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Abstract: Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19,
pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms
(i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists
and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed
tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as
LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of
chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal,
atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning
(DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough
sound images for the identification of nine different types of chest diseases. The scalogram method is
used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the
borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine
chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available
benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification
performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2,
EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The
DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score
of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net
outperformed the other four baseline models in terms of many performance evaluation metrics.
Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical
experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of
the datasets using McNemar and ANOVA tests.

Keywords: X-rays; deep learning; CT scans; cough sound; COVID-19; lung cancer; pneumonia

1. Introduction

Diseases that are communicable or transmissible are those that can be passed on from
one person to another, as well as from one animal or insect to another [1]. These diseases
are brought on by a wide variety of infectious agents, including viruses, bacteria, fungi, and
others. These symptoms, however, can be rather different from one another depending on
the organism that was the source of the infection [2]. The vast majority of infections do not
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pose a significant risk to one’s life, but some do. The life-threatening condition known as
COVID-19 is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2).
In December 2019, it was discovered for the very first time in the province of Wuhan in
China [1–3]. A pandemic was brought about as a result of the rapid and easy spread of this
disease, which may be passed on from one individual to another. A healthy individual
can contract COVID-19 via inhaling aerosols or droplets containing the virus; coming into
direct contact with an infected person’s cough, sneeze, or voice; or breathing in droplets
containing the virus [2]. If a patient is diagnosed with the illness, it is highly recommended
that they self-isolate as soon as possible to prevent the virus from spreading further. The
most common symptoms of COVID-19 are coughing, loss of smell, fever, lack of taste, and
difficulty with breathing. Early discovery of infected individuals is crucial so that they can
isolate themselves and obtain the right therapies for a quick recovery. Because the virus
spreads from an infected person to those who are in close contact [4,5], early detection of
infected individuals is essential.

Antigen testing, which can detect a patient who is ill at the time, and antibody testing,
which can detect antibodies in the blood of a person who was previously infected with
COVID-19, are used to identify a COVID-19-infected person [6]. Because the polymerase
chain reaction (PCR) is used in the vast majority of antigen testing to identify COVID-19,
the tests in question are referred to as PCR tests [7]. RNA is extracted from a nasal or
pharyngeal swab that has been obtained as a clinical specimen to carry out this RT-PCR
test [8]. Nevertheless, the processes may take a few hours; by that time, the virus may
have infected a significant number of people who were previously unaffected by it [9,10].
In addition, expensive laboratory equipment and trained workers are required for PCR
testing. Moreover, the sensitivity of the RT-PCR test for detecting COVID-19 is lower,
which means that the test may produce a large number of false negatives. Again, a patient
who has been wrongly classified as negative has the potential to contaminate a significant
number of people just by associating with them [11]. It is important to establish a diagnostic
system that is more reliable, has fewer instances of false negative results, and can detect
the presence of COVID-19 at an early stage of infection to lessen the likelihood that it may
spread [12]. Chest radiography imaging may be an alternative for fixing this issue and
accelerating the identification procedure [3], as respiratory symptoms are the earliest sign of
COVID-19. Both chest computed tomography (CT) scans and chest X-rays (CXRs) provide
precise views of the chest’s soft tissues, bones, blood vessels, and internal organs, which is
an advantage when it comes to detecting COVID-19 [6]. Furthermore, cough sounds are
also utilized for identifying chest diseases [8–14]. A peripheral distribution, fine reticular
opacity, ground-glass opacities (GGOs), diffuse distributions, bilateral involvement, and
vascular thickening are some of the distinctive features that can be seen on the chest CT
scan of a person infected with COVID-19 [7]. During the screening phase, great detection
sensitivity for COVID-19 has been demonstrated by both CT and CXR [8,9]. On the
other hand, radiologists may experience visual tiredness, which might hinder them from
diagnosing certain small lesions [10–12]. Because of the current situation, it is necessary to
use computerized diagnosis that is based on artificial intelligence (AI) for the diagnosis of
COVID-19 and other chest diseases.

The death rates are rising to frightening levels, but if patients are detected and treated
quickly, their chances of surviving are greater than 95%. Because of this, we are motivated to
create a novel method for the identification of nine different types of chest diseases, including
COVID-19, edema (EDE), lung cancer (LC), pneumonia (PNEU), pneumothorax (PNEUTH),
normal, atelectasis (ATE), and consolidation lung (COL) to save human lives. In this paper,
we present a novel multi-classification model, called the deep learning (DL)-based chest
disease detection network (DCDD_Net), which uses a CXR, CT scans, and cough sound
images to identify nine different chest diseases. Most research studies [1,5,8,12–15] have
indicated great performance in binary classification, i.e., differentiating between COVID-19
and healthy cases. However, no evidence has been found of using DL models for the
identification of nine different types of chest diseases, including COVID-19, EDE, LC,
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PNEU, PNEUT, ATE, COL, and normal using CXR, CT scans, and cough sound images.
The proposed DCDD_Net model was trained on 20 publicly available benchmark datasets
of CXR, CT scans, and cough sound datasets. The scalogram method was applied to
convert the cough sound into a cough sound spectrogram image. Additionally, DCDD_Net
was also compared with four baseline classifiers: InceptionResNet-V2, EfficientNet-B0,
DenseNet-201, and Xception. The major contributions of this study are presented below:

1. The novel DCDD_Net model that is suggested is intended to diagnose each of the nine
distinct forms of chest disease. The model that is proposed can extract dominating
features from CXT, CT scans, and cough sound images, which can be of assistance in
providing an accurate diagnosis of chest diseases.

2. The scalogram method was used to convert the cough sounds into an image.
3. For this work, we simplified the model by cutting down on the total number of

trainable parameters to produce a reliable classifier.
4. As a result of the issue of class imbalance that exists in CXT, CT scans, and cough

sound image datasets, the accuracy of the DCDD_Net model was significantly reduced.
We circumvented this problem by employing an upsampling strategy known as BL-
SMOTE, which allowed us to collect mixture samples of the image at each class to
achieve greater accuracy.

5. The suggested DCDD_Net model achieved superior results in comparison to four
baseline classifiers, namely, InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and
Xception, in terms of numerous assessment measures, including accuracy, area under
the curve (AUC), precision, recall, loss, and F1 score.

6. Additionally, when compared to the most recent state-of-the-art (SOTA) classifiers, the
suggested DCDD_Net model provided results that were both significant and notable.

2. Literature Review

A significant number of studies on the diagnosis of chest diseases have been carried
out to help medical experts identify the disease from the beginning. On the contrary, recent
studies have concentrated on the creation of various AI techniques that can automate the
detection of various kinds of chest diseases. The most recent studies on the diagnosis of
chest diseases using DL models are summarized in Table 1.

2.1. Deep Learning Models for Chest Disease Classification Using Chest X-rays and CT Scans

Iqbal et al. [13] introduced TBXNet, a DL network that is easy to use and very effective.
It was able to categorize a very large number of TB images by utilizing CXR. Furthermore,
data that had been trained before were transferred to the fusion layer via the pre-trained
layer. The accuracy of the proposed TBXNet was measured at 98.98% on Dataset A and
99.17% on Dataset B. Validation of the generalizability of the proposed study was accom-
plished by utilizing Dataset C, which consisted of imaging data from CXR that were either
normal, TB, PNE, or COVID-19, and it obtained 95.10% accuracy. By applying images
obtained from chest X-rays, Kumar et al. [14] utilized an ensemble model that was able
to identify COVID-19 at the earliest stage of the disease. Ensemble learning was utilized
throughout the process of developing the suggested model. Three transfer learning models
were specifically added to the process: GoogLeNet, EfficientNet, and XceptionNet. Patients
were categorized as having COVID-19, PNEU, or TB or as being healthy according to these
models. The generalization capacity of the classifier was improved by the model that is
proposed, and this improvement was applied to both binary and multiple-class COVID-19
datasets. The effectiveness of the proposed ensemble model was assessed through the
utilization of two well-known datasets.

The CBAMWDnet model was utilized by Huy et al. [15] to identify TB in an image of
a chest X-ray. The model was built using the convolutional block attention module (CBAM)
and the wide dense net (WDnet) structure, both of which were intended to successfully
capture visual and contextual elements within images. In terms of accuracy, the proposed
model outperformed the other models by 98.80%. The COVID-CheXNet system was
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developed by Al-Waisy et al. [16] to detect COVID-19 in chest X-ray pictures. This system
uses a hybrid DL architecture. First, the brightness of the X-ray image was improved using
the CLAHE method, and the noise level was reduced using a Butterworth bandpass filter.
After that, two discriminating DL algorithms, ResNet-34 and HRNet, were developed
on the pre-processed CXR images to strengthen the most recently developed model’s
generalization skills and prevent overfitting. The efficacy of the COVID-CheXNet system
was evaluated by generating a large-scale dataset of X-ray images called the COVID-19 vs.
normal database.

Malik et al. [17] developed and evaluated a multi-classification strategy that relies on
the DL model for automatically recognizing LC, PNEUTH, COVID-19, TB, and PNEU from
CXR pictures. The CNN model known as CDC Net, which uses residual network perception
and dilated convolution, was applied to identify COVID-19 and other conditions affecting
the respiratory system. When recognizing various chest disorders, CDC Net achieved an
AUC of 0.9953, with an accuracy of 99.39%, a precision of 99.4%, and a recall of 98.13%.

A classification approach that can evaluate CXR and help with the precise identification
of COVID-19 was proposed by Shelke et al. [18]. The CXR images obtained using their
approach were divided into the following four groups: normal, TB, PNEU, and COVID-19.
VGG-16 was the DL model used to categorize PNEU, TB, and normal, with a test accuracy
of 95.9%. DenseNet-161 was used to differentiate between normal, PNEU, and COVID-19,
with a test accuracy of 98.9%, but ResNet-18 performed well in severity categorization, with
a test accuracy as high as 75%. Their method enables the screening of huge populations
because it relies heavily on X-rays as a key testing component for COVID-19.

By applying CXR as their primary data source, Ali et al. [19] developed a 19-layer
CNN model to detect chest infections. The developed model was then reapplied to identify
various kinds of chest infections using transfer learning. These included COVID-19, fibrosis,
PNEU, and TB. The model was improved by the use of a stochastic descent of gradients with
momentum. The proposed multiple-phase structure achieved a classification accuracy of
98.85% for online CXR datasets for detecting chest infections. The accuracy of the proposed
multiple-phase CNN approach was further confirmed by employing an additional dataset,
which revealed a 98.5% level of accuracy.

Constantinou et al. [20] identified COVID-19 using DenseNet-121, DenseNet-169,
ResNet-50, ResNet-101, and Inception-V3 with transfer learning. The most extensive
archive of COVID-19 CXR pictures that were available to the public was used during the
development and verification of all of the models. There were 11,956 images of patients
who had been confirmed to have COVID-19, 11,263 images of patients who had viral or
bacterial pneumonia, and 10,701 images of healthy individuals. The ResNet-101 model had
the best overall performance, scoring 96% in each of the categories measuring accuracy,
precision, and recall. Performance levels for the remaining models were all satisfactory.

Agrawal et al. [21] focused on identifying COVID-19 from CXR pictures by exploring a
binary categorization such as COVID-19 vs. non-COVID-19 and classification with multiple
classes such as COVID-19, non-COVID-19, and PNEU. The dataset was made up of 125 CXR
images for COVID-19, 500 CXR images for no findings, and 500 CXR images for pneumo-
nia. They tested and evaluated a variety of DL models, including VGG19, InceptionV3,
ResNet50, MobileNetV2, DenseNet121, and Xception, in addition to specialized models
such as DarkCOVIDNet and COVID-Net, and they found that ResNet50 performed most
effectively out of all of them. To classify COVID-19, non-COVID-19, bacterial PNEU, viral
PNEU, and normal CXR images obtained from a variety of publicly accessible sources,
Ibrahim et al. [22] recommended the development of a DL technique that made use of a
pretrained AlexNet algorithm. The model’s accuracy was 93.42%, its sensitivity was 89.1%,
and its specificity was 98.92%.

Ayalew et al. [23] introduced a reliable approach for classifying CXR images as those
of normal vs. COVID-19 patients. This model was constructed using CNN, dropout, batch
normalization, activation function, and Keras parameters. The images were subsequently
categorized into a predefined class (normal vs. COVID-19) by utilizing the knowledge
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gained from the learning process model and SVM. The findings of the research reveal that
each of the models generated favorable outcomes, with picture segmentation, augmentation,
and image cropping providing the most successful outcomes, with a test accuracy of 99.8%.

Jennifer et al. [24] evaluated various deep learning models, such as ResNet-50,
VGG-16, and XGBoost, for COVID-19 classification using a neutrosophic set approach.
They achieved a remarkable classification accuracy of 97.33%. Jaszcz et al. [25] proposed a
heuristic red fox optimization algorithm (RFOA) for medical image segmentation. Their
proposed model achieved a classification accuracy of 97.20% and 94.35% for the Jaccard
index. Karthik et al. [26] focused primarily on the most recent advances in image-based
COVID-19 detection methods that involve classification and segmentation. By using
edge-supervised information in the first stage of downsampling, Hu et al. [27] created a
model edge supervised module (ESM) to emphasize low-level boundary features. The
mask-supervised information can be integrated into the following step, where an auxiliary
semantic supervised module (ASSM) is proposed to improve the quality of high-level
semantic information. The semantic gaps between high-level and low-level feature maps
are then reduced by adding an attention fusion module (AFM) to fuse various scale feature
maps of different levels. Their findings demonstrate that the three proposed modules were
effective at raising the dice metric by 1.12%. A unique prior knowledge-based algorithm
for assessing the severity of COVID-19 was created by Li et al. [28] by utilizing CT scan
images. They were successful in mining the result with an accuracy of 86.70%.

2.2. Deep Learning Models for Chest Disease Classification Using Cough Sounds

Pahar et al. [29] introduced an automated cough classifier that was created using
DL. This classifier was able to differentiate between TB, COVID-19, and healthy cough
sounds. The cough recordings were taken in a variety of situations, including indoors
and outdoors, and were provided through the use of smartphones by people located all
over the world; consequently, they contained varied degrees of background noise. CNN,
LSTM, and Resnet50 were trained and evaluated using 1.68 h of TB cough sounds, 1.69 h of
healthy cough sounds, and 18.54 min of COVID-19 cough sounds from 47 patients with
TB, 1498 healthy patients, and 229 patients with COVID-19, respectively. Kim et al. [30]
proposed MFCC, -MFCC, 2-MFCC, and wavelength contrast as a characteristic set designed
for the identification of COVID-19 and implemented it in an algorithm that incorporates
DNN and ResNet-50. The Coswara, Cambridge, and COUGHVID crowdsourcing databases
provided them with the cough sound data that were used in their research. After the
development of both the ResNet-50 and the DNN models, the respective values for accuracy,
sensitivity, and specificity were 0.96, 0.95, and 0.96. Using this approach, an Android
application for COVID-19 testing was created so that a large number of individuals could
utilize it.

Islam et al. [31] created a research study containing the development of an algorithm
for the noninvasive and automatic identification of COVID-19 by employing cough audio
recordings and DNN. The noises generated by coughing can provide important informa-
tion regarding the movement of the glottis in several different respiratory disorders. By
applying cough audio recordings taken from healthy individuals and those with COVID-19
infections, the efficacy of the proposed algorithm was assessed. The proposed technique
automatically recognizes COVID-19 cough audio recordings with a total accuracy of 89.2%,
93.8%, and 97.5%, while using time-domain, mixed-domain, and frequency-domain vectors
of features, respectively.

Loey et al. [32] were able to identify and categorize characteristics by employing
a total of six different deep transfer models. These models were ResNet-18, ResNet-50,
GoogleNet, ResNet-101, NasNetmobile, and MobileNet-V2. The database contains a total of
1457 different cough sounds, 755 of which are from COVID-19 and 702 from healthy people.
The SGDM optimizer discovered that the accuracy of the proposed model was 94.9%. The
phase of sound-to-image conversion was improved through the scalogram method.
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Nessiem et al. [33] assessed the use of DL models as a pervasive, affordable, and
high-performing pre-testing approach for recognizing COVID-19 from recorded sounds
of respiration or coughing obtained on mobile devices via the internet. They employed
an ensemble of CNNs that can determine whether an individual has been impacted by
COVID-19 based on the audio of raw breathing and coughing as well as spectrograms.
Their proposed models were able to achieve a maximum UAR value of 74.9% and an AUC
value of 80% in the held-out individual independent evaluation division. Tawfik et al. [34]
developed a smart strategy that made use of DL to identify COVID-19 patients by listening
to patients’ cough sounds. Their system consisted of three distinct phases: sound pro-
cessing before use through noise reduction; the extraction of features, segmentation, and
categorization; and the implementation of models. A total of 1635 audio subjects were
analyzed, and 8 features were identified from those recordings. A total of 573 coughs tested
positive for COVID-19, whereas 1062 coughs tested negative for the virus. In terms of
detecting COVID-19, the DL model had an overall accuracy rate of 98.5%.

CBIR-CSNN was proposed as a method to differentiate between LC and TB in CT
images by Zhang et al. [35]. Initially, the lesion regions were clipped out to generate the LC
and TB databases, and then pairs of two different places were used to generate the patch–
pair database. CBIR-CSNN was trained and tested on a total of 719 patients who were
used throughout the process. To validate CBIR-CSNN, an additional external dataset with
30 patients was utilized. At the patch level, the CBIR-CSNN achieved remarkable results of
0.953 maP, 0.947 accuracy, and 0.970 AUC value. Multi-scale blocks of residual networks and
open dense connections are the two components that make up the DAvoU-Net model that
was proposed by Alebiosu et al. [36]. This model is used to divide TB-affected regions based
on CT scans. The feature learning approach initiates a three-dimensional CNN for the deep
extraction of features by transforming the two-dimensional values of a well-trained NN into
three-dimensional values. In general, the overall performance of DAvoU-Net + ResNet-50,
a 3D CNN, and a simultaneous LSTM was superior to that of the other six fully trained
NNs that were used for comparison.

Toaçar et al. [37] introduced a method to detect lung cancers by using chest CT scans.
The AlexNet, LeNet, and VGG-16 DL algorithms were utilized for the extraction of features
and categorization. During the training of the models, image augmentation techniques such
as zooming, rotation, filling, and cropping were implemented in the dataset to improve
the categorization success rate. Due to the remarkable efficacy of the model, the features
that were acquired from the final FCL of the AlexNet framework were used independently
as inputs to LR, LDA, decision tree, SVM, SoftMax, and KNN classifiers. The combined
use of the AlexNet algorithm and the kNN classifier provided the highest accuracy in
classification at 98.74%.

Latif et al. [38] proposed the use of DL techniques to extract features. These algorithms
were GoogleNet and ResNet-50. When integrating GoogleNet, ResNet18, and the SVM
method in conjunction with the modified ML process, the maximum average accuracy
that could be achieved was 99.9% after 2000 features were generated. P-DenseCOVNet
is a modified version of the DenseNet structure that was designed by Sadik et al. [39] for
the effective extraction of features and the evaluation of COVID-19 and pneumonia. In
this structure, direct convolutional paths were added to the standard DenseNet method to
improve achievement by overcoming the loss of spatial conflicts. To successfully segment
the lung regions from CT scans, an upgraded version of U-Net known as SKICU-Net,
containing skip connections among the decoder and encoder sections, was applied rather
than the conventional U-Net. This resulted in a superior segmentation performance. A high
level of achievement was shown by the system, which received a 0.97 F1-score for the task
of segmenting and achieved an 87.5% accuracy when identifying normal cases, COVID-19,
and common pneumonia. A federated learning method for the detection of COVID-19 using
previous training DL methods was proposed by Florescu et al. [40]. In their study, a total
of 2230 central CT scans of the chest were collected, including 1016 images of COVID-19,
610 images of LC, and 604 normal images. The architecture concept consisted of a single
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server and three clients. Each client had a collection of data. A healthcare organization that
possessed a private dataset represented a client. These organizations worked together to
develop a global model.

A diagnostic tool based on AI categorization of chest CT scans was created by
Fu et al. [41] to diagnose COVID-19 and other prevalent infectious respiratory diseases. A
total of five lung conditions were evaluated, and they were as follows: COVID-19, bacterial
PNEU, viral PNEU, TB, and normal lung. Images of the training and validation groups
were gathered at Wuhan Jin Hospital. Images of the test group were taken at Xiamen Uni-
versity and Zhongshan Hospital. The efficiency of the proposed AI system was impressive
when it came to recognizing COVID-19 and other frequent viral respiratory diseases with
equivalent levels of recall and specificity. Kaewlek et al. [42] tested four DL models, which
included GoogleNet, ResNet, AlexNet, and deep CNN, for categorizing CT scans of TB,
PNEU, and COVID-19. They obtained 2134 photos of normal cases, 943 images of TB,
2041 images of PNEU, and 3917 images of COVID-19 from internet sources. According
to the results of their analysis of the effectiveness of the model, ResNet had the highest
accuracy at 0.96, a 0.93 F1 score, and an AUC score of 0.95 AUC. The model with the
second-greatest result was DCNN, followed by AlexNet and GoogleNet in that order. A
deep CNN-based technique developed by Polat et al. [43] was capable of independently rec-
ognizing patterns associated with COVID-19-related lesions in chest CT images. Originally,
102 CT scans were segmented, which resulted in the production of a total of 16,040 CT scan
segments. After that, 10,420 CT scan segments that corresponded to healthy respiratory
areas were recognized as COVID-19-negative, whereas 5620 CT scan segments in which
various lesions had been discovered were identified as COVID-19-positive. The accuracy
of the diagnosis was able to be raised to 93.26% by utilizing the CNN architecture that
was suggested.

Abayomi-Alli et al. [44] proposed a DL model called DeepShufNet for COVID-19
detection. Using the Mel COCOA-2-augmented training datasets, the suggested model had
an accuracy of 90.1%, a precision of 77.1%, a recall of 62.7%, a specificity of 95.98%, and an
f-score of 69.1% for identifying cases of COVID-19.

Mishra et al. [45] developed an algorithm for identifying COVID-19 from CT images
that includes COVID-19, normal, and PNEU groups using their transfer learning method,
which relies on the ResNet50 and VGG-16 architectures. Their research employed data
enhancement and fine-tuning methods to enhance and optimize the ResNet50 and VGG16
algorithms. With a standard classification accuracy of above 99.9% for both ResNet-50- and
VGG-16-based systems, the model that was suggested works extremely well for binary
classification tasks such as comparing COVID-19 to normal. In the classification of multiple
classes, such as COVID-19 vs. normal vs. pneumonia, the suggested approach achieved
a median accuracy of classification of 86.74% and 88.52% when utilizing the VGG16 and
ResNet50 architectures as the initial state, respectively. Masud et al. [46] developed a
diagnostic strategy based on CNN to identify COVID-19 patients by evaluating the picture
properties of CT scans. To identify COVID-19-infected individuals, their research examined
a freely accessible CT scan database and inputted it into the suggested CNN approach.
There were 5493 non-COVID-19 photos and 3914 images with COVID-19 in the CT scan
database. During the training, validation, and evaluation stages of its development, the
model achieved an accuracy of 99.76%, 96.10%, and 96%, respectively.

According to many studies [14–20], the symptoms of nine different chest diseases,
i.e., LC, ATE, COL, TB, PNET, EDE, COVID-19, PNEU, and normal, are similar to each
other. It is a challenge for health experts to identify these chest diseases using CXR and
CT scans. Similarly, healthcare professionals have also attempted to diagnose these chest
diseases using cough sounds [29,31–34]. However, cough sounds also resemble each other
among these diseases. Therefore, it is also a challenge for health experts to diagnose
chest diseases based on cough sounds. Hence, there is an evident need to develop an
automated framework based on DL models that can automatically diagnose chest diseases
as mentioned above using X-rays, CT scans, and cough sounds. The main focus of previous
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studies [30–35,38] was to diagnose COVID-19 and non-COVID-19 cases from CXR images
and CT scans. A few research studies [29–31] have employed the use of CXR images to
identify COVID-19 from pneumonia infections, including viral and bacterial infections.
However, limited studies [41–46] have identified PNEU and COVID-19 based on cough
sounds, and no evidence has been found to diagnose LC, ATE, COL, TB, PNEUTH, and
EDE based on cough sounds using DL models. Therefore, to overcome the challenges
mentioned above, this research study developed a DL framework that can detect multiple
chest diseases based on X-ray images, CT scans, and cough sound images.

Table 1. A list of previous studies that used ML and DL models for the diagnosis of chest diseases
using CXR, CT scans, and cough sounds.

Reference Year Models Diseases Types Accuracy Strength Weakness

[15] 2023 CBAMWDnet TB and
normal CXR 98.80%

The model was suitable for
TB and normal case
classification using CXR.

The model was trained and
tested on
imbalanced datasets.

[16] 2023 COVID-CheXNET COVID-19 and normal CXR 92.99%

The model was trained on
the chest X-ray dataset and
achieved remarkable results
in classifying
COVID-19 patients.

No augmentation method
was used and datasets
required an image
enhancement process due to
the poor quality of CXR.

[17] 2023 CDC_Net
COVID-19,

PNEUTH, PNEU, LC,
and TB

CXR 90.39% The model could classify
five different chest diseases.

There was a
gradient-boosting issue.

[19] 2023 CNN COVID-19, fibrosis, and TB CXR 93.85%
The model was appropriate
for classifying COVID-19,
TB, and fibrosis using CXR.

Pre-processing of the dataset
was not performed.

[20] 2023
ResNet-50, ResNet-101,

ResNet-121, DenseNet-169,
and Inception-V3

COVID-19, non- COVID-19
(viral and bacterial PNE)

and normal
CXR 96.6%

Different pre-trained models
were used for evaluating the
COVID-19 cases.

Even having a very
extensive ResNet did not
ensure that all residual
blocks would be included in
the operations.

[21] 2023

VGG-19, ResNet-50,
MobileNet-V2, Inception-V3,

Xception, DenseNet-121,
Dark COVIDNet, and

COVID-Net

COVID-19, non- COVID-19,
and PNEU CXR 86.13%

Several transfer learning
models were used to
identify COVID-19 and
pneumonia-infected CXR.

The datasets
were imbalanced.

[23] 2023 DCNN COVID-19 and normal CXR 99.10%
A deep-layer network
model was designed for
COVID-19 classification.

The model was trained and
tested on very few
image samples.

[30] 2023 ResNet-50 and DNN COVID-19 and healthy Cough
Sound 96.00%

A neural network and a
pre-trained model were
used to identify COVID-19
using cough sound images.

No noise removal method
was applied.

[36] 2023 DAvoU-Net + ResNet-50 TB and normal CT scan 81.19%

Ensembling of DavoU-Net +
ResNet-50 was used for
image segmentation and
classification of TB
and normal.

The study did not focus on
the CT scan slices.

[42] 2023 GoogleNet, AlexNet,
ResNet, and DCNN PNEU, TB, and COVID-19 CT scan 96.6%

Several well-renowned
models were tested for the
identification of pneumonia,
TB, and COVID-19.

The datasets
were imbalanced.

[13] 2022 TBXNet COVID-19,
normal, PNEU, and TB CXR 95.10%

A significant TBXNet was
developed for TB
case classification.

The datasets
were imbalanced.

[29] 2022 CNN, LSTM, and ResNet-50 TB, COVID-19, and healthy Cough
Sound 92.59%

A concoction of CNN with
LSTM and a pre-trained
model were used to find TB
and COVID-19
disease classification.

LSTMs are prone to
overfitting and it was
difficult to apply the
dropout algorithm to curb
this issue.

[31] 2022 DNN COVID-19 and healthy Cough
Sound 97.5%

A deep neural network
model was used for
COVID-19 using
cough sounds.

There was a
gradient-boosting issue.

[34] 2022 CNN COVID-19 and
non-COVID-19

Cough
Sound 98.50%

A CNN-based model was
designed for
COVID-19 cases.

There was an increasing
gradient and
overfitting problem.

[35] 2022 DL + CBIR LC and TB CT scan 94.7%

A combination of DL with
CBIR was used to extract
significant information from
CT scans for LC and TB
case classification.

A semantic gap existed that
may have affected the
classification performance.

[38] 2022 GoogleNet + ResNet-50 COVID-19, PNEU,
and normal CT scan 99.9%

A combination of two
transfer learning models
was used for COVID-19,
PNEU, and normal cases.

Data validation was
not performed.

[39] 2022 P-DenseCOVNet COVID-19, PNEU,
and normal CT scan 87.51%

A dense network was
developed for COVID-19,
PNEU, and
normal classification.

There was a
gradient-boosting issue.

[40] 2022 Federate Learning VGG-16 COVID-19, LC, and normal CT scan 79.32% A secure model was
designed for data sharing.

Disease classification was
not focused on.

[12] 2021 EfficientNet, GoogleNet,
and XceptionNet COVID-19, PNEU, and TB CXR 99.21%

Pre-trained models were
used for lung
disease classification.

There was a lack
of interpretability.
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Table 1. Cont.

Reference Year Models Diseases Types Accuracy Strength Weakness

[18] 2021 DenseNet-101, VGG-16,
and ResNet-18

COVID-19, PNEU, normal,
and TB CXR 98.90%

A deep-layered model was
designed for
COVID-19 cases.

The models were trained
and tested on a
limited dataset.

[22] 2021 AlexNet
COVID-19, non- COVID-19
(viral and bacterial PNE),

and healthy
CXR 93.42%

The proposed model was
designed for bacterial and
viral pneumonia.

The datasets
were imbalanced.

[32] 2021
ResNet-18, GoogleNet,
ResNet-50, ResNet-101,

MobileNetV2, and
NasNetMobile

COVID-19 and healthy Cough
Sound 94.90%

Several pre-trained models
were tested to discover
COVID-19 cases using
cough sounds.

No noise removal methods
were used. The time frame
of the cough sounds was
not considered.

[33] 2021 CNN COVID-19 vs.
non-COVID-19

Cough
Sound 74.9%

A simple CNN model was
used for COVID-19
classification using sounds.

No pre-processing methods
were used.

[43] 2021 DCNN COVID-positive and
COVID-negative CT scan 93.24%

A deep network was
developed for
COVID-19 cases.

A very limited dataset
was used.

[45] 2021 VGG-16 and ResNet-50 COVID-19, PNEU,
and normal CT scan 88.52%

VGG-16 and ResNet-50
were integrated for
COVID-19 using CT scan.

CT scan images were not
pre-processed before being
applied to training
the model.

[46] 2021 CNN COVID-19 vs.
non-COVID-19 CT scan 96%

A 6-layer CNN model was
developed for lung
disease classification.

Few image samples
were used.

[37] 2020 AlexNet + KNN LC and normal CT scan 98.74%
The proposed model was
combined with KNN for
lung cancer classification.

The normal class had more
images than the LC class,
which affected the
model performance.

[41] 2020 AI COVID-19, PNEU, TB,
and normal CT scan 99.4%

A computer-assisted model
was developed for several
chest diseases.

There was a lack of training
data, imbalanced data, and
interpretability of data.

3. Materials and Methods

This section describes the experimental approach that was used to evaluate the effec-
tiveness of the model that was proposed, as well as four widely recognized deep CNN
classifiers, namely, InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception.

3.1. Proposed Model for the Diagnosis of Chest Diseases

In the field of healthcare and medicine, image processing has created a revolution.
It is used in virtually every area of healthcare nowadays, particularly in the pre-analysis
stage [47–49]. During the diagnostic phase, doctors may check the internal organs of an
individual without the need for an operation. In the medical sector, there is a variety
of scans, including X-ray and computer tomography (CT) scans. A medical expert is
incapable of analyzing medical imaging accurately because it takes a significant amount
of time. A computer can derive accurate conclusions from them because a machine that
was trained on a database of health-related picture data can provide precise results in a
matter of seconds [50–52]. The research community plays an essential role in the creation
of sophisticated automated systems for accurate and rapid assessments and supports the
enhancement of these systems daily [53–55].

In this study, we developed a novel deep learning-based chest disease detection
network (DCDD_Net) that uses a CNN. This model was trained and evaluated using
images of nine major chest disease categories, including ATE, COL, COVID-19, EDE,
PNEUTH, normal, PNEU, LC, and TB. The size of the input image was specified as
128 × 128 pixels. The dataset of images was pre-processed by normalization, and the
critical phase of modifying the data with categorical variables was provided to the proposed
DCDD_Net. Then, we used the borderline synthetic minority oversampling technique
(BL-SMOTE) to balance the number of samples in each class and resolve the issue of a
dataset that is imbalanced. The chest disease dataset was categorized into three separate
groups: testing, training, and validation. In addition, Figure 1 illustrates the workflow of
the proposed DCDD_Net for the identification of chest diseases. The study’s experiment
was conducted for no longer than 40 epochs. As soon as all of the epochs had passed, the
proposed DCDD_Net reached the accuracy level that had been anticipated throughout the
training and validation processes. The effectiveness of the proposed method (DCDD_Net)
was compared to that of four pre-trained models using the following metrics: accuracy,
recall, loss, AUC, precision, and F1-score.
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3.2. Dataset Description

This section is further separated into two subsections. The first section provides
multiple CXR and CT scan image databases for chest diseases. The remaining section
defines cough sound datasets associated with chest diseases.

3.2.1. Dataset of CXR and CT Scan Images for Chest Diseases

For training and verifying the models of DL via CXR, seven publicly accessible datasets
on a variety of chest diseases were obtained from a large number of different sources.
Initially, we gathered 423 chest radiographs of COVID-19 infections from Mendeley [56]
and GitHub [57] sources. The chest radiographs of normal or healthy individuals were
obtained from two datasets, namely, NIH [58] and Kaggle [59] chest radiographs. The
images of pneumonia were obtained from the RSNA [60]. These datasets include 247 images
of normal X-rays and 189 images of pneumonia X-rays. A total of 931 X-ray images were
collected from the NIH [61], which were categorized as follows: 425 images of PNEUTH,
154 images of ATE, 198 images of EDE, and 154 images of COL. The remaining CXR images
from the NIH dataset were excluded from this study. The dataset of lung cancer was taken
from [62], and 74 CXR images were obtained from the dataset. Last, a total of 259 CXR
images of patients diagnosed with TB were collected [63]. Figure 2 shows a sample image
of COVID-19 as well as other chest diseases on CXR and CT scans.

For training and verifying the proposed DCDD_Net via CT scans, seven publicly
accessible datasets on a variety of chest diseases were obtained from a large number of
different sources. There was a total of 426 positive chest CT scans for COVID-19 that were
taken from reference [64]. A total of 118 LC images from CT scans were gathered from
the freely accessible dataset referred to in [63]. Sources [65,66] were used to obtain CT
scan images of various chest diseases, such as COL, EDE, PNEUTH, and ATE. The dataset
includes a total of 580 images, such as 12 images of COL, 217 images of ATE, 160 images
of PNEUTH, and 91 images of EDE. We obtained a total of 168 images from CT scans of
pneumonia [67]. We recovered 112 TB images of CT scans by utilizing the open-source
database provided in [68]. A total of 672 CT scan images of normal people were obtained
from [69].
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3.2.2. Dataset of Cough Sounds for Chest Diseases

For training and evaluating the proposed DCDD_Net, various cough sound databases
were gathered. The Coswara database, which is open to the public, was used to collect a
total of 310 cough sounds, including the sounds of 100 COVID-19-positive patients and
210 healthy individuals [70]. The objective of the Coswara project is to create a COVID-19
detection instrument based on respiratory system sounds and coughing [71]. Participants
were instructed to submit audio of their coughing into an internet-based data collection
instrument that could be retrieved through their smartphones. The sound data that were
collected included a combination of shallow and deep coughing, rapid and unsteady
breathing, broadened vowel phonation, and spoken numbers. Additionally, the patient’s
gender, year of birth, place of residence, present health status, and previous health issues
were documented. The recorded sound frequency was 44.1 kHz, and all regions besides
Africa were represented in the audio sample set. We obtained a total of 292 cough sounds
from TB patients [72]. The Respiratory Audio Database was created by a pair of research
groups from Portugal and Greece [73]. It includes 920 labeled samples that vary from 10 to
90 s in length. It contains a total of 5.5 h of sound recordings that involve 6898 breathing
phases, 886 of which contain wheezes, 1864 of which contain crackles, and 506 of which
contain both of them. The data include recordings of both soft and harsh breathing sounds
that simulate environments in the real world. There are 119 sounds of coughing related
to pneumonia, 90 sounds of coughing linked to ATE, 80 cough sounds related to COL,
39 coughing sounds related to edema, and 42 cough sounds linked to pneumothorax in the
dataset. In the end, 222 sounds of coughing from LC patients were gathered [74]. Table 2
provides statistics on the cough audio databases.
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Table 2. Statistical information regarding coughing audio datasets.

Chest
Diseases

No. of Cough Audios
for Each Class

Total Audio in
Minutes (m)

Standard Sounds
per Person in
Seconds (s)

Standard
Deviation

COVID-19 100 32 (m) 2.77 (s) 1.61 (s)
EDE 39 32 (m) 2.05 (s) 1.04 (s)

Normal 210 120 (m) 3.92 (s) 1.79 (s)
COL 80 24 (m) 2.61 (s) 1.30 (s)

PNEU 119 57 (m) 2.02 (s) 1.01 (s)
PNEUTH 42 37 (m) 2.11 (s) 1.06 (s)

LC 222 60 (m) 2.15 (s) 1.07 (s)
TB 292 60(m) 3.12 (s) 1.61 (s)

ATE 90 27 (m) 2.52 (s) 1.24 (s)
Total 1194 449 (m) 23.27 (s) 11.73 (s)

3.3. Conversion of Cough Audio to an Image

Scalograms represent the actual frequencies of a wave’s continuous wavelet transform
(CWT) factors [75]. For both of the measurements that were taken in this study, the
scalogram method was utilized. At first, the noise reduction process was applied to the
one-dimensional sound of coughing in the various chest disorder datasets. Second, two-
dimensional scalograms based on CWT were added to the preprocessed signals. Cough
signals utilize CWT to convey data from the time domain to the frequency domain, as
demonstrated in Figure 3. Convolution is a successful method for removing both high- and
low-frequency sounds, particularly when used in conjunction with a bandpass filter. Using
the wave’s internal components, the CWT, which is comparable to the Fourier transform,
identifies the degree of similarity between a mathematical function and a wave. The CWT
of the formula T(S) on a scale (a > 0) is determined using Equation (1). The function that
represents the father signal, denoted by (S), is constant throughout the frequency and
time domains. The values of the constantly varying dimension parameter are denoted by
a, whereas the position parameter is denoted by b. The coefficients of the CWT method
produce a series of wavelets that are ordered according to scale and location. The role of
the father signal is to deliver the generational root characteristic that the children’s signals
require to function correctly. CWT generates the cough audio signal by combining the scale
parameter with the father signal [75–77].

CWT (a, b) =
1

|a|0.5

∫ ∞

−∞
T(S) θ

(
s− b

a

)
ds (1)
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1. We collected several different types of cough sound image databases.
2. All cough sound recordings had the same sampling rate, such as 44.1 kHz.
3. A low-band pass filter method was used to remove the unwanted background noise.
4. The CWT method was applied to convert a cough sound signal into its frequency

domain representation over time.
5. In a scalogram, the scale of the frequency axis changes with time.
6. The scalogram transformation is a 2D matrix, where one axis represents time and

another axis represents frequency.
7. We mapped the intensity values to colors by using a heatmap color map and created

an image-like representation of the cough sound signal’s frequency content over time.

3.4. Using BL-SMOTE to Balance the Class’s Samples

To tackle the problem of unequal class representation in the dataset, we referred to the
upsampling methodology. Upsampling is when more samples with zero values are inserted
between each of the original samples so that the sampling rate can be increased. To produce
fusion data for each category, this method makes use of the upsampling strategy known
as BL-SMOTE [78]. In this method, the classification process begins with the analysis
of the minority class. If every neighbor belongs to the majority class, it classifies every
minority data point as a noise point and dismisses it when synthesizing synthetic data [79].
Furthermore, it resamples exclusively from a limited number of border neighborhoods
that belong to both minority and majority groups [80]. Table 3 depicts the arrangement of
samples before the start of the upsampling process. The order in which the samples were
distributed can be seen in Table 4, which was generated after upsampling was performed.

Table 3. Distribution of chest disease image samples before BL_SMOTE.

No. of Classes Class Name CXR CT Scan Cough Sound Total

0 COVID_19 423 426 100 949
1 Normal 247 672 210 1129
2 TB 259 112 292 663
3 PNEU 189 168 119 476
4 LC 174 118 222 515
5 PNEUTH 425 160 42 627
6 ATE 154 217 90 461
7 COL 154 112 80 346
8 EDE 198 91 39 328

Table 4. Distribution of chest disease image samples after BL_SMOTE.

No. of Classes Class Name Total Training
(70%)

Validation
(20%)

Testing
(10%)

0 COVID_19 1129 790 225 114
1 Normal 1129 790 225 114
2 TB 1129 790 225 114
3 PNEU 1129 790 225 114
4 LC 1129 790 225 114
5 PNEUTH 1129 790 225 114
6 ATE 1129 790 225 114
7 COL 1129 790 225 114
8 EDE 1129 790 225 114

3.5. Proposed Model

The next section describes the proposed DCDD_Net and its architecture for the classi-
fication of chest diseases.
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3.5.1. Detailed Structure of the Proposed DCDD_Net

CNN architecture depends on the biological framework of the brain of humans and is
primarily employed in computer vision applications such as the classification of images,
identification of objects, and image segmentation. It was preferred for recently developed
deep models because of its translational invariance [81]. Translation invariance signifies
that a CNN can identify the same feature, no matter its position in different images. In this
research, a robust CNN-based DCDD_Net was developed for correctly identifying chest
diseases. Figure 4 illustrates the DCDD_Net model, which contains five convolutional
blocks with rectified linear unit (ReLU) activation functions, a max pooling 2D layer, Lecu-
nUniform V2 as the kernel initializer, two dense layers, one dropout layer, and a SoftMax
classification layer. Table 5 discusses the full structure of the network and the model sum-
mary of the proposed DCDD_Net for categorizing with the subsequent layer. The following
subsections provide a brief description of the proposed model’s primary components.
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Table 5. List of parameters applied in the proposed DCDD_Net.

Layer Type Output Shape Parameters

Input layer (None, 128, 128, 3) 0
Block 1 (None, 128, 128,8) 224
Block 2 (None, 64, 64, 16) 1168
Block 3 (None, 32, 32, 32) 4640
Block 4 (None, 16, 16, 64) 18,496
Block 5 (None, 8, 8, 128) 73,856

Dropout layer (None, 4, 4, 128) 0
Flatten (None, 2048) 0

Dense block 1 (None, 512) 1,049,088
Dense layer (None, 9) 4617

Output: SoftMax (None, 9) 0

Total parameters: 1,152,089
Trainable parameters: 1,152,089

Non-trainable parameters: 0

3.5.2. Proposed DCDD_Net Convolutional Blocks

The basic building block of the DCDD_Net that is being proposed is the convolutional
block. A convolutional 2D layer, a ReLU layer, and a max-pooling 2D layer are included
in each one of the convolutional blocks. To select weights for the convolutional 2D layer,
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the kernel initializer known as LecunUniform V2 is utilized. The gradient vanishing issue
is addressed by utilizing the ReLU activation function, which also serves to boost the
network’s capacity for learning and carrying out tasks. Concurrently, the convolutional
2D layer reduces the image and its dimensions in space by calculating the highest possible
value throughout an input window (whose size is specified by the pool size) for all input
channels. This layer operates randomly, and the features are increasingly constructed. In
the initial layers, local patterns such as borders, lines, and shapes are taken out and local
features are recovered based on those patterns. The model takes low-level, intermediate-
level, and advanced features, allowing the deep model to accurately classify an image.

An input image of 128 × 128 × 3 was applied to the convolutional layer of block 1.
The max pooling layer was used, which reduced the image size to 64 × 64 × 3. The ReLu
function introduced non-linearity into the network’s computations, allowing it to learn and
represent complex relationships in the CXR, CT scans, and cough sound image data. The
same process was applied from block 2 to block 5. After that, the resultant feature vector
was 8 × 8 × 128.

3.5.3. Dropout Layer

After block 5, the dropout layer was placed. The dropout layer flips units on and off
to lower network complexity and reduce model training time. To prevent models from
overfitting, the dropout layer was set up to deactivate units on their own, according to a
probability distribution, at the end of each epoch. As a consequence, the model obtained
various features with each iteration as it discovered all relevant characteristics.

3.5.4. Flatten Layer

This layer comes after the convolution layer and before the dense layer. In contrast to
dense layers, convolution layers take tensor data forms as input, and only one-dimensional
data forms are allowed in dense layers. The flattened layer was utilized to convert the 2D
image representation into a 1D input.

3.6. Dense Blocks

The proposed DCDD_Net is made up of two dense layers, the details and the remain-
ing layers of which will be discussed in the section that follows.

3.6.1. ReLU Activation

The activation functions of a perceptron are computational functions that determine
how the output of the perceptron should be conveyed to the layer that comes after it.
In simple terms, they activate and terminate model nodes. The activation of ReLU is
accomplished by exchanging every negative result with a value of zero. This activation
function was applied to the convolutional layer outputs. In the output layer, the activation
function is used to start the node that provides its label, which is subsequently allocated to
the image that has been processed by the model. Multiple activation functions exist, but
we implemented ReLU within hidden layers due to its basic and time-saving processing.

3.6.2. Dense Layer

The dense layer accepts a single array as input and generates an output according
to its parameters. This layer is also known as the fully connected layer. Images are
recognized and assigned a label for their category within these layers. Using the back-
propagation technique, the model learns in layers with complete connectivity. The number
of parameters that can be trained on a model is defined by the number of different values
that are employed in each dense layer. The final output of the model is generated by a
SoftMax activation function, which classifies the image into one of the nine chest disease
classes: COVID-19, normal, PNEUTH, ATE, EDE, COL, LC, TB, or PNEU. After a few
layers, SoftMax is applied; it is a probability-based activation function in which the entire
number of categories corresponds to the number of neurons [78].
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3.7. Evaluation of the Proposed DCDD_Net

A confusion matrix is utilized to evaluate and compute the distinct metrics of a
classification model. It contains the division of numbers and all of the estimations generated
by a model throughout its testing and training steps. We employed multiple kinds of metrics
to assess the effectiveness of the model. The efficiency of the proposed DCDD_Net for
chest disease detection is typically measured using the following evaluation metrics (see
Equations (2)–(7)):

Accuracy =
TP + TF

TP + FN + FP + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− score = 2× Precision× Recall
Precision + Recall

(5)

TPR =
FP

FP + FN
(6)

FPR =
FP

FP + TN
(7)

4. Results and Discussion

In the following section, we contrast DCDD_Net with the most recent deep networks.
This section describes the distinctions between the proposed DCDD_Net and the four
baseline deep networks.

4.1. Experimental Setup and Fine-Tuning of Hyperparameters

TensorFlow (TF) v. 2.12.0 was used to build the suggested model, whereas TF v. 1.8 was
used to implement the four DL models (DenseNet-20, EfficientNet-B0, InceptionResNet-V2,
and Xception). Furthermore, Python 3.10.1 was used to create methods that were not
immediately related to convolutional networks. A PC with Windows 10 OS, 32 GB of RAM,
and an 11 GB NVIDIA GPU was used for the experiment.

The DCDD_Net model utilizes imaging data from CXRs, CT scans, and cough sound
images to identify nine distinct chest disease types. Grid search was used to optimize the
performance of the DCDD_Net model by adjusting its hyperparameters (epoch, batch size,
and learning rate). The DCDD_Net model was trained with a batch size of 32 and up to
50 testing epochs. The learning rates of the DCDD_Net model and the four DL models
(DenseNet-20, EfficientNet-B0, InceptionResNet-V2, and Xception) were initially adjusted
to 0.05 using the stochastic gradient descent (SGD) optimizer. We decreased the learning
rate parameter by 0.1 when training showed no progress after 20 epochs. This was done to
prevent the DCDD_Net model and the other four models from overfitting the data.

4.2. Accuracy of Proposed DCDD_Net with Baseline Models

By applying the same dataset both before and after balancing it using BL-SMOTE, we
tested our proposed model and four baseline models, including DenseNet-201, EfficientNet-
B0, InceptionResNet-V2, and Xception. For the suggested model, the BL-SMOTE technique
presented remarkable outcomes. As shown in Table 6, the acquired accuracies for the
suggested DCDD_Net models with and without BL-SMOTE, DenseNet-201, EfficientNet-
B0, InceptionResNet-V2, and Xception were 96.67%, 66.15%, 85.37%, 86.04%, 87.25%, and
83.09%, respectively. Figure 5 shows the significant change gained by the suggested
DCDD_Net model using BL-SMOTE.
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Table 6. DCDD_Net model’s performance with four baseline networks.

Classifiers Accuracy Precision Recall F1-Score AUC Trainable
Parameters

DenseNet-201 85.37% 87.85% 84.42% 84.88% 98.22% 5,431,999
EfficientNet-B0 86.04% 87.60% 84.43% 85.79% 97.75% 4,587,852

InceptionResNet-V2 87.25% 88.45% 86.31% 87.04% 97.98% 6,123,027
Xception 83.09% 85.78% 80.94% 82.88% 97.90% 5,965,411 S

Proposed model (with BL-SMOTE) 96.67% 96.82% 95.76% 95.61% 99.43% 1,152,089
Proposed model (without

BL-SMOTE) 66.15% 75.17% 58.66% 55.48% 95.31% 2,263,190
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4.3. Precision of Proposed DCDD_Net with Baseline Models

The proportion of accurate positive estimates to all positive predictions is known as
precision. Using BL-SMOTE to equalize the dataset, we analyzed our proposed and existing
networks, including DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception.
For the suggested model, the BL-SMOTE technique presented remarkable outcomes. By ap-
plying the same dataset, the obtained precision values for the suggested DCDD_Net models
with BL-SMOTE, without BL-SMOTE, DenseNet-201, EfficientNet-B0, InceptionResNet-V2,
and Xception were 96.82%, 75.17%, 87.85%, 87.60%, 88.45%, and 85.78%, respectively. The
study revealed that, in comparison to the four deep networks, the precision performance
with BL-SMOTE of the proposed DCDD_Net was better and more reliable, as shown in
Figure 6.
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4.4. AUC of Proposed DCDD_Net with Other Networks

As previously stated in this paper, our suggested model is a deep CNN-based DCDD-
Net made up of several blocks that are particularly good at identifying the various kinds
of chest diseases. To validate our deep DCDD-Net, we compared it to four other deep
networks: DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception. The four
baseline networks, DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception, ac-
quired AUC values of 98.22%, 97.75%, 97.98%, and 97.90%, respectively. Figure 7 shows
that the proposed DCDD_Net with BL-SMOTE and DCDD_Net without BL-SMOTE, after
employing the datasets, achieved 99.43% and 95.31% AUC values, respectively. We con-
cluded that the suggested model’s AUC findings continued to outperform those of other
models based on the previous evaluation.
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4.5. Recall of Proposed DCDD_Net with Other Networks

Based on the recall measure, the ability of the model to recognize positive samples
was assessed. The values of recall that were high demonstrate that more positive samples
were found. Recall curves were employed to evaluate the proposed DCDD_Net with four
baseline networks, as shown in Figure 8. The proposed DCDD_Net with and without BL-
SMOTE, DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception produced recall
values of 95.76%, 58.66%, 84.43%, 84.43%, 86.31%, and 80.94%, respectively. The proposed
technique showed impressive recall performance as a result of the stated explanation.
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4.6. F1-Score of Proposed DCDD_Net with Other Networks

In this proposed DCDD-Net model, the input dataset is normalized, and the one-
hot encoder is fundamentally used for adding categorical data variables to the model.
The uneven dataset issue is subsequently resolved using the BL-SMOTE technique by
oversampling the categories to equalize the dataset. Figure 9 illustrates the significant
increase in the F1-score of the proposed DCDD-Net using BL-SMOTE. The proposed
DCDD-Net with BL-SMOTE, DCDD-Net without BL-SMOTE, DenseNet-201, EfficientNet-
B0, InceptionResNet-V2, and Xception obtained F1-score values of 95.61%, 55.48%, 84.88%,
85.79%, 87.04%, and 82.88%, respectively, as shown in Figure 9.
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4.7. Loss of Proposed DCDD_Net with Other Networks

The numerical difference between the expected and actual values is calculated via
loss functions. The loss in this study was determined using a categorical cross-entropy
technique. However, the results were even more impressive when the model was developed
on upsampled images. The suggested DCDD_Net with and without BL-SMOTE produced
loss values of 0.1477 and 0.8732, respectively, whereas DenseNet-201, EfficientNet-B0,
InceptionResNet-V2, and Xception acquired loss values of 0.4638, 0.5153, 0.5122, and 0.5443,
respectively. The suggested DCDD_Net system with BL-SMOTE’s notable reduction in loss
value is shown in Figure 10.
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4.8. ROC of Proposed DCDD_Net with Other Networks

A ROC curve is employed to assess the effectiveness of an algorithm for binary or
multi-class classification and the results of a clinical examination. The effectiveness of the
classifier is measured using the area under the curve (AUC) on an ROC curve, where a
greater AUC often indicates a more useful classifier. By employing the same dataset with
and without BL-SMOTE, we used the ROC curve to evaluate the effectiveness and accuracy
of our suggested DCDD-Net. Figure 11 shows the ROC values for the proposed DCDD-Net
with BL-SMOTE and DCDD-Net without BL-SMOTE.
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4.9. ROC Extension of Proposed DCDD_Net with Other Networks

Figure 12 compares the proposed DCDD-Net with DenseNet-201, EfficientNet-B0,
InceptionResNet-V2, and Xception, utilizing the extension of the ROC curve. As can be
seen in Figure 12, the AUC for the proposed techniques was greatly increased compared to
that of other networks after the dataset was balanced by the BL-SMOTE technique. The
proposed DCDD-Net with BL-SMOTE and DCDD-Net without BL-SMOTE for classes
0 (atelectasis), 1 (consolidation lung), 2 (COVID_19), 3 (edema), 4 (lung cancer), 5 (normal),
6 (pneumonia), 7 (pneumothorax), and 8 (tuberculosis) both showed a similar effect. The
enhancements in AUC demonstrate the reliability of the BL-SMOTE method and DCDD-
Net feature selection.
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4.10. Confusion Matrix of Proposed DCDD_Net with Baseline Models

We analyzed our proposed DCDD_Net model with four other networks to verify it
with a confusion matrix. The DCDD_Net model greatly improved with the implementation
of BL-SMOTE, as seen in Figure 13.
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Figure 13. Employing a confusion matrix to compare the proposed DCDD_Net and four networks:
(a) DenseNet−201, (b) EfficientNet−B0, (c) InceptionResNet−V2, (d) Xception, (e) proposed model
with BL−SMOTE, and (f) proposed model without BL-SMOTE.
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4.11. Statistical Analysis

Comparisons were made between the proposed model and the base classifiers, whose
probability scores were used to determine the proposed model’s construction using the
McNemar test [79] and the analysis of variance (ANOVA) test [80]. The McNemar and
ANOVA tests were run on the multi-chest disease datasets of CXR, CT scans, and cough
sound images, and the results are shown in Table 7. Both the McNemar and the ANOVA
test require a smaller p-value (i.e., 0.05) to reject the null hypothesis. Table 7 demonstrates
that all sample p-values were significantly smaller than 0.05. The results of both statistical
tests contradicted the null hypothesis. This demonstrates that the suggested model was
statistically distinct from the other contributing models since it combined more information
from the base classifiers and produced better predictions.

Table 7. Results of the McNemar and ANOVA tests on the DCDD_Net model.

Sr# Statistical Analyses Outcomes

1 McNemar test 0.0140
2 ANOVA test 0.0011

4.12. Comparison of the Proposed DCDD_NET Using State-of-the-Art

In this section, we evaluate the suggested DCDD_Net model with previous re-
search [82–87]. In comparison to prior SOTA studies, Table 8 provides an in-depth
analysis of the proposed DCDD_Net model in the context of numerous performance
assessment criteria, including accuracy, recall, and F1-score.

Table 8. Comparison of the DCDD_Net model with recent SOTA.

Reference Year Model Diagnostic Technique Accuracy Recall F1-Score

[82] 2021 AlexNet CXR 94.00% 91.30% -

[83] 2023
ResNet101, DenseNet121,
ResNet50, InceptionV3,

and DenseNet169
CXR 92.00% 91.00% 90.00%

[84] 2022 CDC_Net CXR 90.39% 90.13% 92.26%
[85] 2023 DarkNet19 CT scan 94.91% 93.96% 94.52%
[86] 2023 SVM CT scan 95.90% - -
[87] 2022 MSCCov19Net Cough sound 90.40% - -

Ours - DCDD_Net
with BL-SMOTE

CXR, CT scan, and cough
sound/images 96.67% 95.61% 99.43%

4.13. Discussion

In the present work, a CNN-based DCDD_Net model is proposed for chest disease
detection. Our DCDD_Net model showed remarkable categorization in the domains
of EDE, normal, COL, COVID-19, PNEU, PNEUTH, LC, TB, and ATE compared to the
classification performance of the other four deep networks. On datasets with a fixed image
resolution of 128 × 128 × 3, our DCDD_Net model and four baseline networks, including
DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception, were trained. In this
study, three types of datasets were used: CXR [40], CT scan [41], and cough sounds [42]
of chest diseases. Radiologists frequently employ CXR imaging to quickly and affordably
diagnose a variety of bodily organs, including the heart, bones, blood vessels, lungs, and
airways. This is crucial for identifying illnesses and anomalies. X-ray radiation is often
projected into the body while laying on the metallic plate of the X-ray equipment to produce
CXR images.

A CT scan is a medical diagnostic process that creates images of the chest using
an integration of X-rays and computer technology. Cross-sectional images are produced
using a CT scan, which combines several X-ray images collected at various angles. Scalo-
grams represent the actual frequencies of a wave’s continuous wavelet transform (CWT)
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factors [82–87]. Cough signals utilize CWT to convey data from the time domain to the
frequency domain, as demonstrated in Figure 3. The chest disease dataset was categorized
into three separate groups: testing, training, and validation. In addition, Figure 1 illustrates
the workflow of the proposed DCDD_Net for the identification of chest diseases.

To tackle the problem of unequal class representation in the dataset, we referred to
the upsampling methodology. In this method, the classification process begins with the
analysis of the minority class. Table 2 depicts the arrangement of samples before the
start of the upsampling process. The order in which the samples were distributed can be
seen in Table 3, which was generated after the upsampling was performed. As shown in
Table 5, the acquired accuracies for the suggested DCDD_Net models with and without BL-
SMOTE, DenseNet-201, EfficientNet-B0, InceptionResNet-V2, and Xception were 96.67%,
66.15%, 85.37%, 86.04%, 87.25%, and 83.09%, respectively. The DCDD_Net model, which
includes a SoftMax classification layer, two dense layers, one dropout layer, a max pooling
layer in 2D, and five convolutional blocks with rectified linear unit (ReLU) activation
functions, is shown in Figure 4. The whole network layout and the model overview of
the suggested DCDD_Net for layer-following categorization are covered in Table 4. The
examination of the experimental data shows that the multi-classification of chest disorders
using the CXR, CT scan, and cough sound added a considerable and useful output to aid
human diagnosticians.

The success rate for the classification of the proposed DCDD_Net with SOTA classifiers
is shown in Table 8. Ibrahim et al. [82] used the AlexNet model for the classification of
five chest diseases using CXR images. They obtained the images from different public
databases. Constantinou et al. [83] used ResNet101, DenseNet121, ResNet50, InceptionV3,
and DenseNet169 for the detection of COVID-19. All models performed effectively, but
ResNet101 outperformed the others, scoring 96% in precision, accuracy, and recall. Malik
et al. [84] developed a CDC_Net model to automatically identify COVID-19, PNEUTH,
TB, LC, and PNEU from CXR images. They achieved 90.39% accuracy, a recall of 90.13%,
and 92.26% precision. A framework for the automatic detection of COVID-19 employing
chest CT scan pictures and DL-based algorithms was developed by Gupta et al. [85]. Using
DarkNet 19, the greatest accuracy in classification of 94.91% was obtained.

5. Conclusions

In the current study, a multi-classification DCDD_Net model for identifying nine
chest diseases from CXR, CT scan pictures, and cough sounds was developed. Chest
diseases represent some of the most prevalent health issues in the world; they are possibly
fatal diseases that may impact organs, including the heart and lungs. An extremely large
number of cases demands a rapid and effective diagnostic procedure. Due to incorrect and
ineffective testing procedures, poor facilities, and the inability to recognize various chest
diseases at an early stage, many people have passed away and been taken to ICUs. We
developed a technique that identifies nine chest diseases, including EDE, normal, COL,
COVID-19, PNEU, PNEUTH, LC, TB, and ATE. The modified structure’s convolutional
blocks were created using numerous layers and used to categorize early-stage chest diseases.
To overcome dataset imbalance issues and keep the number of images for each class in
balance, images were created using the BL-SMOTE algorithm. Our proposed DCDD_Net
model obtained a 99.43% AUC, a 95.61% F1-score, 95.76% recall, 96.82% precision, and
96.67% accuracy. A comprehensive experiment indicated that, as compared to widely
recognized pre-trained and cutting-edge classifiers, our suggested DCDD_Net performed
the best in terms of diagnostic performance. The limitation of the study is that the proposed
model is not suitable for identifying chest diseases from breath sounds and sonography
images. In the future, we will integrate blockchain, a deep attention module, and federated
learning to classify diseases of the chest more accurately.
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