
Citation: Li, Y.; El Habib Daho, M.;

Conze, P.-H.; Zeghlache, R.; Le Boité,

H.; Bonnin, S.; Cosette, D.;

Magazzeni, S.; Lay, B.; Le Guilcher,

A.; et al. Hybrid Fusion of

High-Resolution and Ultra-Widefield

OCTA Acquisitions for the

Automatic Diagnosis of Diabetic

Retinopathy. Diagnostics 2023, 13,

2770. https://doi.org/10.3390/

diagnostics13172770

Academic Editors: Michele Lanza,

Claudio Iovino and Valentina Di

Iorio

Received: 11 July 2023

Revised: 19 August 2023

Accepted: 24 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Hybrid Fusion of High-Resolution and Ultra-Widefield OCTA
Acquisitions for the Automatic Diagnosis of
Diabetic Retinopathy
Yihao Li 1,2, Mostafa El Habib Daho 1,2,* , Pierre-Henri Conze 1,3 , Rachid Zeghlache 1,2 , Hugo Le Boité 4,5 ,
Sophie Bonnin 5 , Deborah Cosette 6, Stephanie Magazzeni 6, Bruno Lay 7, Alexandre Le Guilcher 8,
Ramin Tadayoni 5, Béatrice Cochener 1,2,9, Mathieu Lamard 1,2 and Gwenolé Quellec 1

1 Inserm, UMR 1101 LaTIM, F-29200 Brest, France
2 Univ Bretagne Occidentale, F-29200 Brest, France
3 IMT Atlantique, ITI Department, F-29200 Brest, France
4 Sorbonne University, F-75006 Paris, France
5 Service d’Ophtalmologie, Hôpital Lariboisière, AP-HP, F-75475 Paris, France
6 Carl Zeiss Meditec Inc., Dublin, CA 94568, USA
7 ADCIS, F-14280 Saint-Contest, France
8 Evolucare Technologies, F-78230 Le Pecq, France
9 Service d’Ophtalmologie, CHRU Brest, F-29200 Brest, France
* Correspondence: mostafa.elhabibdaho@univ-brest.fr; Tel.: +33-752073052

Abstract: Optical coherence tomography angiography (OCTA) can deliver enhanced diagnosis for
diabetic retinopathy (DR). This study evaluated a deep learning (DL) algorithm for automatic DR
severity assessment using high-resolution and ultra-widefield (UWF) OCTA. Diabetic patients were
examined with 6× 6 mm2 high-resolution OCTA and 15× 15 mm2 UWF-OCTA using PLEX®Elite
9000. A novel DL algorithm was trained for automatic DR severity inference using both OCTA
acquisitions. The algorithm employed a unique hybrid fusion framework, integrating structural
and flow information from both acquisitions. It was trained on data from 875 eyes of 444 patients.
Tested on 53 patients (97 eyes), the algorithm achieved a good area under the receiver operating
characteristic curve (AUC) for detecting DR (0.8868), moderate non-proliferative DR (0.8276), severe
non-proliferative DR (0.8376), and proliferative/treated DR (0.9070). These results significantly
outperformed detection with the 6× 6 mm2 (AUC = 0.8462, 0.7793, 0.7889, and 0.8104, respectively)
or 15× 15 mm2 (AUC = 0.8251, 0.7745, 0.7967, and 0.8786, respectively) acquisitions alone. Thus,
combining high-resolution and UWF-OCTA acquisitions holds the potential for improved early and
late-stage DR detection, offering a foundation for enhancing DR management and a clear path for
future works involving expanded datasets and integrating additional imaging modalities.

Keywords: diabetic retinopathy classification; multimodal information fusion; deep learning;
computer-aided diagnosis

1. Introduction
1.1. Context

Diabetic retinopathy (DR), the most frequent complication of diabetes, is a primary
cause of blindness in working-age people [1,2]. There are approximately 285 million people
who are affected by DR worldwide [3]. Projections indicate that this number will swell to
approximately 454 million by the year 2030 [4].

The field of ophthalmology has seen remarkable advancements in retinal imaging
technology, which now plays a crucial role in the clinical diagnosis of DR. As a major
advancement, optical coherence tomography (OCT) has been a game-changer since its
introduction in 1991. OCT has transformed not only the evaluation of the retina but
the entire field of ophthalmology [5]. Based on OCT’s foundations, optical coherence
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tomography angiography (OCTA) offers a non-invasive method for producing detailed
and depth-resolved images of the chorioretinal microvasculature. The technique works by
analyzing differences between two scans taken at the same location. Moving structures,
such as red blood cells, generate a decorrelation signal. Thus, by detecting these signals,
OCTA can highlight the retinal vascular networks, offering a rich picture of the retina’s
health [6].

Recently, swept-source technology has been used in OCTA, leading to the develop-
ment of swept-source OCTA (SS-OCTA). This new approach, lauded for its non-invasive,
safe, and repeatable imaging of retinal blood flow, has been the subject of numerous studies
exploring its potential in diagnosing, screening, and monitoring DR [7–10]. The technologi-
cal leap from SD-OCTA to SS-OCTA allowed imaging larger fields of view: most of initial
studies used SS-OCTA equipment that could capture a 12× 12 mm2 area in a single scan
(as opposed to the previous typical areas of 3× 3 mm2 or 6× 6 mm2) [9,11,12]. This imag-
ing area can be further expanded by stitching together multiple scans or adding dioptric
lenses [7,10,13,14], although these techniques may require longer acquisition times and are
likely to introduce more artifacts [15]. Machines have recently been developed that can
obtain 15× 15 mm2 or wider retinal blood flow images by a single scan to effectively solve
these problems and provide a fast, reliable solution for DR diagnosis and screening [16,17].
The introduction of ultra-widefield SS-OCTA (UWF-SS-OCTA) offered a broader view for
assessing DR lesions [18].

The early detection and timely treatment of DR play a critical role in preventing blind-
ness. However, as the global diabetic population expands, a larger number of qualified
ophthalmologists is required to meet the growing demand for DR detection [3]. In response
to this challenge, developing automated methods for DR detection has become a priority.
The use of deep learning algorithms has recently taken off as a powerful tool for automat-
ing or assisting in the diagnosis of DR [19]. Particularly, convolutional neural networks
(CNNs) have been demonstrated to be capable of detecting DR in OCTA images [20,21].
Additionally, CNN fusion networks of OCTA structural and flow information can improve
the accuracy of DR diagnosis [22]. However, to date, no research has been conducted on the
fusion of images obtained from multiple OCTA acquisitions, and herein, we investigated
the accuracy of a deep learning algorithm for the automatic assessment of DR severity
using high-resolution and ultra-widefield OCTA acquisitions.

1.2. OCTA Acquisitions

In this study, we used high-resolution 6× 6 mm2 SS-OCTA and 15× 15 mm2 UWF-
SS-OCTA images obtained from a PLEX® Elite 9000 (Carl Zeiss Meditec Inc., Dublin, CA,
USA) for the diagnosis of DR. Each OCTA image encompassed both structural (Structure)
and flow (Flow) information. It has been demonstrated in several studies that combining
structural and flow information can improve DR diagnosis accuracy [23,24].

The 6× 6 mm2 high-resolution SS-OCTA provides superior visualization of the cap-
illary network and the central avascular zone [25]. Consequently, it enables the calcula-
tion of metrics such as vascular density (the ratio of vessel area with respect to the total
area) [26–28], fractal dimensions [29], and intercapillary spaces [30]. However, its limitation
lies in its focus on the macular region, potentially neglecting global retinal damages.

On the other hand, the 15× 15 mm2 UWF-SS-OCTA provides a more extensive view
of the retina, allowing the detection of relevant abnormalities, such as the presence of an
intraretinal microvascular abnormality (IRMA) or a preretinal vascular anomaly (neoves-
sel) [11,14,31]. Furthermore, the absence of capillary networks on important surfaces in
the 15× 15 mm2 image can be easily observed [32], which are considered an important
biomarker of proliferating diabetic retinopathy [33,34].
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Overall, 6× 6 mm2 SS-OCTA allows an accurate calculation of certain vascular metrics
and an analysis of the central avascular zone. Still, it only explores a small part of the retina,
while 15× 15 mm2 SS-OCTA allows a broader investigation of vascular anomalies and
areas of non-perfusion in the retina. The two specifications complement each other quite
well in clinical practice.

1.3. Highlights

This paper presents an innovative approach to improve the accuracy of DR diagnosis
by leveraging the complementary information provided by 6× 6 mm2 and 15× 15 mm2

SS-OCTA images. We meticulously investigated the use of the information from each
acquisition and tested the performance of the fusion on structural and flow information for
OCTA. Our proposed hybrid fusion network utilizes the structural and flow information of
each acquisition, as well as fusing images from both acquisitions to significantly enhance
DR diagnostic performance. As the first paper exploring the fusion of different OCTA
acquisitions using deep learning methods, this work paves the way for future diagnosis
applications from OCTA images.

2. Materials and Methods
2.1. Hybrid Fusion Workflow

This study aimed to find the best hybrid fusion network structure for the fusion of
6× 6 mm2 SS-OCTA data with 15× 15 mm2 SS-OCTA data. To achieve this, we organized
the workflow into the following four stages:

(1) Data processing. The first step involved exploring a variety of approaches to process
the raw data from different acquisitions and adapt it to the input specifications of the
CNN network.

(2) Backbones. Subsequently, we investigated the most effective backbone for the Struc-
ture and Flow separately for both acquisitions of OCTA data.

(3) Fusion of Structure and Flow. After selecting the most effective backbone from
three deep learning architectures for each modality, we evaluated four different
fusion strategies—input fusion, feature fusion, decision fusion (leveraging averaging
strategies), and hierarchical fusion using Structure and Flow.

(4) Fusion of 6× 6 mm2 and 15× 15 mm2 acquisitions. Based on the best optimal fusion
structure for each acquisition, we assessed two strategies, namely feature fusion
and decision fusion, on information derived from both 6× 6 mm2 and 15× 15 mm2

SS-OCTA acquisitions:

• For the feature fusion strategy, we utilized the model parameters obtained in the
previous fusion step and conducted two types of fine-tuning—(a) fine-tuning the
entire network (network fine-tuning), and (b) freezing all convolutional layers
and fine-tuning the classification layer (layer fine-tuning).

• For the decision fusion strategy, we implemented and tested both averaging
(Avg) and maximization (Max) strategies.

This comprehensive process led us to a hybrid fusion network structure that facili-
tates the fusion of single-acquisition multimodal information with multiple-acquisition
information. This hybrid fusion structure maximized the diagnosis performance of DR
by integrating the complementary information from both 6× 6 mm2 and 15× 15 mm2

SS-OCTA acquisitions. This method fully leveraged the structural and flow information
derived from each acquisition, thus optimizing our diagnosis process. Figure 1 illustrates
the workflow of this study.
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Figure 1. Proposed workflow.

2.2. Data Processing
2.2.1. EviRed Dataset

Data regarding DR provided by the Évaluation Intelligente de la Rétinopathie dia-
bétique (EviRed) project (https://evired.org/—accessed on 24 August 2023) were used
in this study. Patient data were collected between 2020 and 2022 from 14 hospitals and
recruitment centers in France using a PLEX® Elite 9000. The examination was conducted
with patients’ informed consent. The Declaration of Helsinki was followed during all pro-
cedures. The study protocol was approved by the French South-West and Overseas Ethics
Committee 4 on 28 August 2020 (Clinical Trial NCT04624737). The PLEX® Elite 9000 has a
scanning frequency of 200 kHz and is capable of acquiring both 15× 15 mm2 and 6× 6 mm2

SS-OCTA images with a wavelength of 1060 nanometers. In the early phase of the EviRed
project, OCTA data were gathered for 875 eyes from a total of 444 patients without a quality
filter. This substantial dataset was used to train and test our deep learning models.

Following the EviRed study protocol, each patient’s ocular data often contained
two specifications of acquisitions: 6× 6 mm2 high-resolution SS-OCTA and 15× 15 mm2

UWF-SS-OCTA. Figure 2 shows en-face images and their corresponding B-scan images (pre-
processed) of the Structure and Flow from the same patient acquired for
different specifications.

The EviRed raw data size was 500× 1536× 500× 2 voxels for the 6× 6 mm2 SS-OCTA
and 834× 3072× 834× 2 voxels for the 15× 15 mm2 SS-OCTA. The last channel presented
the information of Structure and Flow, respectively. To reduce the volume under consider-
ation, we intercepted the OCTA image located between the internal limiting membrane
(ILM) and retinal pigment epithelium (RPE) layers along the depth (y axis) and flattened the
ILM layer. The EviRed raw data were resized to dimensions of 500× 224× 500× 2 voxels
for the 6× 6 mm2 SS-OCTA and 834× 224× 834× 2 voxels for the 15× 15 mm2 SS-OCTA.
Figure 2a,c illustrate the orientation of each dimension. For the 6× 6 mm2 SS-OCTA, the en-
face images had a size of 500× 500 pixels, and the B-scan images were 500× 224 pixels.
The 15× 15 mm2 SS-OCTA had en-face images and B-scan images of sizes 834× 834 pixels
and 834× 224 pixels, respectively.

https://evired.org/
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Figure 2. Structure and Flow en-face slices (a,b,e,f) and pre-processed B-scan images (flattened
retina) (c,d,g,h) from 6× 6 mm2 SS-OCTA and 15× 15 mm2 SS-OCTA. (a,c) Flow of 15× 15 mm2

SS-OCTA. (b,d) Flow of 6× 6 mm2 SS-OCTA. (e,g) Structure of 15× 15 mm2 SS-OCTA. (f,h) Structure
of 6× 6 mm2 SS-OCTA. The area of the 6× 6 mm2 SS-OCTA is in the center of the 15× 15 mm2

SS-OCTA image (red bounding box). The green line in the en-face slice shows the source of the B-scan,
and the green line in the B-scan image shows the intercept direction of the en-face slice.

2.2.2. OCTA Cropping

Due to graphics processing unit (GPU) hardware limitations (NVIDIA Tesla V100S
with 32 GB memory), our 3D deep learning backbones could only accommodate inputs
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up to 224 × 224 × 224 × 2 voxels. The patch extraction method is commonly used to
address hardware limitations in 3D medical images [35,36]. Nevertheless, it is difficult
to ensure that each patch contains pathology information. Based on the idea of test time
augmentation [37], the model synthesized and analyzed multiple predictions in order to
avoid making inaccurate predictions. As a result, a global prediction of multiple patches
was an effective method under the limitations of our hardware. In this context, we proposed
a strategy, named N times Random Crop method, for processing images as shown in
Figure 3. We compared our proposed method with other commonly used methods of
data processing. For this comparison, we used the input fusion of ResNet [38] with the
15× 15 mm2 OCTA in order to verify its effectiveness. The following methods were tested
for prediction:

(1) N times Random Crop (proposed). During the training of the deep learning net-
work, Random Crop processing was employed, while in the prediction process,
we utilized multiple volumes extracted from the OCTA image (N times Random
Crop) simultaneously to make predictions. Considering that the patch size was
224× 224× 224× 2 voxels, it would take at least 9 batches (d 500

224e × d
224
224e × d

500
224e ×

d 2
2e) to traverse the 500× 224× 500× 2 voxel 6× 6 mm2 SS-OCTA images, while

16 batches (d 834
224e× d

224
224e× d

834
224e× d

2
2e) would be required to traverse the 834× 224×

834× 2 voxel 15× 15 mm2 SS-OCTA images. By comparing the performance of the
ResNet input fusion model on the validation set with different N times Random Crop
methods, we determined the N values for the two SS-OCTA acquisitions. The final
prediction for an OCTA image was based on the severest prediction among these
N predictions.

(2) Resize. This method compressed the original volume of 834× 224× 834× 2 voxels
into 224× 224× 224× 2 voxels for both training and prediction.

(3) Center Crop. This approach selected a random patch of 224× 224× 224× 2 voxels
from the original 834× 834× 834× 2 voxel OCTA for training. For prediction, a central
patch was selected.

(4) Subvolume Crop. This technique traversed the OCTA using a window, predicting all
subvolumes of 224× 224× 224× 2 voxels and determining the maximum value.

Figure 3. Our proposed data processing approach, where N is 10 for 6× 6 mm2 SS-OCTA and 20 for
15× 15 mm2 SS-OCTA. Predictions were based on the same fusion model as for training. Colored
discs indicate the DR severity categories.
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It is worth noting that for single-acquisition fusion, we ensured the registration of
data across different modalities. However, when fusing data from different acquisitions,
Random Crop generated data from varying regions. Having processed the data, our next
step was to use these images to extract meaningful features and combine them for our
classification task.

2.3. Multimodal Information Fusion

In this section, we describe three fusion network structures commonly used in multi-
modal research: input fusion, feature fusion, and decision fusion [39]. Furthermore, we
introduce hierarchical fusion, which is our extension of traditional feature fusion.

2.3.1. Input Fusion

Input fusion refers to the combination of multiple modalities into a single data tensor,
which is then fed into a deep neural network, as illustrated in Figure 4a. It is common
to treat different modalities as different input channels when combining modalities with
similar structures. This method is widely used in multiple-sequence classification [40–43]
and segmentation [44–48] applications due to its simple implementation. Despite the data
fusion at the input level and the single-branch feature extraction structure, complementary
information from different modalities is not fully exploited. In addition, input fusion often
requires the registration of different input modalities [22].

Figure 4. An illustration of the three types of multimodal fusion networks: (a) input fusion, (b) feature
fusion, (c) decision fusion.

2.3.2. Feature Fusion

Feature fusion is achieved using different deep learning backbones to extract fea-
tures from different modalities separately, followed by a fusion process before a final
decision is made by the fully connected (FC) layer, as shown in Figure 4b. The feature
fusion process uses different branches to extract features and fuse information at the high-
dimensional feature level, which is suitable for unregistered data or data with different
dimensions [49–52]. Feature fusion consists merely of concatenating high-dimensional fea-
tures, which causes relevant information to be lost inadvertently, negatively impacting
classification accuracy [22].

2.3.3. Decision Fusion

Decision fusion involves extracting features and making decisions through separate
deep learning backbones, and the results are combined into one final decision, as shown
in Figure 4c. Many fusion strategies have been proposed for decision fusion [53]. Most of
them are based on averaging and majority voting [54,55]. Due to the absence of feature
fusion, it is difficult to exploit the complementary information between different modalities.
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2.3.4. Hierarchical Fusion

Our previous study proposed hierarchical fusion through the extension of feature
fusion [22]. Similar to feature fusion, hierarchical fusion extracts individual features from
multiple deep learning branches and then fuses them at higher levels of the network.
On the other hand, unlike feature fusion, additional branches are added in order to fuse
features at different scales. Finally, the decision layer is applied to the fusion results in
order to reach a final prediction. In hierarchical fusion, complementary information among
modalities is exploited at different scales, leading to better multimodal fusion. In [22],
hierarchical fusion proved to be superior to input fusion and feature fusion in fusing 2D
line-scanning ophthalmoscope (LSO), 3D structural OCT, and 3D OCTA images for DR
detection. Figure 5 illustrates the hierarchical fusion of the structural information and flow
information of the 6× 6 mm2 images tested in this study.

Figure 5. An illustration of hierarchical fusion network for 6× 6 mm2 SS-OCTA Structure and Flow.

2.4. Classification Tasks

DR severity was assessed by a retina specialist using fundus photographs, according to
the International Clinical Diabetic Retinopathy Disease Severity Scale (ICDR): the absence of
diabetic retinopathy, mild nonproliferative diabetic retinopathy (NPDR), moderate NPDR,
severe NPDR, proliferative diabetic retinopathy (PDR), and panretinal photocoagulation
(PRP). In addition to the six-category multiclass classification, we also performed four
binary classification tasks: task0 (detecting mild NPDR or more), task1 (detecting moderate
NPDR or more), task2 (detecting severe NPDR or more), and task3 (detecting PDR or PRP).
To assess the performance of the four binary classifications, we used the area under the ROC
curve (AUC): AUC0 (≥mild NPDR), AUC1 (≥moderate NPDR), AUC2 (≥severe NPDR)
and AUC3 (≥PDR). As a standard evaluation metric for the multicategory classification
task, Cohen’s kappa was also used to evaluate the EviRed dataset’s six-category results.
Based on the confusion matrix, the Kappa coefficient was calculated with a value between
−1 (worse than chance agreement) and 1 (perfect agreement).

The calculation formula for the Kappa coefficient based on the confusion matrix is
as follows:

κ =
p0 − pe

1− pe
, (1)

where p0 is the accuracy, and pe the hypothetical probability of chance agreement.
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2.5. Dataset Splitting

During the data acquisition process, there were instances when the collection of OCTA
data for both eyes of each patient could not be guaranteed due to factors such as operator
errors or the patient’s physical condition. Similarly, not all patients were able to provide
both 6× 6 mm2 and 15× 15 mm2 SS-OCTA data. Despite these constraints, and in order to
make full use of the dataset to train different model frameworks for different acquisitions
and to test the performance of the fusion model, we split the data as follows: Initially,
we selected 53 patients out of the 444 in the EviRed dataset who had both 6× 6 mm2

and 15× 15 mm2 SS-OCTA data in each eye to form a test set. The remaining patients
were shared out randomly between a training set and a validation set. Depending on the
fusion task, subsets of the training and validation sets were used in each experiment—
all 6× 6 mm2 acquisitions or all 15 × 15 mm2 acquisitions for single-acquisition tasks,
all matched pairs of 6× 6 mm2 and 15× 15 mm2 acquisitions for multiple-acquisition
tasks. All fusion tests were trained and validated using five-fold cross-validation (four-fold
training and one-fold validation), and performance scores were derived from the same test
sets. In the training, validation, and test sets, the distribution of data was identical to the
original distribution. The patient and eye data statistics for different fusion datasets are
shown in Table 1, and the severity distribution is displayed in Table 2.

Table 1. Statistics on the number of patients and eyes in the dataset. For the fusion of Structure and
Flow for 6× 6 mm2 SS-OCTA, the fusion of Structure and Flow for 15× 15 mm2 SS-OCTA, and the
fusion of 6× 6 mm2 and 15× 15 mm2 SS-OCTA, the test sets were identical and fixed. Dataset 6 × 6,
dataset 15 × 15, and dataset 6 × 6 + 15 × 15 represent the corresponding training and validation sets.

Dataset Type Patients Eyes

Total (EviRed dataset) 444 875
Test set (for all fusion tests) 53 97
Dataset 6 × 6 (for fusion of 6× 6 mm2 OCTA: Structure + Flow) 386 753
Dataset 15 × 15 (for fusion of 15× 15 mm2 OCTA: Structure + Flow) 372 701
Dataset 6 × 6 + 15 × 15 (for fusion of 6× 6 mm2 + 15× 15 mm2 OCTA) 364 676

Table 2. Distribution of eyes with different levels of severity in different datasets.

Severity Dataset 6 × 6 Dataset 15 × 15 Dataset 6 × 6 + 15 × 15 Test Set

Absence of diabetic retinopathy 151 128 127 17
Mild NPDR 76 69 68 12
Moderate NPDR 348 334 321 39
Severe NPDR 111 107 97 18
PDR 20 20 20 3
PRP 47 43 43 8

2.6. Implementation Details

The experiments were carried out with 3D versions of ResNet50 [38], DenseNet121 [56],
and EfficientNetB0 [57] trained from scratch. To enhance the robustness of these models,
data augmentation techniques such as random Gamma transformations, Gaussian noise
injection, and image flipping were employed. For model training, we utilized the Adam
optimizer for gradient descent with an initial learning rate of 1× 10−4. ExponentialLR
with a gamma equal to 0.99 was the learning rate decay strategy. The number of training
epochs was set to 500, and the batch size was set to 2. The network training and testing
were carried out using four NVIDIA Tesla V100S units with 32 GB memory. For training
large models such as the hierarchical fusion used in this experiment, model parallelism
was used. The validation set was used to select the best backbones and the best checkpoint
of each backbone. It was also used to select the best data cropping and information fusion
strategies. However, for simplicity, performance is illustrated solely on the test set hereafter.
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3. Results
3.1. Data Cropping

Figure 6 shows the test results for different N times Random Crop methods. The per-
formance of the fusion model on different metrics improved with an increase in N. For the
6× 6 mm2 SS-OCTA, the performance at N = 10 and N = 12 was comparable. For the
15× 15 mm2 SS-OCTA, the performance at N = 20 and N = 25 was essentially unchanged.
As a result, we chose N = 10 for 6× 6 mm2 SS-OCTA and 20 for 15× 15 mm2 SS-OCTA as
reasonable tradeoffs between computation times and classification scores.

Figure 6. The results of the different N times Random Crop methods on the validation set for the
input fusion of ResNet with the two SS-OCTA acquisitions.

Table 3 compares cropping methods: it shows that the Resize and Center Crop meth-
ods performed poorly due to a significant loss of information. As a result of the data
compression of Resize, many pathological details were rendered invisible, while Center
Crop focused only on the information obtained from the center patch. Although Subvolume
Crop performed relatively well, manually extracting subvolumes may have omitted key
pathological features, affecting the model’s judgment. In the validation and test sets, our
proposed data cropping method, namely Random Crop, outperformed the others in each
classification task, demonstrating its effectiveness in handling the large original volume
of OCTA images.

Table 3. The results of the different data cropping methods on the test set for the input fusion of
ResNet with the 15× 15 mm2 SS-OCTA images. The best results are in bold.

Data Cropping Method Kappa AUC0 AUC1 AUC2 AUC3

Resize 0.2913 0.6485 0.6557 0.6836 0.7074
Center Crop 0.3270 0.7257 0.7059 0.6850 0.6903
Subvolume Crop 0.4048 0.7596 0.7429 0.7449 0.8340
N times Random Crop (proposed) 0.4252 0.7721 0.7474 0.7519 0.8546

3.2. Backbones

A total of four modalities of information from Structure and Flow with different
acquisitions were tested, along with three deep learning backbones: ResNet, DenseNet,
and EfficientNet. Table 4 presents the results of the backbone tests. In the validation
and test sets, ResNet demonstrated superior performance across all classification tasks for
both the structure modality from the 6× 6 mm2 SS-OCTA images and the flow modality
from the 15× 15 mm2 SS-OCTA images. The performance of the other backbones varied
across the remaining modalities, and it was difficult to determine which backbone was the
most effective. EfficientNet was effective for the multiclass classification as well as early
pathology detection in the Flow from 6× 6 mm2 SS-OCTA images, while ResNet excelled
in the more severe pathology detection tasks. Interestingly, DenseNet surpassed ResNet on
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task 0 when using Structure from 15× 15 mm2 SS-OCTA images. Based on these results, we
selected the best-performing backbones (in bold in Table 4) for different tasks as baselines
for the subsequent fusion schemes of Structure and Flow.

Table 4. Backbone test results with different modalities on the test set.

Modality Backbone Kappa AUC0 AUC1 AUC2 AUC3

6× 6 mm2 SS-OCTA—Structure
ResNet 0.4150 0.8375 0.7659 0.7889 0.8104

DenseNet 0.3597 0.8285 0.7462 0.7368 0.7040
EfficientNet 0.4149 0.8246 0.7521 0.7438 0.7788

6× 6 mm2 SS-OCTA—Flow
ResNet 0.3768 0.7931 0.7653 0.7566 0.7863

DenseNet 0.3399 0.7972 0.7700 0.7525 0.7653
EfficientNet 0.4085 0.8306 0.7775 0.7446 0.7150

15× 15 mm2 SS-OCTA—Structure
ResNet 0.3900 0.8118 0.7604 0.7462 0.8700

DenseNet 0.3589 0.8251 0.7527 0.7923 0.8732
EfficientNet 0.3230 0.8046 0.7407 0.7757 0.8671

15× 15 mm2 SS-OCTA—Flow
ResNet 0.4189 0.7927 0.7627 0.7911 0.8774

DenseNet 0.3261 0.7770 0.7517 0.7788 0.8125
EfficientNet 0.3259 0.7848 0.7557 0.7545 0.8397

3.3. Fusion of Structure and Flow

We combined Structure and Flow from different acquisitions using the top-performing
backbones from the previous section. We tested input fusion, feature fusion, and hierarchi-
cal fusion. Tables 5 and 6 show the fusion results for 6× 6 mm2 and 15× 15 mm2 SS-OCTA
acquisitions, respectively.

Table 5. Results of Structure + Flow fusion for 6× 6 mm2 SS-OCTA acquisitions on the test set.
The unimodal results are baselines derived from the previous step.

Fusion Method Backbone Kappa AUC0 AUC1 AUC2 AUC3

Structure (unimodal) ResNet 0.4150 0.8375 0.7659 0.7889 0.8104
Flow (unimodal) ResNet 0.3768 0.7931 0.7653 0.7566 0.7863
Flow (unimodal) EfficientNet 0.4085 0.8306 0.7775 0.7446 0.7150

Input Fusion ResNet 0.3849 0.8093 0.7656 0.7476 0.7886
Input Fusion EfficientNet 0.3885 0.8192 0.7755 0.7496 0.7321
Feature Fusion ResNet + ResNet 0.4329 0.8246 0.7763 0.7577 0.7900
Feature Fusion ResNet + EfficientNet 0.3959 0.8132 0.7637 0.7023 0.7622
Decision Fusion ResNet + ResNet 0.3814 0.8074 0.7757 0.7530 0.7868
Decision Fusion ResNet + EfficientNet 0.4227 0.8446 0.7770 0.7500 0.7478
Hierarchical Fusion ResNet + ResNet 0.4752 0.8462 0.7793 0.7607 0.8013
Hierarchical Fusion ResNet + EfficientNet 0.4205 0.8206 0.7662 0.7186 0.7743

In the validation and test sets, the hierarchical fusion outperformed other methods
for 6 × 6 mm2 OCTA. Based on two ResNet branches, the hierarchical fusion method
achieved a Kappa value of 0.4752 for the six-category multiclass classification, a significant
improvement over the unimodal baseline. Furthermore, hierarchical fusion improved
diagnostic performance for both task 0 and task 1. In contrast, hierarchical fusion did not
perform as well as unimodal fusion in tasks 2 and 3. There was a significant difference
in performance between Structure and Flow in tasks 2 and 3. As a result, fusion was not
effective, since Flow did not provide additional complementary information to Structure.
Also, the hierarchical fusion of ResNet and EfficientNet was not effective, likely due to the
structural differences between these backbones.
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Table 6. Results of Structure + Flow fusion for 15 × 15 mm2 SS-OCTA images on the test set.
The unimodal results are baselines derived from the previous step.

Fusion Method Backbone Kappa AUC0 AUC1 AUC2 AUC3

Structure (unimodal) ResNet 0.3900 0.8118 0.7604 0.7462 0.8700
Structure (unimodal) DenseNet 0.3589 0.8251 0.7527 0.7923 0.8732
Flow (unimodal) ResNet 0.4189 0.7927 0.7627 0.7911 0.8774

Input Fusion ResNet 0.4252 0.7721 0.7475 0.7519 0.8546
Input Fusion DenseNet 0.3286 0.7108 0.7072 0.7235 0.8175
Feature Fusion ResNet + ResNet 0.3982 0.8029 0.7627 0.7876 0.8630
Feature Fusion DenseNet + ResNet 0.3227 0.7437 0.7366 0.7546 0.8429
Decision Fusion ResNet + ResNet 0.4124 0.7949 0.7688 0.7688 0.8728
Decision Fusion DenseNet + ResNet 0.4376 0.8205 0.7583 0.7726 0.8754
Hierarchical Fusion ResNet + ResNet 0.4430 0.8187 0.7745 0.7967 0.8786
Hierarchical Fusion DenseNet + ResNet 0.4137 0.8088 0.7662 0.7794 0.8719

Similarly, for the 15× 15 mm2 SS-OCTA acquisitions, hierarchical fusion was the most
effective in the validation and test sets. The hierarchical fusion of two ResNet branches
significantly improved performance for six-category multiclass classification and tasks
1, 2, and 3 compared to the unimodal baseline results. Specifically, hierarchical fusion
achieved an AUC of 0.8786 for task 3. Due to the similar performance of Structure and
Flow, the hierarchical fusion was able to take advantage of the complementary information
provided by the different modalities and performed well.

From the above results, the 6× 6 mm2 SS-OCTA was very effective for diagnosing
early diabetic retinal lesions, while the 15 × 15 mm2 SS-OCTA was more effective in
diagnosing more advanced pathology, which is consistent with our clinical prior knowledge.
As shown in [22], hierarchical fusion proves effective since the Structure and Flow-based
hierarchical fusion has the capability of utilizing complementary information to enhance
the strengths of each acquisition individually, thereby facilitating the subsequent fusion of
different acquisitions.

3.4. Fusion of 6× 6 mm2 SS-OCTA and 15× 15 mm2 SS-OCTA

To maximize the complementary strengths of the 6× 6 mm2 SS-OCTA and 15× 15 mm2

SS-OCTA acquisitions for different tasks, we further tested feature fusion and decision
fusion on the hierarchical fusion architectures. The unimodal results of the 6× 6 mm2

SS-OCTA and 15× 15 mm2 SS-OCTA images were used as baselines. The results of this
fusion are shown in Table 7.

Table 7. Results of the 6× 6 mm2 SS-OCTA + 15× 15 mm2 SS-OCTA fusion on the test set. The
6× 6 mm2 SS-OCTA and 15× 15 mm2 SS-OCTA rows show the best performance of single acquisi-
tions on different tasks.

Modality Fusion Method Kappa AUC0 AUC1 AUC2 AUC3 Inference Time
(seconds/eye)

6× 6 mm2

SS-OCTA
Structure (unimodal) 0.4150 0.8375 0.7659 0.7889 0.8104 0.9729

Hierarchical Fusion 0.4752 0.8462 0.7793 0.7607 0.8013 1.8041

15× 15 mm2

SS-OCTA
Structure (unimodal) 0.3589 0.8251 0.7527 0.7923 0.8732 1.6394

Hierarchical Fusion 0.4430 0.8187 0.7745 0.7967 0.8786 3.84655

6× 6 mm2

SS-OCTA +
15× 15 mm2

SS-OCTA

Feature Fusion—
fine-tuning 0.4637 0.8469 0.8004 0.7989 0.8670 4.9233

Feature Fusion—
freezing layers 0.5132 0.8741 0.7853 0.7555 0.8207 4.8410

Decision Fusion—max 0.5218 0.8801 0.8027 0.8083 0.8911 4.0686

Decision Fusion—avg
(proposed hybrid fusion) 0.5593 0.8868 0.8276 0.8367 0.9070 3.9679
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Decision fusion with average aggregation was the best strategy for the validation and
test sets. The process of feature fusion showed improvements over single acquisitions on
certain tasks but did not achieve its goal for tasks 2 and 3. This discrepancy could have
been due to the differing volumes of the acquisitions. Without utilizing registered image
information for random cropping, the pathological features between acquisition branches
could vary significantly, which could have potentially impaired the judgment of the fusion
model. Conversely, decision fusion had the capacity to address this issue effectively.
The decision fusion process operated only on the final output probability after each branch
had independently made its assessments. This allowed for the integration of information
without being affected by image registration at the same time. As shown in Table 7,
the proposed decision fusion method, which was based on averaging, performed well.

The inference time of the different fusion methods was also compared. Inference took
longer for 15× 15 mm2 SS-OCTA (N = 20), since the N times Random Crop was twice as
large as for 6× 6 mm2 SS-OCTA (N = 10). Due to the complexity of its structure, hierarchical
fusion required more time for inference. Despite this, because of the parallel nature of
the model, our hybrid fusion method did not take longer than hierarchical fusion. The
resulting four second inference time per eye is acceptable and can provide reliable results
for ophthalmologists within a short period of time.

4. Discussion and Conclusions

This study investigated a deep learning algorithm to classify diabetic retinopathy
severity using 6× 6 mm2 high-resolution SS-OCTA and 15× 15 mm2 UWF-SS-OCTA acqui-
sitions. It relied on a hybrid fusion architecture that utilized complementary structure and
flow information from both acquisitions. In detail, this architecture combined hierarchical
fusion to jointly analyze Flow and Structure from the same acquisition and decision fusion
to merge predictions from both acquisitions. This algorithm was evaluated on preliminary
data from the EviRed project.

Our experiments showed that the 6× 6 mm2 SS-OCTA acquisitions were highly effec-
tive for the detection of early-stage pathology, while 15× 15 mm2 SS-OCTA acquisitions
performed better in terms of advanced pathology detection (see Table 7). This was con-
sistent with the perceived usefulness of these acquisitions by ophthalmologists: in the
early stages, anomalies are generally small and are therefore better seen in high-resolution
SS-OCTA images, while in the advanced stages, anomalies are larger, and an ultra-widefield
image becomes more beneficial than a high-resolution image. The suggested hybrid fusion
system demonstrated significant improvements over single acquisitions (see Table 7). The
hybrid fusion approach integrated the strengths of both acquisitions: it delivered excellent
performance in both early and late pathological diagnosis while significantly improving the
accuracy of the six-category multiclass classification. Therefore, this study clearly validated
the relevance of jointly analyzing multiple acquisitions. To a lesser extent, this study also
validated the relevance of analyzing multiple modalities: combining Flow and Structure
always outperformed analyzing a single modality, although the performance gain was
limited (see Tables 5 and 6).

In recent times, transformer-based models [58] have shown good performance on
classification tasks, such as the Vision Transformer (ViT) [59], which we also tested. The per-
formance of the structure and flow modalities of 6× 6 mm2 SS-OCTA images was tested
using 3D ViT models (patch size = (32, 32, 32)) from the Monai library (https://monai.io/—
accessed on 24 August 2023). Table 8 illustrates the test results for ViT.

Table 8. Results for 3D ViT with different modalities on the test set.

Modality Backbone Kappa AUC0 AUC1 AUC2 AUC3

6× 6 mm2 SS-OCTA—Structure ViT 0.1122 0.6774 0.6490 0.4900 0.5912

6× 6 mm2 SS-OCTA—Flow ViT 0.0854 0.6696 0.6474 0.5487 0.5843

https://monai.io/
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In all tasks, ViT performed very poorly. A large dataset and pre-trained models
contribute significantly to the excellent performance of ViT [59]. In addition to the limited
number of patients in our dataset, there was no publicly available pre-training model for
3D ViT, which was likely the major reason for its poor performance. Nevertheless, extensive
testing is still required for the hyperparameter configuration of 3D transformer models.

It should be noted, however, that some transformer-based models are increasingly
used to perform multimodal tasks in the medical field [60–62]. It has been observed
that these models often combine a CNN structure with a transformer structure, resulting
in excellent classification performance with limited medical datasets; this is one of the
directions that we plan to pursue in the future.

One limitation of this study was that the current dataset is insufficiently large, resulting
in suboptimal performance on the six-category multiclass classification task. Furthermore,
too small a dataset may adversely affect the robustness of a model. The EviRed project
is expected to collect clinical data from thousands of patients, and so more datasets will
be tested in the near future. Further studies will be conducted to test the stability of the
model and fine-tune the model to improve its performance on the six-category multiclass
classification task.

The current EviRed dataset also contains ultra-widefield color fundus photography
(UWF-CFP) data alongside OCTA data from different acquisitions, which may aid in further
improving the accuracy of DR diagnosis. In [15], the use of UWF-OCTA in conjunction
with UWF-CFP was recommended for the screening and follow-up of DR. Conversely,
UWF-OCTA alone had some limitations. It is difficult and sometimes ambiguous to identify
microaneurysm and intraretinal hemorrhage from OCTA en-face images. To facilitate
diagnosis, it is often necessary to search for corresponding lesions on B-scan images, a time-
consuming process. The use of UWF-CFP images would make this task much easier. Our
further investigation will be directed by the joint analysis of OCTA and UWF-CFP images.
The EviRed projects are also aiming to collect longitudinal data. Once enough longitudinal
data are available, the proposed framework will be applied to DR prognosis tasks, for the
purpose of improving DR management.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the ROC curve
CNN Convolutional neural networks
DR Diabetic retinopathy
FC Fully connected
GPU Graphics processing unit
LSO Line-scanning ophthalmoscope
ICDR International Clinical Diabetic Retinopathy Disease Severity Scale
ILM Internal limiting membrane
IRMA Intraretinal microvascular abnormality
NPDR Non-proliferative DR
OCT Optical coherence tomography
OCTA Optical coherence tomography angiography
PDR Proliferative diabetic retinopathy
PRP Panretinal photocoagulation
ROC Receiver operating characteristic
RPE Retinal pigment epithelium
SS-OCTA Swept-source OCTA
UWF Ultra-widefield
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