9 2015
HC (n = 245) Support vector machine

SWEDD (n = 68)

[29] MRI Scans PD (n = 30) Region-of-interest-based 86.67 2015
HC (n = 30) Support vector machine

[30] MRI Scans PD (n = 204) Volumetry 80 2016
MSA-C (n = 21) Support vector machine
PSP-RS (n = 106)
MSA-P (n = 60)

[31] MRI Scans PPMI cohort Joint feature-sample selection 81.9 2016
HC (n = 169)
PD (n = 374)

[32] MRI Scans HC (n = 38) Functional connectome 80 2017
PD (n = 27) Support vector machine

[17] MRI Scans HC (n = 169) Connectivity measures 93 2018
PD (n = 374) Support vector machine
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Table 1. Cont.

Reference Data Type Number of Subjects Methods Used Accuracy Year

[33] MRI Scans PD (n = 26) Voxel-based morphometry PD vs. MSA: 96 2018
HC (n = 26) T2 relaxometry, DTI

MSA-P (n = 16) Self-organizing maps
MSA-C (n = 13)

[34] MRI Scans HC (n = 39) NM-MRI-based atlas of
Substantia nigra 79.9 2019

PD (n = 40)

[16] MRI Scans HC (n = 35) NM-MRI-based atlas of
Substantia nigra 89 2019

PD (n = 25)

[22] MRI Scans PPMI CNN model AlexNet 88.9 2019
HC = 82 Transfer learning
PD = 100

There are different factors involved in PD patients, like olfactory loss, rapid eye
disorder, sleep disturbance, postural unbalancing, cerebrospinal fluid, and dopaminergic
imaging. There is a need to consider all these features and apply a classification technique
that can correctly diagnose people with PD. CNN has shown state-of-the-art accuracy
in a number of biomedical image classifications. Recently, Billones, Ciprian D. et al [35]
adjusted the parameters of a VGGNet model for Alzheimer’s detection and succeeded with
91.85% accuracy. Likewise, [36] obtained an accuracy of 93.16% for cerebral microbleeds in
MRI. Due to the high accuracy of CNN with MR images, it is applied for PD detection and
succeeded in obtaining satisfactory results. The main advantage of the proposed system
is that it is a simple convolutional network with limited training parameters; hence, the
training time is shorter than state-of-the-art models. A general limitation of the proposed
model is that it deals with Parkinson’s disease as a binary classification problem; however,;
there are some other diseases closely related to Parkinson’s, such as Parkinsonism, dementia,
and Alzheimer’s, etc. It would be good to develop a system that can classify these diseases
in a multiclass classification. Figure 1 shows the overall operation of the proposed system.

Figure 1. System diagram.

Regarding the order of the remainder of this research paper, Section 2 covers the
materials and methods. The results and experiments of the proposed methods are discussed
in Section 3. Section 4 is reserved for the discussion regarding the results. Finally. Section 5
concludes the research and also presents the future work. The main contributions of this
paper are four-fold:
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1. Achieved the state-of-the-art mean accuracy, sensitivity, specificity, and area under
the curve as 96, 96.87, 95.83, and 94.5 percent, respectively.

2. Dealing with limited data, this model was developed in such a manner that reduces
the overfitting problem.

3. Low-computational-power GPU was used and obtained satisfactory results as com-
pared to other techniques.

4. Specific patches were extracted from the samples.

2. Materials and Methods
2.1. Data Acquisition

The dataset utilized in this analysis was made available by the PPMI. The PPMI is a
multi-study facility with the goal of discovering trustworthy biomarkers and performing
an early Parkinson’s disease diagnosis. Additionally, it is the project with the greatest data,
which includes a sizable number of clinical, imaging, and biological samples. It is claimed
that PPMI offers the largest dataset of its kind, and their samples are known as the bench-
mark of PD for research purposes across the globe [37]. A total of 500 samples (T2 weighted
MR scan) were obtained in Digital Imaging and Communications in Medicine (DICOM)
format with the followed parameters, Plane=AXIAL Acquisition Flip Angle = 150.0 degree,
Matrix X = 228.0 pixels, Matrix Y = 256.0 pixels, Matrix Z = 54.0, Slice Thickness = 6.0 mm,
Pulse Sequence=Spin echo, Pixel Spacing Y = 0.9375 mm, Pixel Spacing X = 0.9375 mm.
The data contained 250 numbers of PD and 250 HC samples, balanced data. Dataset is used
in such a way that 70% is used for training, 20% for testing, while 10% for validation. The
dataset is available on (http://www.ppmi-info.org). Table 2 represents the details of the
subject in terms of gender and age, while Figure 2 shows the difference between the MRI
scan of a healthy subject and Parkinson’s patient.

Figure 2. Slices of an MRI scan of an HC and PD patient.

Table 2. Details of subjects.

Total Male Female Age (Years)

PD 250 173 77 60 ± 10
HC 250 136 114 60 ± 10

2.2. Pre-Processing

The MR images were initially stored in the DICOM format and then converted into
JPEG using publicly available software known as DICOM to JPEG. Each subject’s data

http://www.ppmi-info.org
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consisted of 45 slices, and only slice number 22 was collected per subject since this slice
provides the accurate image of the substantia nigra in PD class. Substantia nigra is a
structure in the mid-brain area that controls movement and motor coordination. Dopamine
is a substance that is produced in this area and is employed as a signal transmitter. This
sends signals about movement and coordination to the brain and other parts of the body.
A stack was created by combining slice number 22 from all the subjects. To align the
images, intensity-based image registration was carried out using the OpenCV library on
the stack. Image registration is the procedure of lining up scans of the brain or other
pertinent regions taken from people with Parkinson’s disease. Using image registration
techniques, this alignment establishes the spatial relationship between the pictures, enabling
a consistent and uniform analysis. By ensuring that the pictures are in a uniform coordinate
system, image registration eliminates variances brought on by changes in patient placement
or scanning procedures. The primary objective of image registration was to eliminate
unwanted and irrelevant information, which could lead our model to learn unnecessary
and redundant features. For obtaining a perfect image of substantia nigra, the mid-brain
section was cropped using the freehand region of interest (ROI) technique with a window
size of 33 × 33. Freehand ROI was used for cropping because the size of the specific organ
varies in different patients, and, instead of using fix ROI cropping, the freehand region
of interest (ROI) technique provides us better control in cropping the exact position of
the organ. This image was the final input to the CNN model. Figure 3 provides a visual
representation of the preprocessing steps.

Figure 3. Preprocessing steps.

2.3. Convolutional Neural Network Architecture

CNN architecture have been widely used for image-relevant tasks, such as image
recognition and classification of images, etc. The use of CNNs has effectively improved
the performance of many image-relevant tasks. For example, a deep-CNN-based COVID-
19 diagnosis system was proposed in [38].The author claimed that the deep-CNN-based
dignosis of COVID-19 from sounds like dry cough outperforms other models. In an another
article, CNN has been proposed for classification of lung diseases [39]. In this article,
the authors applied CNN on chest X-ray images and classified lung diseases into five
different disease classes. The results of CNN-based classification were higher than existing
methods. The main building blocks in CNN architecture are convolutional layers, activation
functions, feature maps, max pooling, and regularization. The CNN architecture begins
with convolutional layer that accepts input and uses the convolutional kernels to process
the spatial information in local receptive field and report activation value using activation
function. The convolutional layers can be stacked over one another, which enables CNN to
extract and learn features in increasingly complex hierarchy and provides a features map.
The number of generated feature maps depends on the number of convolutional filters
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used. The activation function encodes the pixel-level spatial neighborhood activation at
respective pixel location in feature map. The max pooling layer is after the feature map layer.
The main purpose of using the max pooling layer is to reduce the input dimensionality,
reduce the risk of overfitting, and reduce computational costs. The result of the max pooling
layer can be given to another convolutional layer to create a hierarchical structure. The
final feature maps are fully connected to every neuron on dense layer. Finally, softmax
function as activation function is also used for classification purpose. Following are the
main building blocks of CNN model.

2.3.1. Weights Initialization

Right weight initialization has the key role of deep learning, which reduces the conver-
gence time and brings stability in loss function even after thousands of iterations. Xavier
initializer is incorporated in this study that maintains activation variance and back propa-
gation gradient in controlled levels [40,41].

Weights ∼ U

[
−

√
6√

w + (w+1)
,

√
6√

w + (w+1)

]
(1)

In Equation (1), U is the normal distribution, where w is tensor, the weight of input layer,
and w+1 is that of output layer.

2.3.2. Convolution of Kernels

After the start of convolution on image, feature maps are generated. Each kernel has a
feature map. Feature map F can be calculated using the equation below.

F = bias + [M1 ∗ N1 + M2 ∗ N2 + . . . + Mn ∗ Nn] (2)

where M shows kernel and N shows input channel (2).

2.3.3. Activation Function

Non-linearity into the system is introduced by the activation function. A number
of activation functions have been proposed and are still under research. Each activation
function has some limitations and is not suitable for every situation: for instance, sigmoid
kill gradient. However, ReLU obtained better results when compared with sigmoid and
hyperbolic tangent function but suffers from dying ReLU problem. For instance, the large
gradient flows through the ReLU update the weights that will never activate at any data
point. The other issue with ReLU activation function is that it ignores gradients smaller
than zero. LeakyReLU is the improved form of ReLU and tackles the dying ReLU problem
by bringing the negative gradient into it. ReLU is defined as

f (x) = max(0, x) (3)

LeakyReLU is defined as
f ′(x) = f (x) + α min(0, x) (4)

Here, α is the leakiness parameter, which may be a real number between 0 and 1.

2.3.4. Pooling

Dimensionality of the feature map is reduced by pooling; it makes the system ignore
small changes, such as small intensity and illumination change. The prominent pooling
layer is max pooling, min pooling, average pooling. The min and max select features
with the minimum, maximum value in the pooling kernel, respectively, while the average
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pooling calculates the average of the features in pooling kernel and returns the average
effect of all features. Max pooling is used here in this study, which can be formalized as

poolk,l = max
p

f ′(x)k+p,l+p (5)

where k and l correspond to the spatial positions.

2.3.5. Regularization

The main purpose of regulation is to avoid model overfitting. A number of overfitting
techniques are available; however, L1 and L2, global average pooling, global max pooling,
and batch normalization are well-known among them. Dropout is another effective regu-
lation technique that randomly switches the neurons on and off to learn effectively and
contribute in the overall output individually. In this paper, we use Dropout, which removes
neurons with probability p. The value of the Dropout can be any real value between 0 and
1. The working of Dropout can be observed by the following formula [42]:

yk = ∑
M ε M∗

Pr(m)yM
k (6)

where yk is the probable result of the unit k, M∗ is the set of all thinned network, yM is
the output of unit M, and Pr() shows the probability function.

2.3.6. Fully Connected layers or Dense layers

It is the last layer after convolutional layers. Here, each pixel of the image is considered
as neuron and given to each neuron in the fully connected layer. A classifier is used for
classification at the end of architecture. Softmax is most common classifier in deep neural
networks. It can be defined using Bayes theorem [43].

p(Ck| × ) =
p(x|Ck) p(Ck)

∑n
j=1 p(x|Cj) p(Cj)

(7)

where Ck is the targeted class to find, and Cj is the j = 1,2,3, . . . , nth class. Its exponential
form is as under [43]:

σ(a)k =
eak

∑n
j=1 aj

(8)

2.3.7. Loss Function

It is used to calculate the compatibility between the given ground truth label and
predicted values. The loss function can be custom-designed for a particular task. There are
many loss functions based on the nature of the learning problem, but the most common
lost function that is used in classification task is categorical cross-entropy. The categorical
cross-entropy is used as the cost function. It can be formalized as

fcost(x) = − ∑
a ε voxels

∑
b ε classes

ca,b log(ĉa,b) (9)

Here, c is the actual target class, while ĉ is the predicted class in Equation (9).

2.4. Proposed Network Architecture

Our proposed model receives MRI as input and eventually labels it as PD or HC. This
method takes advantage of the deeper CNN with a small convolutional kernel of size
3 × 3 throughout the network. The smaller convolutional kernel has fewer parameters
to estimate and allows learning and generalizing from limited training data. Conversely,
the larger convolutional kernel has larger parameters to estimate, is difficult to generalize,
and demands high availability of training data. Each convolutional kernel is followed
by advanced activation function (i.e., LeakyReLU). LeakReLU addresses simple ReLU
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issues, such as dying ReLU by adjusting negative gradients on back propagation. The
recently developed batch normalization is used before every LeakyReLU layer to improve
the performance. It has the ability to accelerate the training process of the network. The
proposed network takes input patch of dimension 33 × 33. The first three convolutional
layers are followed by max pooling layer with kernel dimension of 3 × 3 and stride 2 × 2.
The output of the first max pooling layer (i.e., feature maps) is 64 (number of channels)
16 × 16 in dimension. The max pooling layer is used to reduce overall dimensionality,
which results in fewer learnable parameters. The output feature maps of first max pooling
layer are forwarded to next three convolutional layers. The output feature maps of the
sixth convolutional layer (i.e., 128 × 16 × 16 in dimension) are forwarded to the second max
pooling layer with kernel size of 3 × 3 and stride of 2 × 2. The output feature maps of this
pooling layer have dimensions of 128 × 7 × 7. These feature maps are then fully connected to
the FC (fully connected) layers. There are two FC layers. The first FC layer has 512 neurons,
while the second has 256 neurons. Advanced regularization technique is used, which is
dropout with 0.1 value in both FC layers to reduce the risk of network overfitting. At the
end of network, softmax layer is used to obtain the classification probabilities. Figure 4
shows graphical representation of the proposed model, while Table 3 shows the architecture
along with used parameters of proposed model. In Table 3, “Type” column conv means
convolutional layer and Max-pool means max pooling layer. In “Inputs” column, the first
value is the number of input channels and next two values are the dimension of the feature
map or patch size.

Table 3. Detailed structure of CNN architecture. Conv. is used for convolutional layers, Max-Pool. is
used for max pooling layers, and FC is used for fully connected layers.

Layer No. Type Filter Size Stride # Filters FC Units Input

Layer 1 Conv. 3 × 3 1 × 1 64 - 33 × 33

Layer 2 Conv. 3 × 3 1 × 1 64 - 64 × 33 × 33

Layer 3 Conv. 3 × 3 1 × 1 64 - 64 × 33 × 33

Layer 4 Maxpool. 3 × 3 2 × 2 - - 64 × 33 × 33

Layer 5 Conv. 3 × 3 1 × 1 128 - 64 × 16 × 16

Layer 6 Conv. 3 × 3 1 × 1 128 - 128 × 16 × 16

Layer 7 Conv. 3 × 3 1 × 1 128 - 128 × 16 × 16

Layer 8 Maxpool. 3 × 3 2 × 2 - - 128 × 16 × 16

Layer 9 FC - - - 512 6272

Layer 10 FC - - - 256 512

Layer 11 FC - - - 2 256

Figure 4. Network architecture.
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3. Results

This section discusses the outcome performance of the network on the Parkinson’s
dataset.

3.1. Performance Measures

Area under curve (AUC), classification accuracy, sensitivity, and specificity are used to
evaluate the performance of the proposed model. These are calculated as in
Equations (10)–(12).

ACC =
TP + TN

TP + FP + FN + TN
× 100% (10)

Sensitivity =
TP

TP + FN
× 100% (11)

Speci f icity =
TN

FP + TN
× 100% (12)

3.2. Experimental Setup

The NVIDIA Geforce 940MX GPU, which supports Keras, has been utilized to run
the CNN. The Keras Python deep learning API enables the usage of both Theano and
Tensorflow. The Theano library and Sequential model are used as a CNN model.

3.3. Experiments

In order to evaluate the robustness of the network, a number of experiments have
been performed. The proposed model has been applied to the patches as well as to the
complete image. Different model parameters have been tested to obtain a robust model.
Furthermore, several times, the model has been executed to find the performance validity
of the proposed model. The accuracy of the proposed model has been recorded after each
epoch. The system is evaluated on the training set as well as on the test set. Four of the
experiments are elaborated below. Experiments 1 and 2 show the highest and the lowest
accuracy, respectively, archived during training and validation with the same input and
network settings. In experiment 3, the last convolutional layer is eliminated in order to
reduce the computational cost while keeping the input the same as in experiments 1 and 2.
However, in experiment 4, the same networking settings are maintained. The network is
tested on the full mid-brain as input rather than ROI patches.

3.4. First Experiment

In experiment 1, Figure 5a shows the training and testing accuracy. The x-axis shows
the number of epochs, while the Y-axis shows accuracy. The line in green color is for
validation accuracy, while blue is for training accuracy. The accuracy increases with the
number of epochs. The validation accuracy reached up to 98%. Figure 5b shows the
training loss vs. validation loss. The × axis represents the numbers of epochs and the y-axis
represents the loss. Figure 5c shows the ROC curve for the proposed architecture on the test
set. The x-axis represents the false positive rate and the y-axis represents the true positive
rate. In this experiment, the proposed model obtained an AUC of 0.94 on the test set.
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(a) (b)

(c)

Figure 5. Experiment 1: (a) training vs. validation accuracy; (b) training vs. loss; (c) ROC.

3.5. Second Experiment

In experiment 2, Figure 6a–c show the results of the same model repeated for 50 epochs
on the same input patches for validating the performance of the model. In this experiment,
the training and validation accuracy decreased to 95%. This is the least accuracy obtained
by the proposed model. The 3% decrement in the accuracy is due to the noise in input.
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(a) (b)

(c)

Figure 6. Experiment 2: (a) training vs. validation accuracy; (b) training vs. validation loss; (c) ROC.

3.6. Third Experiment

In experiment 3, Figure 7a–c show the results of the third experiment in which the last
convolutional layer is eliminated. This last layer is removed to reduce the computational
cost, but the accuracy of the model is greatly affected. The AUC remains constant on the
test set, but the accuracy is reduced to 65% on validation as well as on testing. The AUC
remains the same up to 94% on the test set.
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(a) (b)

(c)

Figure 7. Experiment 3: (a) training vs. validation accuracy; (b) training vs. validation loss; (c) ROC.

3.7. Fourth Experiment

In experiment 4, Figure 8a–c show the results of the next experiment in which the
model is applied to a full slice of MRI instead of patches. The AUC is constant, but the
accuracy is reduced to 85%. The comparison of the several experiments shows that the
proposed architecture performed better with patches and produced high AUC and accuracy
on validation and test sets.
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(a) (b)

(c)

Figure 8. Experiment 4: (a) training vs. validation accuracy; (b) training vs. validation loss; (c) ROC.

4. Discussion

Numerous experiments have employed various network setups. The network pa-
rameters include layer count, input size, and other network features. The accuracy has
consistently ranged from 94 to 98 percent. In Table 4, the AUC, sensitivity, specificity, and
average classification accuracy have been shown. Also, we have generated the confusion
matrix representing the true and false classification in Table 5.

Table 4. Classification results.

Accuracy Specificity Sensitivity AUC

96 ± 2 96.87 ± 3.13 95.83 ± 0 94.5 ± 0.5
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Table 5. Confusion matrix.

Predicted
Yes No

A
ct

ua
l

Yes 49 1
No 3 47

Detection of PD from MR imaging cannot be considered a novel task since many
researchers have attempted to classify PD and HC. Table 1 represents a comprehensive
analysis of the prior work. In these studies, different groups of ML techniques are applied
that contain supervised models, such as SVM [17,24,27,30,32,44], and unsupervised models,
like [28,33]. These models achieved promising results, but their accuracies are more likely
variable accuracies. In many of the mentioned works, the authors used millions of features
of single or multiple modalities with limited datasets using SVM, which creates a hyper-
plane in the n-feature dimensional space. Using this strategy can achieve high accuracy,
but it has a chance of overfitting.

To compare the results, with Alexnet [22] being the pioneers to use a novel strategy of
using ROI base patches, when it comes to the biological domain, PD is associated with the
substantia nigra. There is a chance of high structural changes in this organ as compared
to the rest of the brain. Providing the input of the specific image (substantia nigra) to the
network rather than the full image is the key factor of achieving promising results. The
performance comparison of our model with other classifiers can be seen in Table 6. The
results show that the proposed model suppresses the previous models, while experiment 4
confirms the involvement of mid-brain (patches) in PD classification.

Table 6. Performance comparison.

Method Accuracy Sensitivity Specificity AUC

PDF, PCA, SVM [45] 73.1 67.5 78.7 -
Complex network, SVM [17] 88 85 88 -
CNN(AlexNet), Transfer learning [22] 88.9 89.3 88.4 -
SVM [46] 92.3 90 94 97
GA-ELM [47] 89.22 92.35 92.35 -
SVM [44] 86.67 - - -
ResNet50 82 83.5 85 85.4
Proposed CNN Model 96 96.8 95.8 95

5. Conclusions

In conclusion, this paper proposes a customized CAD system that utilizes convolu-
tional neural networks to accurately classify MRI patches into Parkinson’s and healthy
patterns. The model successfully extracts and learns the patterns from the training samples
of the benchmark PPMI dataset, resulting in improved results. The findings demonstrate
that the proposed model can autonomously learn accurate features of Parkinson’s disease.
However, the study highlights the challenge of overfitting in working with a limited dataset.
Nevertheless, the proper design and integration of the dropout layer in the model enable
effective suppression of the overfitting problem. Overall, the proposed CNN-based model
offers a promising approach for the automatic and precise classification of Parkinson’s
disease, and it has the potential to benefit clinical practice in the future.

5.1. Contribution

With the increasing trend of computer-aided diagnosis, it has become feasible to
avail these technologies for diagnosing complex diseases. Despite limited resources, these
technologies are being used along with machine learning approaches for diagnosis of
different diseases in many biomedical research labs. A computer-aided diagnosis based on
convolutional neural network is presented in this paper. The performance of the model
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has been analyzed in detail on the basis of accuracy, sensitivity, specificity, and AUC. One
of the main objectives of the proposed system is to reduce the incorrect diagnosis of PD
and to detect the disease in early stages to improve the QoF of patients. To the best of our
knowledge, this is the very first attempt to apply convolutional neural network on ROI for
classification of Parkinson’s disease. Although there is no cure for the disease itself, there
are treatments available that help in reducing the symptoms for newly diagnosed patients.
This maintains QoF for as long as possible.

5.2. Future Work

The proposed network is more simple, with fewer feature maps and layers. The
complex features can be learned by complex organization of the network; however, a
complex network requires a huge amount data. In the future, it is intended to work on the
problem as the dataset is also updating with new patient records. The efforts will continue
to improve the correct diagnosis of Parkinson’s disease.
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