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Abstract: One of the most widespread health issues affecting women is cervical cancer. Early detection
of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity
and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical
cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect
cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or
nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve
imbalanced data problems, automated features are extracted using three pre-trained convolutional
neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of
these scenario combinations. The most important features are split into ten features by the principal
component analysis, which reduces the dimensionality. This study employs feature weighting to
create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure
uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm
optimization (PSO). Finally, two types of machine learning algorithms, support vector machine
classifier, and random forest classifier, have been used in this paper to perform classification jobs.
With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed
the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies
that used seven classes because of this focus on the tissues rather than just the nucleus. This method
will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the
tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.

Keywords: Pap smear images; AlexNet; DarkNet-19; NasNet; support vector machine; random
forest; cervical cancer; ant lion optimization; particle swarm optimization

1. Introduction

Cervical cancer is a type of cancer that occurs in the cells of the cervix, the lower
part of the uterus that connects to the vagina [1]. Worldwide, cervical cancer is the fourth
most common cancer in women and the fourth leading cause of cancer-related deaths
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in women [1,2]. Most cervical cancers take years to progress to a severe stage; early
symptoms are often limited to lower back and abdominal pain. Thus, the cancer may go
undetected until it is so advanced that it is unresponsive to treatment [3]. The development
of cervical carcinoma is preceded by a premalignant epithelial dysplasia called “cervical
intraepithelial neoplasia” (CIN). Therefore, the term dysplasia is used to describe the pre-
cancerous changes, which are graded using a scale of one to three (mild, moderate, and
severe dysplasia) based on how much of the cervical tissue looks abnormal. Precancerous
changes can be detected using the Pap test and treated to prevent cancer from developing.
Routine screening allows for the identification of precancerous lesions and early-stage
cancers when interventions can be most effective. A Pap smear, also known as a Pap test or
cervical cytology, is widely used as a screening procedure to detect cellular abnormalities
in the cervix, including precancerous or cancerous changes at an early stage.

Currently, Pap smears are the most common method for identifying abnormal cervical
cells [3,4]. Pap smears are prepared with an Ayre spatula or brush that is used to scrape cells
from the cervix. Then, the collected cells are spread over a labeled glass slide before being
submerged in 95% ethyl alcohol and delivered to pathology for histopathological analysis
to look for abnormal cells that may develop into cancer or observe any inflammation or
vaginal infections [5,6]. A cervical cell consists of two main components. One is the nucleus,
which is in the cell’s center and surrounded by cytoplasm. The nucleus is typically compact,
nearly spherical, darker than the cytoplasm surrounding it, and intense. Dysplastic cells,
also known as aberrant cells, are cells that do not develop and divide properly. Dysplastic
cells exist at three levels: mild, moderate, and severe. A large percentage of mild dysplastic
cells compared to severe dysplastic cells will resolve spontaneously without developing
into malignant ones. The nuclei of squamous dysplastic cells are often bigger and darker
and frequently stick together in clusters. The nuclei of severe dysplastic cells are often
enlarged, covered in black granules, and malformed [7]. Figure 1 shows a sample of normal
and abnormal cells.

Figure 1. (a) Normal Pap smear. (b) Abnormal Pap smear 0.201 µm/pixel.

Pap smear image classification is an important method for diagnosing cervical can-
cer [8]. By analyzing cell images and categorizing the cells into one of seven classes, Pap
smears for advanced cervical screening are a highly effective technique for precancerous
cell detection. Computer-aided medical imaging systems have considerably benefited from
remarkable advances in artificial intelligence (AI) technology [9]. Thus, this paper aims to
take advantage of convolutional neural network (CNN) architectures and machine learning
to analyze the classification of cervical Pap smear images to improve the reliability of the
test results. Current classification systems use extracted nuclei or full Pap smear images to
identify cervical cancer; the main limitation of this approach is that first the nuclei must be
detected and excluded from images.
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2. Literature Review

Many studies have applied computational methods to medical testing to reduce errors
in evaluation. Some researchers have investigated the use of traditional machine-learning
methods in classifying cervical cells [10]. The computer-assisted detection and classification
(CAD) approach for cervical cancer utilizing Pap smear images was proposed by Sukumar
et al. [11]. The nuclei cell area was segmented using morphological techniques. From
the normal and abnormal cell nucleus, the Grey level, wavelet, and GLCM features were
extracted. Using an adaptive neural fuzzy-based classifier (ANFIS) to train and classify
these extracted features, they achieved an accuracy of 92.68%. Another study [12] presents
the CAD technique for diagnosing cervical cancer utilizing Pap smear images. From
Pap smear images, they extract LBP and gray features. The test pap smear cell image
was classified into normal or abnormal cell images with a 99.1% accuracy using a hybrid
classifier that included SVM and ANFIS. Using morphological techniques, the abnormal
cell area was found and segmented.

A new technique for detecting cervical cancer in Pap smear images that show an overlap
between the nucleus and inflamed cells was put forth by Muhimmah et al. [13], attaining
up to a 95% sensitivity rate. Athinarayanan et al. [14] proposed a system with multiple
stages proposed for cancer diagnosis and nuclei extraction. The Pap smear images were first
treated to ensure noise removal during the preprocessing stage. These Pap smear images
with little noise were used to extract texture features. The suggested system’s classification
phase came next, using RBF and kernel-based SVM classification with these extracted features.
The classification step achieves an accuracy above 94%. On the other hand, Plissiti et al. [15]
applied spectral clustering and fuzzy C-means methods for the classification of cervical cells,
focusing only on the features extracted from the nucleus, ignoring the cytoplasm. The best
classification, 90.58%, was obtained with K-PCA (Gaussian kernel). Mbaga et al. [16] used an
SVM classifier in two kernel functions: the radial basis and polynomial kernel functions. The
performance of the classifier when using the polynomial kernel was much better and higher
when compared to the Gaussian kernel; the best accuracy attained with the polynomial kernel
was 97.02% at a polynomial degree value of d = 5. Previous classification techniques have
depended on manually extracted features. Zhang et al. [17] introduced a method to classify
cervical cells based on deep features using ConvNets CNN. Their method was evaluated on
both Pap smear and LBC datasets. When applied to the Herlev benchmark Pap smear dataset
and evaluated using five-fold cross-validation, results showed that classification accuracy was
98.3%. An automated, comprehensive machine-learning technique has been proposed by
Malli et al. [18]. The proposed technique gives the color and shape features of the nucleus and
cytoplasm of the cervix cell. KNN and neural networks were trained with these features, and
then unknown cervix cell samples were classified. Results showed an accuracy of 88.04% for
KNN and 54% for ANN.

In 2020, Wang et al. [19] designed a PsiNet-TAP network to classify Pap smear images.
It was optimized by modifying the convolution layer and pruning some convolution
kernels that could interfere with the target classification task. The network was tested
on 389 cervical Pap smear images, and the method achieved an accuracy of more than
98%. Ghoneim et al. [20] proposed a system based on a CNN-extreme-learning-machine
(ELM) and investigated autoencoder (AE)-based classifiers and multi-layer perceptron
(MLP), alternatives to the ELM. Experiments performed using the Herlev database achieved
99.5% accuracy for the detection problem (two classes) and 91.2% for the classification
problem (seven classes). Alquran et al. [21] proposed an ensemble machine-learning
model with deep learning features extracted using ResNet 10 beside to features selection
method. The best accuracy achieved for seven classes was 92%. In another study, Chen
et al. [22] suggested using lightweight hybrid loss-constrained CNNs for the classification
of cervical cells at the finest level. The proposed combined supervision of hybrid loss
function improved the CNNs’ ability in categorizing cervical cells. ShufflenetV2 and
GhostNet both achieved satisfactory classification using this approach (96.18% accuracy,
96.30% precision, 96.23% recall, and 99.08% specificity for ShufflenetV2 and 96.39% accuracy
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for GhostNet) [22]. Waly et al. proposed a system that uses intelligent deep CNN by using
biomedical Pap smear images. First, they removed noise using a Gaussian filter. Then, they
segmented the nuclei using the Tsallis entropy technique with dragonfly optimization and
used SqueezeNet to extract features. Finally, classification was performed using weighted
ELM. They achieved high accuracy, at 97.81% [23]. Fekri-Ershad and Ramakrishnan [24]
suggested an effective multi-stage method for detecting cervical cancer in Pap smear images.
First, the cytoplasm, including the nucleus, is removed from the intracellular fluid in the
cervix cell using a straightforward thresholding method. The local textural elements are
then described using a texture descriptor called modified uniform local ternary patterns
(MULTP). Then, to classify the Pap smear images, a multi-layer feed-forward neural
network is optimized. Recently, Deepa and Rao (2023) proposed a useful assistive tool for
radiologists and clinicians to detect overlapped cervical cells using the CNN model with
Rectified Linear Unit (ReLU) classifier. The model used 917 Pap smear cell images from the
Herlev Dataset for training and testing, with 96% accuracy [25].

Reviews of the literature indicate that early cancer detection is essential for the treat-
ment process in general; thus, early detection is also crucial for cervical cancer treatment.
The Pap smear test is an important screening test for detecting cervical cancer, while the
gold standard for diagnosing cervical cancer remains biopsy of cervical tissue. The Pap
smear test has limitations. It may not detect all cases of cervical cancer or precancerous
lesions. Therefore, regular screening is essential to maximize its effectiveness. The use
of artificial intelligence techniques in medical imaging, such as ML, DL, and CNN, has
gained popularity in recent years [26]. One constraint, though, is posed by morphological
alterations and how they are intertwined with the cells’ structural components. Algorithms
using DL and ML have significantly improved the healthcare sector. Moreover, deep
learning advancements have produced neural network algorithms that can now compete
with humans in computer vision-like image classification. Previous studies have focused
on whole Pap smear images or on extracted nuclei to detect cervical cancer. This study
focused instead on the area surrounding the nucleus, which is affected by the presence
or absence of cancerous cells. At times, the nucleus is not clear in Pap smear images.
Therefore, the surrounding regions can significantly contribute to the classification task.
This study excluded the nucleus from Pap smear images and then classified them based on
automated extracted features using deep-learning algorithms, feeding the features into the
ML algorithm to discriminate among seven classes of Pap smear images.

3. Materials and Methods

The first step was preparing the image dataset for the system implementation. The
approach used for Pap smear image classification is shown in Figure 2: first, the deep-
learning algorithms, feature extraction, and feature reduction; then, training the SVM
kernel and RF kernel; and finally, the diagnosis of the Pap smear images for all scenarios
whole image, without a nucleus, and only nucleus.

Figure 2. Block diagram of the proposed methodology.
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3.1. Dataset

This study used the Herlev Pap smear dataset, consisting of 917 cell images, with
each image containing one nucleus. To determine the effect of the surrounding region of
the nucleus, the nucleus was excluded from each cell image. The dataset was collected
by Herlev University Hospital (Denmark) and the Technical University of Denmark [27].
Table 1 shows the distribution of cervical images for each class; three are normal, and the
rest are types of abnormal classes. Figures 3–5 show the normal classes for whole cell, with
nucleus exclusion, and with exclusion surrounding region, respectively, while Figures 6–8
represent the abnormal classes for whole cell, with nucleus exclusion, and with exclusion
surrounding region, respectively.

Table 1. Distribution of data.

Cell Type (Seven Classes) Counts

Superficial squamous epithelial (Normal) 74

Intermediate squamous epithelial (Normal) 70

Columnar epithelial (Normal) 98

Mild squamous non-keratinizing dysplasia (Abnormal) 182

Moderate squamous non-keratinizing dysplasia (Abnormal) 146

Severe squamous non-keratinizing dysplasia (Abnormal) 197

Squamous cell carcinoma in situ intermediate (Abnormal) 150

Figure 3. Normal classes for whole cell.

Figure 4. Normal classes with Nucleus exclusion.

Figure 5. Normal classes with exclusion surrounding region.
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Figure 6. Abnormal classes for whole cell.

Figure 7. Abnormal Classes with Nucleus exclusion.

Figure 8. Abnormal Classes with exclusion surrounding region.

3.2. New Image Augmentation

A technique called data augmentation involves adding copies of already existing data
that have been significantly altered or product synthetic data that have been generated
from already existing data [28]. Data augmentation causes regularization and reduces
overfitting. This study applied image augmentation to the dataset by rotating images at
random angles between [−20, 20], scaling images using various scale factors within [0.1, 1],
and translating images in both X and Y directions between [−1, 1]. The count of images
before and after augmentation is shown in Table 2.

Table 2. Distribution of the dataset after augmentation.

Cell Type (Seven Classes) Before Augmentation After Augmentation

Superficial squamous epithelial (Normal) 74 200

Intermediate squamous epithelial (Normal) 70 200

Columnar epithelial (Normal) 98 200

Mild squamous non-keratinizing dysplasia (Abnormal) 182 200

Moderate squamous non-keratinizing dysplasia (Abnormal) 146 200

Severe squamous non-keratinizing dysplasia (Abnormal) 197 200

Squamous cell carcinoma in situ intermediate (Abnormal) 150 200
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The augmentation procedure is performed in the same manner for all scenarios to
ensure that the comparison is reasonable and under the same conditions. The number of
images increases to 1400 (200 for each class for all cases).

3.3. Deep Learning Features

Deep learning techniques are widely employed across a variety of fields to address
a wide range of complicated issues, including computer vision, speech recognition, and
image processing. The most frequently used DL algorithms are CNN and Recurrent Neural
Networks (RNN) [29]. The necessity for manual feature extraction is eliminated by the
ability of CNN to extract the features of the input image. To extract the most representative
features, three pre-trained CNN models are applied. The DL structures used were trained
on the ImageNet dataset to differentiate among 1000 natural classes. Transfer learning
methods were employed to render these structures compatible with the intended problem,
which focused on identifying seven categories of cervical cells [26]. Transfer learning
appeared by changing the image input size to be suitable with the input layer of each
one and eliminating the last completely connected layer to leave seven neurons for seven
classes. AlexNet, DarkNet-19, and Nasnet were used for feature extraction.

3.3.1. AlexNet

DL algorithms assist in automatically extracting features from a large dataset. The
first CNN to use a GPU to improve performance was AlexNet. Five convolutional layers,
three max-pooling layers, two normalization layers, two fully connected layers, and a
single softmax layer make up the AlexNet architecture. The input size is typically stated as
224 × 224 × 3, but, due to padding, it comes out to be 227 × 227 × 3. To be appropriate
through the first input layer, all images were modified [30]. Here, the top seven features
are automatically extracted using the transfer learning strategy (Figure 9).

Figure 9. AlexNet architecture [30].

3.3.2. DarkNet-19

The CNN with 19 layers is known as DarkNet19. DarkNet19 consists of five max-
pooling layers and 19 convolutional layers, ranging from many 1 × 1 CL to the smallest
triangle parameters comprising 3 × 3. The deep feature was extracted at this stage using
DarkNet19. Additionally, the input layer image size for DarkNet19 is 256 × 256. Figure 10
displays the structure of the neural network of DarkNet19 [31].

Figure 10. The structure of DarkNet-19 [32].
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3.3.3. NasNet

NasNet is a new, optimizable deep neural network based on the reinforcement learning
approach, which is the parent artificial intelligence (AI), making corrections and modi-
fications of the weights, number of layers regularization methods of the child of AI. Its
architecture is composed of two main blocks: controller recurrent neural network (CRNN)
and CNN. There are three different versions: A, B, and C. Figure 11 demonstrates its basic
idea [33]. In this stage, transfer learning is used, and the last layers are used to extract
seven features.

Figure 11. Controller RNN in NASNet architecture [33].

3.4. Principal Component Analysis (PCA)

The fundamental principle behind utilizing PCA as a feature selection method is to
choose variables based on the magnitude (from biggest to lowest in absolute values) of
the coefficients. Each variable contributes differently to each of the primary components,
which are ranked in importance by their explained variance [34].

All previously pre-trained CNNs’ 21 collected features are processed, and the 10 most
promising features are chosen for additional processing and diagnosis. These independent
features came from six NasNet features, two DarkNet-19 features, and the remaining
features from AlexNet. The features reduction method is described in Table 3, and works by
examining the number of features from each pretrained model, the total extracted features
from all used CNN models by combination the extracted features, applying PCA, and
then the most significant features by displaying the number of candidates features from
each model.

Table 3. Number of features before and after PCA.

Pre-Trained Model Number of Extracted
Features

The Combination of
Whole Features Using PCA

AlexNet 7

21 features

2

DarkNet-19 7 2

NasNet 7 6

21 features 21 features 10 features

3.5. Feature Weighting Method

The feature weighting aims to determine the relative value of each feature in relation
to the classification job and provide it an appropriate weight. A vital feature would be
given a higher weight than a less significant or irrelevant feature if the weighting were
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conducted appropriately. Feature weighting employs a continuous value and, as a result,
has a higher degree of detail in assessing the relevance of feature rather than making a
binary decision. It works better for tasks where certain features are more important than
others [35].

Using the strategy of ant and lion hunting, Seyedali Mirjalili introduced ALO in
2015 [36]. The ALO algorithm is used to simultaneously obtain the best feature weights
and parameter values for neural networks. The five main steps of this hunting strategy
are the random walk of agents, trapping ants in a trap, building traps, tearing them down,
and catching prey. Numerous ant lions and ants with randomly placed locations are
present throughout the search area. Ants will travel randomly throughout the search area,
potentially going through or around the traps, to mimic how ant lions and ants interact.
The more skilled individual or “ant lion” will dig a deeper, sharper pit, and capture more
ants. Ant lions, specifically the elite (best) ant lion, influence the random movements of
ants. To ensure the variety and optimization ability of the algorithm, ants will change their
positions according to ant lion and elite ant lion [37,38].

The Particle Swarm Optimization (PSO) starts by randomly initializing the particle
positions. The fitness value of each particle was then determined based on the assessment
function. Until the desired state is attained, this procedure will keep iterating. Each particle
is impacted by two values during each iteration. The first is best value any particle has ever
attained. The second value is the best overall value that all particles in the sample have.
The particles updated their velocity and positions after achieving the two best results [39].

3.6. Classification
3.6.1. Support Vector Machine

SVM is a well-known ML approach that is used for both classification and regression.
The SVM algorithm’s objective is to establish the best line or decision boundary that can
divide n-dimensional space into classes, allowing the quick classification of new data
points. This optimal decision boundary is called a hyperplane. SVM selects the extreme
vectors and points that aid in the creation of a hyperplane. Support vectors, which are
used to represent these extreme instances, form the basis of the SVM method. Consider the
diagram below, where a decision boundary or hyperplane is used to categorize two distinct
categories. SVM uses the kernel trick, which maps the features to higher dimensional space
to find the appropriate training model that can be generalized. The polynomial kernel is
exploited in this study [40–42]. Figure 12 illustrates the principle of SVM.

Figure 12. The principal operation of SVM classifier [40].

3.6.2. Random Forest (RF)

The decision tree (DT) is the random forest classifier’s unit block. Each RF is made up
of numerous independent DTs that work together to form an ensemble classifier. Several
decision trees are grown and combined in the RF model to form a “forest.” Another kind of
algorithm used to categorize data is the decision tree. In the simplest terms, it works like a
flowchart that shows a clear path to a choice or result; it begins at one point and branches
out in two or more ways, with each direction giving a range of potential possibilities. While
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the trees are developing, the random forest adds more randomness to the model. When
dividing a node, it looks for the best feature from a random subset of features rather than
the most crucial one. A better model is often produced because of the great diversity caused
by this process. Figure 13 describes the principal operation of RF classifier [43].

Figure 13. The principal operation of RF classifier [43].

4. Results
4.1. Ant Lion Optimization

Using ALO weighting algorithm after feature selection, we conducted three experi-
ments, where once the image was whole, another time we segmented the nucleus, and the
last one we excluded the nucleus. This method’s main steps include data augmentation,
automatic feature extraction utilizing transfer learning from several CNN structures, fea-
ture reduction via PCA, and a novel feature weighting technique. The 10 most significant
features were extracted. These graphical features were ordered as follows: six features
from NasNet, two from Darknet-19, and two from AlexNet. This distribution of the most
significant features demonstrated that the NasNet extracted the most relevant features
for classes and that is compatible with its deep structure. The K-fold cross validation
techniques are used. Both SVM and RF were used to classify the images into seven classes
based on the selected automated graphical features. A confusion matrix is a table that lists
how many predictions a classifier made correctly and incorrectly. It is employed to evaluate
a classification model’s effectiveness. With the measurement of performance metrics like
accuracy, precision, recall, and F1-score, it can be utilized to assess a classification model’s
effectiveness [38]. Figure 14 illustrates the results of the confusion matrix of RF with ALO
weighting method.

Figure 14. Confusion matrix for ALO-RF for various scenarios; (a) For nucleus only, (b) Whole cell
exclusion, (c) for nucleus only.



Diagnostics 2023, 13, 2762 11 of 19

By using the corresponding matrices [42], the evaluation of the classifiers are performed.

Accuracy =
TP + TN

TP + FN + FP + TN

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

F1 − Score =
2 × Precision × Sensitivity

Precision + Sensitivity

Figure 14a shows that 196 carcinomas in situ cases were classified correctly, with
three cases misclassified as severe and one as dysplastic. The sensitivity obtained was
98%, and the positive predictive value was 99%. From 200 mild dysplastic cases, 196 were
classified correctly, with a true positive rate of 98%. There were four misclassified cases:
two as moderate dysplastic and two as normal and severe dysplastic, respectively. The
precision of the mild category was 99%. The results for moderate dysplastic were 98%
as recall and PPV was 98%. For normal columnar, the sensitivity was 98.5%, with three
cases misclassified cases one as severe dysplastic. On the other hand, the precision was
98%. However, promising results were achieved in normal intermediate normal columnar
and normal superficial classes, with almost 100% recall and precision. The last class was
severe superficial; here, the lowest sensitivity reached 95.6%, with three cases misclassified
as carcinoma in situ, one misclassified as mild dysplastic, two misclassified as moderate
dysplastic, and three as normal intermediate. The proposed approach provides promising
results, with an accuracy of 98.6% and an overall misclassification rate of 1.4%.

Figure 14b shows that one hundred and ninety-seven carcinomas in situ cases were
classified correctly, with three cases misclassified as severe dysplastic. The sensitivity and
precision obtained were 98.6%. Four mild dysplastic cases were misclassified as moderate
dysplastic and 195 out of 200 mild dysplastic cases were classified correctly, with a true
positive rate of 97.5. The precision of the mild category was 100%. The results for moderate
dysplastic were 96.5% as recall, with six misclassified cases as severe and one as columnar.
In addition, the PPV was 98%, where four mild dysplastic cases were incorrectly classified
as moderate. For normal columnar, the sensitivity was 99%, with two cases misclassified
as severe. On the other hand, the precision was 98.5%, with two cases classified as severe
and one as moderate dysplastic. However, promising results were achieved in both normal
intermediate and normal superficial classes, with 100% recall and precision. The last class
was severe superficial; here, the sensitivity reached to 97.5%, with three cases misclassified as
carcinoma in situ and two misclassified as normal columnar. However, the moderate precision
obtained in the severe dysplastic class reached 94.2%. The proposed approach provides
promising results, with an accuracy of 98.4% and an overall misclassification rate of 1.6%.

Figure 14c shows that 190 of 200 carcinomas in situ cases were classified correctly,
with three cases misclassified as sever dysplastic. The sensitivity obtained was 98.5%, and
the positive predictive value was 99.5%. Of 200 mild dysplastic cases, 196 were classified
correctly, with a true positive rate of 98%, with four misclassified cases: two as moderate
dysplastic and the other two as severe dysplastic. The precision of the mild category was
98%. The results for moderate dysplastic were 97.5% as recall and PPV was 98.5%, where
two mild dysplastic cases were incorrectly classified as moderate and another one as severe.
For normal columnar, the sensitivity was 99.5%, with one case misclassified as severe.
On the other hand, the precision was 99%, with two cases classified as severe. However,
promising results were achieved in both normal intermediate and normal superficial classes,
with 100% recall and precision. The last class was severe superficial, where sensitivity
reached 97.5%, with five cases misclassified as carcinoma in situ, mild, moderate, and two
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misclassified as normal columnar. The proposed approach provides promising results,
with an accuracy of 98.7% and an overall misclassification rate of 1.3%.

As is clear from Figure 15a, 198 cases were classified correctly among 200 cases, with
two cases misclassified as severe dysplastic. The obtained sensitivity was 99%, and the
positive predictive value was 98.5%. Two severe dysplastic cases were misclassified as
carcinoma in situ. Of 200 mild dysplastic cases, 196 were classified correctly, with a true
positive rate of 98%; there were only four misclassified cases (one as moderate and three
as severe). The precision of the mild category was 99.5%. The maintained results for
moderate dysplastic are 97.5% as recall and two misclassified case, as mild and three cases
as severe dysplastic. In addition, the PPV was 99%; one severe dysplastic case and one
mild case were classified as moderate. For normal columnar, normal intermediate, and
normal superficial, the promising results were obtained with the highest sensitivity and a
precision of 100%. The last class was severe superficial, with a sensitivity reaching 97.5%,
with three cases being misclassified as carcinoma in situ, one as normal columnar, and one
as moderate. However, the precision in the severe dysplastic class reached 96.1%. The
proposed approach provided promising results, with an accuracy of 98.9% and an overall
misclassification rate reaching 1.1%.

Figure 15. Confusion matrix for ALO-SVM for various scenarios; (a) for nucleus exclusion (b) For
Whole cell, (c) for nucleus only.

As is clear from Figure 15b, 199 carcinomas in situ cases were classified correctly
among 200 cases, with one case misclassified as severe dysplastic. The obtained sensitivity
was 99.5%, and the positive predictive value was 99%. While two severe dysplastic was
misclassified as carcinoma in situ, 195 mild dysplastic cases were classified correctly, with
a true positive rate of 97.5%; there were only five misclassified cases: three as moderate
dysplastic and the other as severe dysplastic. The precision of the mild category was
99.5%. Just one severe case was misclassified as mild dysplastic. The maintained results
for moderate dysplastic are 99.5% as recall and one misclassified case as mild. In addition,
the PPV was 98.3%, where three mild was incorrectly classified as moderate. For normal
columnar, the sensitivity was 99.5%, with one case misclassified as severe. Nevertheless,
the precision obtained in the columnar class was 98.5%, with three severe cases being
misclassified as normal columnar. However, promising results were obtained in both
normal intermediate and normal superficial classes, with 100% recall and precision. The
last class was severe superficial, with a sensitivity reaching 97%, with one case being
misclassified as carcinoma in situ, two as mild, with three misclassified cases as normal
columnar. However, the precision obtained in the severe dysplastic class reached 97.5%.
The proposed approach provided promising results, with an accuracy of 99% and an overall
misclassification rate reaching 1%.

As is clear from Figure 15c, 199 carcinoma in situ cases were classified correctly from
200 cases, with one case misclassified as severe dysplastic. The obtained sensitivity was
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99.5%, and the positive predictive value was 99%. One severe dysplastic was misclassified
as carcinoma in situ. The promising results in mild dysplastic cases showed 200 cases
classified correctly, with a true positive rate of 100%. The precision of the mild category
was 100%. The maintained results for moderate dysplastic are 98.5% as recall, with three
cases misclassified as severe. In addition, the PPV was 99.5%, where one severe dysplastic
case was incorrectly classified as moderate. For normal columnar, the sensitivity was
99.5%, with one case misclassified as severe and one as carcinoma in situ. The precision
obtained in the columnar class was 99.5%. Promising results were obtained in both normal,
intermediate, and normal superficial classes, with 100% recall and precision. The last class
was severe superficial, with a sensitivity reaching 98.5%. Three cases were misclassified
as carcinoma in situ, one as moderate, and one as normal columnar. The lowest precision
obtained in the severe dysplastic class reached 97.5%, where five cases were misclassified as
severe dysplastic: three from moderate, one from carcinoma in situ, and one from normal
columnar. The proposed approach provided promising results, with an accuracy of 99.4%
and an overall misclassification rate reaching 0.6%.

4.2. Particle Swarm Optimization

The same selected features are weighted swarm optimization method for various
scenarios. The following confusion matrices illustrated the outcomes of the RF and SVM.

Figure 16a shows that 199 carcinomas in situ cases were classified correctly, with one
case misclassified as sever dysplastic. The sensitivity obtained was 99.5%, and the positive
predictive value was 99%. Of 200 mild dysplastic cases, 189 were classified correctly, with
a true positive rate of 94.5%; there were eleven cases misclassified as severe dysplastic.
The precision of the mild category was 96.9%. The best achieved results in sensitivity
term for moderate dysplastic, normal columnar, and normal superficial were 100%; the
same value in precision was achieved, but the moderate achieved 98.5%, where three case
were misclassified as moderate (one from carcinoma in situ, one from normal columnar,
and the last one comes from severe dysplastic). The last class was severe dysplastic; here,
the sensitivity reached 95.0%, with five cases misclassified as mild, two as carcinoma
in situ, two misclassified as moderate dysplastic, and one as normal intermediate. The
proposed approach provides promising results, with an accuracy of 98.1% and an overall
misclassification rate of 1.9%.

Figure 16. Confusion matrix for SVM for various scenarios; (a) for nucleus only (b) For Whole cell,
(c) for nucleus exclusion.

As is clear from Figure 16b, 200 carcinomas in situ cases were classified correctly
among 200 cases, with an obtained sensitivity of 100%; the positive predictive value was
97.6%. Five severe dysplastic was misclassified as carcinoma in situ, one hundred ninety-
two mild dysplastic cases were classified correctly, with a true positive rate of 96%; three
cases were misclassified as severe dysplastic. The precision of the mild category was 99.0%;
two severe class were misclassified as mild dysplastic. The maintained results for moderate
dysplastic are 99% as recall and two misclassified cases as severe. In addition, the PPV was
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97.5%, with five mild cases incorrectly classified as moderate. For normal columnar, the
sensitivity was 99.0%, with two cases misclassified as severe. Nevertheless, the precision
obtained in the columnar class was 100%. Promising results were obtained in both normal
intermediate and normal superficial classes, with 100% recall and precision. The last class
was severe superficial, with a sensitivity reaching 96.5%, with five cases being misclassified
as carcinoma in situ and two as mild. The precision obtained in the severe dysplastic class
reached 96.5%. The proposed approach provided promising results, with an accuracy of
98.6% and an overall misclassification rate reaching 1.4%.

Figure 16c shows that 199 of 200 carcinomas in situ cases were classified correctly,
with one case misclassified as severe dysplastic. The sensitivity obtained was 99.5%, and
the positive predictive value was 98.5%. Of 200 mild dysplastic cases, 198 were classified
correctly, with a true positive rate of 99%; two misclassified cases were classified as severe
dysplastic. The precision of the mild category was 99.5%. The results for moderate
dysplastic were 99.5% as recall and PPV was 99.5%, where one mild dysplastic case was
incorrectly classified severe. For normal columnar, the sensitivity was 98%, with four
cases misclassified as severe. The precision was 99%, with two cases classified as severe.
Promising results were achieved in both normal intermediate and normal superficial classes,
with 100% recall and precision. The last class was severe superficial. Sensitivity reached
96.5%, with three cases misclassified as carcinoma in situ, one as mild, one as moderate,
and two misclassified as normal columnar. The proposed approach provides promising
results, with an accuracy of 98.9% and an overall misclassification rate of 1.

As is clear from Figure 17a, 198 cases were classified correctly among 200 cases,
with two cases misclassified as severe dysplastic. The obtained sensitivity was 99%, and
the positive predictive value was 98.5%. Three severe dysplastic were misclassified as
carcinoma in situ. Of 200 mild dysplastic cases, 196 were classified correctly, with a
true positive rate of 98%. There were four misclassified cases (two as moderate, one as
normal intermediate, and one as severe). The precision of the mild category was 99.5%.
The maintained results for moderate dysplastic are 97.5% as recall and four cases were
misclassified as severe dysplastic. The PPV was 99%, and two mild cases were classified
as moderate. For normal columnar the sensitivity is 100% and precision is 99.5%. For
normal intermediate and normal superficial, promising results were obtained with the
highest sensitivity and precision of almost 100%. The last class was severe superficial, with
a sensitivity reaching 98%, with three cases being misclassified as carcinoma in situ and
one as normal columnar and one as moderate. The precision in the severe dysplastic class
reached 96.6%. The proposed approach provided promising results, with an accuracy of
98.8% and an overall misclassification rate reaching 1.2%.

Figure 17. Confusion matrix for SVM for various scenarios; (a) for nucleus exclusion, (b) For Whole
cell, (c) for nucleus only.
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As is clear from Figure 17b, 198 carcinomas in situ cases were classified correctly
among 200 cases, with obtained sensitivity was 99%; the positive predictive value was
99.5%. While one severe dysplastic was misclassified as carcinoma in situ, 198 mild
dysplastic cases were classified correctly, with a true positive rate of 99%, with only one
misclassified as severe dysplastic. The precision of the mild category was 100%. The
maintained result for moderate dysplastic are 100% as recall. The PPV was 99.5%, where
one mild case was incorrectly classified as moderate. For normal columnar, the sensitivity
was 99.5%, with one case misclassified as severe. The precision obtained in the columnar
class was 99.5%. Promising results were obtained in both normal intermediate and normal
superficial classes, with 100% recall and precision. The last class was severe superficial,
with a sensitivity reaching 99%, with one case being misclassified as carcinoma in situ and
one case as normal columnar. The precision obtained in the severe dysplastic class reached
98%. The proposed approach provided promising results, with an accuracy of 99.5% and
an overall misclassification rate reaching 0.5%.

Figure 17c shows that 197 of 200 carcinomas in situ cases were classified correctly,
with three cases misclassified as severe dysplastic. The sensitivity obtained was 98.5%, and
the positive predictive value was 98.5%. Of 200 mild dysplastic cases, 194 were classified
correctly, with a true positive rate of 97%; two cases were misclassified as severe dysplastic
and three misclassified cases as moderate. The precision of the mild category was 98.5%.
The results for moderate dysplastic were 98.0% as recall and PPV was 98.5%, with three
mild dysplastic case incorrectly classified as moderate. For normal columnar, the sensitivity
was 99.5%, with one case misclassified as severe. The precision was 99%, with two cases
misclassified as severe. Promising results were achieved in both normal intermediate and
normal superficial classes, with almost 100% recall and precision. The last class was severe
superficial. Sensitivity reached 97%, with three cases misclassified as carcinoma in situ,
one as mild, and two misclassified as normal columnar. The proposed approach provides
promising results, with an accuracy of 98.6% and an overall misclassification rate of 1.4%.

It is obvious from the previous discussion that the performance of Swarm optimization
after feature selection is better than ALO, either in SVM or RF classifiers. The best scenario
is obtained in nucleus exclusion case. This indicates the effectiveness of the surrounding
region on the diagnosis of the cervical cells.

As is clear from previous results, the combination of automated features with the
ML classifiers beside various weighting algorithms was capable of distinguishing among
various classes of cervical cells, thus establishing the effectiveness of focusing the difference
of using whole cell, nucleus exclusion, and nucleus only. The results of using the two types
of classifiers with deep features with NasNet and the most common pre-trained CNNs
AlexNet and DarkNet-19 beside two types of optimization techniques are compared with
the literature. Table 4 represents the study, the proposed method, number of classes, the
data set used, and their results.

As is clear from the table, the proposed method is capable of distinguishing among
the seven classes. This study encourages the use of cytoplasm features instead of whole cell
or nucleus region, which is easier than studying the nuclei in Pap smear cells. This study
may lead to a good approach in cases where the shape of the nucleus cannot be handled
or is unreachable by various image processing techniques and in which taking patches
from the cytoplasm and passing the proposed model can expect or guide the class of the
Pap smear image sample. The proposed approach achieved the highest accuracy among
literature either using whole cell or without nucleus. The maintained results approved the
ability of the proposed method to diagnose cervical cells into seven classes without further
processing to segment the nucleus. The diagnosis can be performed using cytoplasm or
whole cell. This approach yields to preserves time and effort.
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Table 4. The comparison between the proposed study and the literature.

Ref. Method Number of Classes Type of Dataset Result

[11]

Shape and gray
co-occurrence features;

they employed the
adaptive neuro fuzzy

inference system

Normal and Abnormal Herlev Accuracy reached
92.68%

[12]
Utilized texture features for

processed Pap smear
images

Normal and Abnormal Herlev Accuracy reached
99.1%

[14] Texture features of nucleus Normal and Abnormal Herlev Accuracy reached 94%

[15] Spectral features of the
nucleus with K-PCA Normal and Abnormal Herlev Accuracy reached

90.58%

[17] Deep features, using
ConvNets CNN Normal and Abnormal Herlev Accuracy reached

98.3%

[18]

Color and shape features of
nucleus and cytoplasm of

the cervix cell beside
machine learning

Normal and Abnormal Herlev Accuracy reached
88.04%

[20]

CNN-ELM-based system
and an autoencoder

(AE)-based classifiers and
multi-layer perceptron

(MLP),

Seven classes Herlev Accuracy reached
91.2%

[21]

Deep features with feature
selection combined with

ensemble machine learning
model

Seven classes Herlev Accuracy reached 92%

[22]

Hybrid Loss-Constrained
Lightweight Convolutional

Neural Networks for
Cervical Cell Classification

Seven classes Herlev Accuracy reached
96.39%

[23]
Optimal deep convolution
neural network for cervical

cancer diagnosis model
Seven classes Herlev Accuracy reached

97.81%

[24]

Uniform local ternary
patterns and feed forward

multilayer network
optimized by genetic

algorithm

Seven classes Herlev -

[25]

Classification of normal
and abnormal overlapped

squamous cells in Pap
smear image

Seven classes Herlev Accuracy reached 96%

This Study
Deep features with

feature weighting method
(ALO, PSO)

Seven classes Herlev Accuracy reached
99.5%

5. Conclusions

A new method that may lower the mortality rate from cervical cancer among women
is the detection of the disease using Pap smear images. Determination of the type of cervical
cancer depends on the cell nuclei visible in a Pap smear image. Sometimes, however, the
nuclei may be difficult to visualize, in which case the area surrounding the nucleus may
help in the diagnosis of Pap smear images. This study aims to compare the performance of
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using whole cell, nucleus region, or cytoplasm region only in order to distinguish the type
of cervical cell, due to some limitations on segmentation of nucleus and the challenges of
delineating the nucleus region. Therefore, the proposed approach focuses on comparing
the effectiveness of three scenarios: whole cell, surrounding region, and nucleus only. The
proposed approach does not require pre-processing of the images. This study directed
the most significant automated features at the region surrounding the nucleus, nucleus,
and whole cell. Based on our knowledge, this is the first study comparing the various
types of regions for seven classes beside utilizing various optimization algorithms (AntLion
and swarm optimization methods). The obtained results enhance the capability of the
researcher to take a patchy image from the cytoplasm and diagnose the pap smear images
without requiring additional processing around the nucleus features or whole cell proper-
ties. The proposed system achieved an accuracy for seven classes of 99.5% using the SVM
classifier and swarm optimization, after selecting the ten most significant deep features,
the weighting algorithm optimize the effectiveness of each feature to distinguishing of
various classes. These features are intrinsic to each class because they are automated,
deeply extracted, graphical features. The utilization of feature-reduction techniques and
weighting algorithms enhance the accuracy beside to complexity and computation time.
This automated system may help physicians when the nucleus is not clear to include the
whole cell or the surrounding regions only. This CAD system can be beneficial to the
doctors and physicians in rural countries.
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