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Abstract: A severe mismatch between the supply and demand of oxygen is the common sequela of
all types of shock, which present a mortality of up to 80%. Various organs play a protective role in
shock and contribute to whole-body homeostasis. The ever-increasing number of multidetector CT
examinations in severely ill and sometimes unstable patients leads to more frequently encountered
findings leading to imminent death, together called “hypovolemic shock complex”. Features on CT
include dense opacification of the right heart and major systemic veins, venous layering of contrast
material and blood, densely opacified parenchyma in the right hepatic lobe, decreased enhancement
of the abdominal organ, a dense pulmonary artery, contrast pooling in dependent lungs, and contrast
stasis in pulmonary veins. These findings are biomarkers and prognostic indicators of paramount
importance which stratify risk and improve patient outcomes. In this review, we illustrate the various
CT patterns in shock and review the spectrum and prognostic significance of thoraco-abdominal
vascular and visceral alarming signs of impending death with the intention of increasing awareness
among radiologists and radiographers to prepare for immediate resuscitation when required.

Keywords: cardiogenic shock; computed tomography; contrast layering; venous pooling; hypov-
olemia; hypovolemic shock complex

1. Introduction

Shock is a life-threatening condition defined as a state of cellular and tissue hypoxia
due to reduced delivery, increased consumption, inadequate utilization of oxygen, or a
combination of these processes [1,2].

Shock is not a disease but a continuum of systemic derangement and the final mani-
festation of a complex list of etiologies [3].

The four different subgroups of shock with characteristic hemodynamic patterns
assigned to four organ systems include: distributive shock (vascular system), hypovolemic
shock (blood and fluids compartment), cardiogenic shock (heart), and obstructive shock-
(circulatory system) (Table 1) [4–11]. It is important to distinguish between these entities
since treatment is different for various underlying etiologies [12].

Initially, the effects of shock are reversible as the body initiates compensatory re-
sponses to counteract diminished tissue perfusion. However, if the underlying cause is not
effectively addressed, shock can progress to irreversible multi-organ failure and ulti-mately
result in death [1,3,4,6,11,12].

When patients with undifferentiated hypotension or shock arrive at the emergency
department (ED), it is crucial for the emergency physician to categorize them based on the
severity of shock and determine the requirement for immediate or early intervention.
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Table 1. Classification (causes, pathogenesis, and treatment targets) and relative incidence of various
types of shock. Systemic arterial hypotension, cutaneous, renal, and neurological signs of tissue
hypoperfusion and hyperlactatemia are often present in all shock pathophysiological mechanisms.

Shock

Types Pathogenesis Causes Pathophysiology Treatment Targets

Cardiogenic
(13%)

Sudden impairment of
myocardial performance

• Myocardial
• Rhytmologic
• Mechanical

A critical reduction of
the heart’s pumping
capacity, a reduced
ejection fraction or
impaired ventricular
filling

Remove the cardiac
causes of the shock

Hypovolemic
(27%)

Inadequate organ
perfusion caused by loss
of intravascular volume

• Hemorragic (e.g., variceal
bleeding)

• Traumatic hemorragic
• Hypovolemic in the narrower

sense (e.g., diarrhea)
• Traumatic hypovolemic (e.g.,

severe surface burns)

Inadequate organ
perfusion caused by
acute loss of
intravascular volume,
drop in cardiac preload
to a critical level

Intravascular volume
replacement,
endotracheal

intubation

Distributive
(59%)

Hypovolemia resulting
from pathological
redistribution of the
absolute intravascular
volume

• Septic (55%)
• Anaphylactid/Anaphylactoid
• Neurogenic
• Systemic inflammatory

response syndrome (SIRS)
• Drug and Toxin-induced shock
• Endocrine shock

Loss of regulation of
vascular tone and/or
disordered permeability
of the vascular system

Support circulation by
infusion of balanced

solutions,
administration of

vasopressors and/or
inotropic drugs, organ
replacement therapy

Obstructive
(1%)

RV-LV Preload ↓
RV-LV Afterload ↑
Obstruction of the great
vessels or the heart

• Classified according to the
location of the obstruction in
the vascular system in relation
to the heart (e.g., SVCs., PE,
Obstruction aortic flow)

Intravasal/Intraluminal
(e.g., PE, Leriche S., AD)
Extravasal/extraluminal
(e.g., Tension PNX,
Tamponade)

Immediate causal
treatment (e.g.,

thrombolysis, thoracic
or pericardial

drainage; surgical
embolectomy)

AD, aortic dissection; LV, left ventricle; PE, pulmonary embolism; PNX, pneumothorax; RV, right ventricle; SVC,
superior vena cava. ↓: reduce, ↑: increase.

Contrast-enhanced multidetector CT (CECT) of the chest, abdomen and pelvis is
increasingly required as the first line of imaging in suspected cardiovascular emergencies
in severely sick and unstable patients [13]. CT may help identify the cause for shock
(e.g., obstructive shock in pulmonary embolism or aortic dissection) [14]. Previous reports
have predominantly focused on describing distinct imaging signs observed on CT scans,
commonly referred to as the “hypovolemic shock complex” (HSC) [15–32]. While these
findings are frequently observed in patients with hemorrhagic and hypovolemic shock
complex, they can also be present in individuals experiencing conditions such as myocardial
infarction, sepsis, or even diabetic ketoacidosis [33]. Recognizing HSC findings provides
valuable biomarkers and prognostic indicators, enabling effective risk stratification and
improved outcomes for patients in shock. In this review article, we discuss the utilization of
CT in vascular and visceral/solid organ shock and describe the various findings, providing
an organ-by-organ review of the HSC pattern. Each depicted sign represents a probability
and all findings can collectively be used to diagnose, stratify risk of mortality, and guide
future clinical management. To optimally manage patient care, radiologists should be
familiar with accurate interpretation of these urgent CT findings to inform the responsible
clinical physicians for prompt management of these patients.

2. Multidetector CT (MDCT) Technique

Detection of relevant CT signs must be accurate, reproducible, and feasible over time,
for which a state-of-the-art CECT technique is needed. Nowadays, CT technology consists
of a multidetector-spiral CT between 8- and 640-slice CT. Acquisition times and number of
contrast-enhanced phases are not standardized for all CT scanners.



Diagnostics 2023, 13, 2304 3 of 18

CECT should be performed in critical patients with a volumetric technique, with
craniocaudal acquisition, in a supine position, and, when possible, preferably in a “feet first”
position [34]. Breath-hold acquisition can ensure the avoidance of motion artifacts if clinical
condition permits [35]. The CECT multiphasic protocol should include an abdomen/pelvis
pre-contrast scan followed by chest/abdomen/pelvis dynamic images acquired in the
arterial and portal venous phases without oral contrast medium (CM). CM volume should
be calculated according to patient size based on total body weight (BW), injecting about
0.625 gI per kilogram of total BW. High concentrations (370–400 mg I/mL) of IV CM
(80–120 mL of iodinated CM, depending on the patient’s weight) should be administered
through an 18–20-gauge needle into the antecubital vein at a rate of 3.5–4 mL/s. This should
be followed by a bolus of 30–40 mL of saline at the same flow rate. The acquisition of the
arterial phase is timed using bolus tracking, placing the region of interest (ROI) on the aortic
arch and starting at an attenuation threshold of 100 Hounsfield Units (HU) [34–37]. The
portal venous phase is acquired with a delay of 60–70 s. The suggested acquisition includes
scanning the abdomen and pelvis in the arterial phase, and the chest, abdomen, and pelvis
in the portal venous phase. Additionally, a late scan of the abdomen and pelvis at 3–5 min
may be acquired to address various causes of shock. Oral or rectal CM is not recommended.
Each institution should regularly assess image quality, review protocols regarding dose,
and consider the possibility of reducing the quantity of CM [34]. The development of new
technologies aims to reduce radiation exposure while maintaining good image quality
through iterative reconstruction or automatic tube current modulation [35]. Another option
to reduce the radiation dose is the adoption of dual-energy CT, allowing the possibility
of virtual noncontrast (VNC) image acquisition [38]. An unenhanced CT brain should be
considered for patients presenting with altered mental status, to exclude the presence of
acute ischemic stroke or intracranial hemorrhage. Head CT can also be conducted during
the late phase of a total body study to rule out the presence of intracranial abscess formation
or malignancy [35]. To ensure proper analysis and post-processing, it is recommended to
use an effective slice thickness of 2.5 mm with reconstruction at 0.625 mm, allowing for
maximum intensity projection (MIP) and multiplanar reformation (MPR) techniques.

3. CT Patterns

CECT images may be used to assess three possible hemodynamic instabilities in
acutely sick patients:

(a) In cases of hemodynamic stability, IV CM into an upper limb vein is delivered to
the right atrium via the superior vena cava (SVC), and is then pumped via the right
ventricle to the pulmonary arteries. Contrast subsequently returns via the pulmonary
veins to the left-side cardiac chambers before reaching systemic circulation [39]. As
it undergoes first pass circulation and re-circulation, the contrast bolus gradually
mixes with the blood pool, leading to dilution while moving downstream from the
injection site. Due to its small molecular size, iodinated CM exhibits high diffusibility,
readily redistributing from the intravascular space to organic interstitial spaces [39,40].
This may be called the “physiological” pattern and can correspond to an early com-
pensatory stage of shock. Particularly in these patients without advanced shock
symptoms, an image-based morphological indicator promises information about the
identification of patients “at high risk”.

(b) In a state of advanced hemodynamic instability, many homeostatic mechanisms try to
maintain arterial pressure and adequate tissue perfusion to critical organs, such as the
brain and heart, by reflex stimulation of the sympathetic nervous system, elevated
levels of angiotensin II, adrenaline, and noradrenaline, and vasoconstriction (com-
pensated shock). Carotid baroreceptors respond to decreased blood pressure by trig-
gering increased sympathetic signaling and maintaining cardiac output (sympathetic
“fight or flight” response). In cases of decompensated shock, when compensatory
mechanisms falter and prior to the onset of death, the pumping action of the heart
ceases, leading to a substantial decline in systemic arterial and venous pressures.
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Consequently, the arteriovenous pressure gradient diminishes [6,41,42]. This altered
hemodynamic state results in stasis of CM in the venous system in the presence of
the left chamber and arterial opacification, and of other infrequent and often unap-
preciated ominous MDCT vascular signs that represent a true hypovolemic state and
must be recognized early by the radiological staff to improve survival [24,43–48].
This may be called the “venous CM pooling and layering” pattern, indicating that
compensatory mechanisms are becoming insufficient and the patient must receive
immediate treatment.

(c) In irreversible end-organ dysfunction, injected IV CM circulation is supported only
by the pressure applied by the automated power injector and the density of contrast
material. Circulatory arrest leads to dense contrast pooling and layering in the SVC,
IVC (inferior vena cava), and right heart chambers with non-opacified left heart
chambers or arterial vessels (Figure 1) [43,45,49–52]. This may be called the “non-
beating heart” pattern. Cardio-pulmonary aggressive resuscitation must immediately
be initiated within the framework of a predetermined emergency plan.
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atrium and IVC with retrograde opacification of coronary sinus (arrow). (C) CM fills the round 
inferior vena cava with hypostatic reflux into the hepatic veins, hemiazygos vein, partially splenic 
vein, and (D) right renal vein. Note no mixing of blood with CM and no opacification of the 
pulmonary arteries, aorta, and left cardiac chambers, suggestive of a non-beating heart. Prompt 
initiation of cardio-pulmonary resuscitation to restore circulation was useless. Autopsy: ruptured 
myocardial infarction. 
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Figure 1. Non-beating heart in a 72-year-old man with sudden-onset severe dyspnea/shock and
asystole during thoraco-abdominal CT. (A) CECT axial image shows dense contrast in the round
superior vena cava, and reflux in the azygous arch; (B) contrast pooling and layering in the right
atrium and IVC with retrograde opacification of coronary sinus (arrow). (C) CM fills the round
inferior vena cava with hypostatic reflux into the hepatic veins, hemiazygos vein, partially splenic
vein, and (D) right renal vein. Note no mixing of blood with CM and no opacification of the
pulmonary arteries, aorta, and left cardiac chambers, suggestive of a non-beating heart. Prompt
initiation of cardio-pulmonary resuscitation to restore circulation was useless. Autopsy: ruptured
myocardial infarction.

4. CT-Updated HSC Findings as Diagnostic Biomarkers

CECT shock-associated findings partially overlap with those referred to previously
in the literature as CT “hypoperfusion or hypovolemic shock complex” (HSC) [15–32].
This refers to a constellation of findings that reflect hypovolemia and is often described
in traumatic hemorrhagic shock [15,16,18,21,24–27,29]. HSC findings can be grouped into
vascular (morphological and functional) and, based on their various anatomic locations,
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visceral/solid organ findings. It is now clear that vascular signs represent the true hypov-
olemic state and visceral findings represent hypoperfusion [30].

4.1. Vascular Findings (Representing Hypovolemic State)
4.1.1. Morphological Reduction of Vessel Caliber

• There is a densely enhanced small-caliber abdominal aorta (with a reduced antero-
posterior diameter < 13 mm, detected 20 mm above and below the renal arteries).
This finding is commonly associated with hypovolemia, resulting from the arterial
vasoconstrictive effects of angiotensin II. It is a non-specific finding observed in ap-
proximately 30% of cases of hypovolemic shock, whether traumatic or non-traumatic.
It is important to note that this finding can also be observed in the normal popula-
tion [15–32,53–56].

• There is the presence of a slit-like or flat inferior vena cava (FIVC) (Figure 2A). This is
characterized by an anterior-posterior diameter of less than 9 mm in three consecutive
segments, 20 mm above and below the renal veins, and at the level of the perihepatic
region. Additionally, a transverse-to-anteroposterior ratio of ≥2.5 at the level of the
suprarenal IVC can indicate flattening. The flatness index or IVC diameter ratio is
calculated by dividing the maximal transverse and anteroposterior diameters of the
IVC [15–32,57–61].

• Flattening of the IVC (slit sign) is often seen in cases of decreased circulating blood
volume (hypovolemia) and indicates reduced venous return in patients with systemic
hypotension. However, it may not be easily appreciated due to the administration
of large volumes of fluids [31]. This finding is more commonly observed in acute
hypovolemic traumatic patients. Variations in intra-abdominal pressure and the
respiratory cycle can also affect the diameter of the IVC. IVC flattening has a specificity
of 90% and a sensitivity of 84% in identifying hypo-perfusion shock in spontaneously
breathing patients [15–32,57–63]. The IVC diameter ratio measured via CT scans
can help predict in-hospital mortality in septic shock patients, with a cut-off value of
≥1.3 cm having 75% sensitivity and 42% specificity [63]. It is also useful in determining
the amount of blood transfusion required and assessing the volume status of patients
with blunt torso trauma. [64].

• The IVC halo sign is characterized by a low attenuation band (<20 HU) encircling the
collapsed intra- and retrohepatic inferior vena cava. This band is caused by a ring or
rim of edema [65–67]. In cases of severe hypovolemia, approximately 80% of patients
may exhibit this sign, resulting from the loss of precapillary arteriolar sphincter tone
and the accumulation of fluid surrounding the IVC (Figure 2B–D) [18,25,30,31,65–67].
However, it is important to note that this sign is not specific to non-traumatic patients
and can also be observed in conditions such as liver congestion, biliary cirrhosis,
hepatitis, or other diseases that obstruct lymphatic drainage at the porta hepatis [25].

• Narrowing of superior mesenteric vessels. In cases of hypovolemic shock, narrow-
ing of the superior mesenteric vessels (diameter less than half that of the aorta and
IVC), accompanied by intense enhancement similar to the aorta and IVC, is frequently
observed, with a frequency ranging from 88.5% to 96.2% [18–20,68]. Splanchnic
hypoperfusion can be observed in both hypovolemic shock and non-occlusive mesen-
teric ischemia (NOMI) and is often attributed to reduced cardiac output and cardio-
genic shock.
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Figure 2. CECT axial images of vascular findings in the four subtypes of hypovolemic shock. (A) Slit-
like IVC (arrow) in massively bleeding enteric infarct (hemorrhagic non-traumatic shock). (B) Small
caliber hypoenhanced aorta (arrow) in a 32-year-old man wounded by several gunshots, who died
twenty minutes after CT examination (traumatic hemorrhagic shock). The characteristic feature of
hemorrhagic and traumatic hemorrhagic shock is bleeding. (C) Flat IVC (black arrow) and ascites in a
57-year-old man with decompensed liver cirrhosis and critical reduction in circulating plasma volume
(hypovolemic shock in the narrower sense). (D) Flat IVC with halo sign (white arrow) in a 45 year-old
firefighter burned with lung toxicity and significant fluid loss (traumatic hypovolemic shock).

4.1.2. Functional

• Dependent CM pooling and layering/reflux of CM/stasis of CM

In a normal physiological state, specific gravity has no effect on contrast agent dy-
namics. In heart failure, CM does not mix with the blood pool and its distribution in the
vascular system predominantly depends on its density, injector pressure, specific weight
and volume injected [21,39,44]. The dependent layering of injected iodinated CM mainly
reflects its higher specific gravity relative to blood in cases of right heart dysfunction and
very low cardiac output [47,52]. The consequence is reduced enhancement of the aorta
and left-side cardiac chambers with reflux of contrast into the IVC, creating a characteristic
horizontal blood-contrast level (“dependent pooling sign” or “IVC contrast level sign”) that
could be associated with reflux into the hepatic veins with heterogeneous liver parenchyma
enhancement (Figure 3) [18,44,52,66,67].

In contrast to horizontal levelling in the IVC layering sign, a vertical IVC levellng sign
usually occurs due to physiological retrograde filling of renal veins [68]. Contrast stasis in
the right-side cardiac chambers may result in extremely dense chambers and pulmonary
arteries with or without a blood contrast level. Vascular stasis will also result in contrast
layering within the veins that eventually drain into the right atrium (e.g., brachiocephalic
and subclavian veins) (Figure 4).

• Focal hot spot sign

Contrast stasis in the right-side cardiac chambers and SVC may result in functional
flow of CM through venous collaterals (anterior intercostal, internal thoracic, superior and
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inferior epigastric veins communicating with paraumbilical vein carrying the blood and the
CM to the hepatic vein and to the left lobe of the liver) to the inferior vena cava, generating
areas of focally increased blood flow to the liver, typically within segment IV of the left
hepatic lobe, known as a focal hot spot sign (Figure 5) [69–71].

• Hypoattenuating periportal halo

This finding is mainly described in hypovolemic, often blunt traumatic shock as a
consequence of large volumes of resuscitating IV fluids. This is depicted as a circumferential
region of low attenuation around the intrahepatic portal vessels [72–75].

• Ongoing hemorrhage

In cases of hemorrhagic shock, whether traumatic or non-traumatic, active arterial
bleeding is characterized by the presence of linear irregularities or areas of increased in-
tensity “blushes” within or adjacent to the injured organ or artery. These manifestations
tend to increase in size during later phases of imaging. Differentiating active bleeding
from pseudoaneurysm formation can be achieved by observing the lobular margins and en-
hancement of the pseudoaneurysm after blood pooling during the arterial and subsequent
phases of imaging [76].
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Figure 3. CECT axial images of vascular findings in cardiogenic shock. (A) Portal venous phase
(delay of 80 s after CM injection) shows IVC contrast level sign (arrow) as well as heterogeneous
hepatic enhancement (asterisk) in a 65-year-old man with myocardial infarction and imminent cardiac
arrest. (B) Portal venous phase (delay of 85 s after CM injection) shows IVC contrast level sign (arrow)
and regurgitation to the right renal vein (empty arrow) in a 63-year-old man with hypotension and
acute severe reduction in cardiac index. In comparison to Figure 1D, note the aorta opacification.
(C) Portal venous phase (delay of 85 s after CM injection) shows IVC contrast level sign with CM
reflux into hepatic VI and VII segments (empty arrow) and (D) contrast level in portal trunk (arrow)
in a 68-year-old man with myocardial infarction.
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Figure 4. CECT images in obstructive shock in a severely dyspneic 28-year-old man with malignant
pulmonary artery sarcoma. Arterial (A) and delayed (B) phase axial images show massive pulmonary
trunk (black arrow) and right main artery (white arrow) soft tissue mass obstruction. A more caudal
(C) axial image shows CM stasis in right cardiac chambers, no hepatic enhancement, and mild
pleuropericardial effusion. (D) Delayed phase (delay of 200 seconds after CM injection) coronal
reconstruction shows a thinned flat IVC (black arrow).
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Figure 5. CECT axial images in an acutely dyspneic 64-year-old man with SVC obstruction from right
lung cancer (not shown) and obstructive shock. Arterial phase (A) shows CM reflux via the larger
subcutaneous (green arrow), pericardiophrenic (red arrow) and internal thoracic veins (yellow arrow)
to the left hepatic vein (black arrow) generating (B) focal hot spot sign in left liver (black arrow).

4.2. Visceral/Solid Organs Findings (Representing Hypoperfusion State)
4.2.1. Thyroid

Thyroid findings are an uncommon, largely unknown part of the CT hypotension
complex [19,21,25,26]. To our knowledge, only eight cases have been reported in the
literature [77]. In their initial description, Brochert et al. observed a distinct pattern of
heterogeneous hyperenhancement in the thyroid gland, resembling the appearance of a
multinodular gland. Additionally, surrounding fluid accumulation, referred to as “shock
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thyroid” was noted, despite the absence of any apparent direct or indirect thyroid injury [78].
The presumed mechanism is that hypoperfusion of the highly vascular thyroid gland may
cause cellular edema or death as well as exudation of intracellular fluid. Other proposed
explanations include third-spacing of resuscitative fluid and a profound thyroid response,
which induces transient thyrotoxicosis and a swollen gland for the maintenance of cardiac
output [25,77–79]. These glandular changes are reversible when associated with successful
management of hypovolemia and hypotension [77].

4.2.2. Lungs

Alteration of the blood circulation dynamics may cause IV contrast to gravitate to the
dependent lung segments, resulting in extremely high attenuation of the lungs posteriorly.
Bilateral diffuse and lobular Ground Glass Opacification/consolidation, mainly in the
middle and lower lung zones with or without an air bronchogram, may be seen [80].
Bilateral pleural effusions and lower lobar passive atelectasis are often ancillary signs of
acute right-side heart failure. Acute pulmonary dysfunction and new bilateral infiltrates on
chest imaging are common in septic shock from diffuse alveolar epithelial injury, leading to
capillary leaks and acute respiratory distress syndrome (Figure 6A,B).
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Figure 6. Distributive septic shock in a 61-year-old male admitted to the emergency department with
high fever (39 ◦C) and sepsis (score for sepsis, qSOFA 3) due to COVID-19 pneumonia (respiratory
rate 27/min, systolic blood pressure 75 mmHg, altered mental status). (A,B) Unenhanced chest CT
axial images (lung window) show bilateral parenchymal ground-glass opacities due to a diffuse
alveolar damage (DAD) pattern; note mild right pneumothorax. (C) CECT axial image in the portal
venous phase shows mural thickening (white empty arrow) and mucosal hyperenhancement of
the small bowel (white arrow). (D) CECT coronal reconstruction in the portal venous phase shows
abnormal wall thickening/enhancement in the partially collapsed transverse colon. Note associated
heterogeneous liver enhancement and enhanced thickened pericardium with pericardial effusion
(pericarditis).
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4.2.3. Bowel (Marked Submucosal Edema and Intense Mucosal Enhancement)

Hypovolemia triggers the sympathetic system, leading to splanchnic vasoconstriction
and reduced blood perfusion to the bowel. However, mucosal perfusion is preserved
through autoregulation mechanisms that prevent ulceration. This results in prominent
mucosal enhancement, which appears greater than the psoas muscle on non-contrast im-
ages, and submucosal enhancing edematous wall thickening (bowel wall > 3 mm) [21,27].
Severe hypotension can lead to inadequate oxygen delivery to the organs [22,28]. Re-
duced perfusion can cause injury to the intramural vessels, resulting in increased capillary
permeability and interstitial fluid leakage into the bowel wall and lumen. This leads to
decreased fluid reabsorption and eventually ileus, characterized by dilated fluid-filled
loops (Figure 6C,D) [19,21,81–84]. Diffuse bowel ischemia due to vascular occlusion or
non-occlusive mesenteric ischemia (NOMI) presents a challenging differential diagnosis.
Both conditions can cause bowel wall thickening and luminal distention. However, arterial
occlusion-related bowel ischemia does not exhibit diffuse mucosal enhancement or sub-
stantial submucosal edema. On the other hand, mesenteric venous occlusion or reperfusion
in NOMI may exhibit both of these CT signs [82–84].

4.2.4. Spleen

The size of the spleen can vary among individuals, but it is typically around
10 × 6 × 3 cm3 in dimensions, weighing approximately 120 g. The spleen is highly
vascularized and can store 20–30% of the total blood volume [85]. Unlike other organs,
the splenic arterial flow lacks autoregulatory mechanisms and is highly sensitive to over-
stimulation of the sympathetic system and vasoconstriction. This can lead to a decrease
in splenic blood flow and hypoenhancement, typically at least 20 HU less than the liver
(Figure 7A,B) [85–87].
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Figure 7. Pre-surgical (A) and first day after thoracic surgery (B,C) CECT axial images in a 65-year-old
man with acute septic shock. (A) The portal image shows normal splenic volume and enhancement,
physiologic size and enhancement of adrenals and a little sub-capsular angioma in the left liver.
(B) Arterial phase image of emergent CECT shows splenic volume contraction and hypoperfusion.
A demarcation line between the dependent/enhancing and non-dependent/non-enhancing liver
parenchyma is present (white arrows). Note hyper-enhancing adrenals and thin-walled luminal
distended stomach. (C) The 85′′ venous phase shows a persistent hypoenhanced liver, adrenals
hyperenhancement and stomach parietogram. (D) In a 57-year-old man with decompensed liver
cirrhosis and critical reduction in circulating plasma, CECT coronal reconstruction shows dense
gallbladder mural enhancement without thickened walls (white arrow).
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In cases of hypovolemia, another sign to observe is a reduction in splenic volume. This
reduction is attributed to the contraction of smooth muscle in the vessel walls and splenic
capsule, which forces red blood cells and platelets to be released from the spleen and into
the general circulation. This process is often referred to as “auto-transfusion”. Furthermore,
in the setting of shock, particularly heart failure, both splenic volume and splenic volume
index are significantly lower (with values of 118.0 mL and 68.9 mL/m2, respectively) [88].
Hypoxia and exercise can independently trigger splenic contraction, resulting in the release
of stored erythrocytes [89,90].

4.2.5. Liver and Gallbladder

Delayed and heterogeneous liver enhancement, attributed to the liver’s dual blood
supply, is a well-documented and commonly referenced sign of shock associated with
heightened sympathetic activity. This phenomenon is described in the literature and
has been recognized as a characteristic manifestation of shock [18–23,91,92]. Increased
parenchymal capillary permeability may result in the accumulation of contrast into the
dependent right liver parenchyma, causing a gravitationally dense parenchymal appear-
ance [18–22]. A demarcation line between the dependent enhancing and non-dependent
non-enhancing parenchyma may be seen and corresponds to the height of the feeding vein
(Figure 7C). Abnormal gallbladder mucosal enhancement without wall thickening may
also be observed in hypovolemic shock [19,31,93] (Figure 7D).

4.2.6. Adrenals

The presence of intense and persistent symmetric adrenal enhancement, commonly
referred to as “shock adrenals”, was initially described in 1992 within the context of hypo-
volemic shock in the pediatric population. It is characterized by bilateral and symmetric
avid enhancement of the adrenal glands during the portal venous phase, exceeding that
of the adjacent inferior vena cava [94]. This phenomenon can also occur in adults due to
blood flow redirection to the adrenal glands in cases of hypotension. It is a result of reflex
stimulation of the hypothalamus–pituitary axis and sub-sequent sympathetic overactivity,
leading to elevated levels of noradrenaline and angiotensin II. The presence of intense
adrenal enhancement is considered a poor prognostic factor associated with a high mortal-
ity rate (as depicted in Figure 7A–C). It can be one of the earliest CT signs of cardiogenic
shock [26,95–99].

The hollow adrenal gland sign is specific and common on dual-phase contrast-
enhanced CT in 30% of patients with septic shock and predicts poor prognosis [100].
Winzer et al. reported that the portal venous adrenal-to-spleen ratio (opposite enhancement
of the adrenal glands (↑) and spleen (↓) on portal venous CT scans, with a cutoff value of
1.37) serves as a reproducible image-based prognostic marker with high predictive power
(sensitivity: 83.7%; specificity: 99.1%; positive predictive value: 93.2%; negative predictive
value: 97.6%) for short-term (72 h) mortality in ICU patients [101,102].

4.2.7. Pancreas

In cardiogenic shock, glandular enhancement can be increased (20 HU greater than the
liver and spleen) or decreased in relation to sympathetic overactivity (Figure 8A,B) [25,103,104].
If this self-regulating system of blood flow fails, reduced perfusion of the pancreas ensues,
indicating a state of irreversible shock [19]. Hyperenhancement of the adrenals may also
be observed in traumatic hypovolemic shock, such as large surface and chemical burns.
Peripancreatic fluid in the absence of pancreatitis, pancreatic disease or traumatic injury to
the pancreas is secondary to increased pancreatic permeability [19,21].
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acquisition, attributable to acute tubular necrosis, which is a poor prognostic sign in the 
presence of a hypovolemic state [19,20,22]. Persistent bilateral nephrograms are 
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unilaterally. However, renal enhancement must be evaluated carefully as a sign of 
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4.2.10. Ascites 
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Figure 8. CECT and variable pancreatic enhancement. (A) Axial image shows increased pancreatic
enhancement (white arrow) and hypoenhancing left kidney (cortical enhancement preserved) (black
arrow) in traumatic hemorrhagic shock (multiple thoraco-abdominal gunshot wounds); note flat
IVC. (B) Axial image shows decreased pancreatic enhancement in distributive neurogenic shock
in a 69-year-old-man with acute basilary artery occlusion. Note non-enhancing spleen and liver
heterogeneous enhancement (hot spot sign in left liver). Axial images show splenic hypoenhancement
in arterial (C) and venous portal (D) phases (blue circle) in distributive septic shock. Note distended
fluid-filled hypotonic stomach (star) with poor thin wall enhancement in arterial phase, but preserved
parietography in the delayed phase.

4.2.8. Stomach

Sympathetic activation exerts a predominantly inhibitory effect on gastric muscle
and provides a tonic inhibitory influence on mucosal secretion, while at the same time
regulating gastrointestinal blood flow via neurally mediated vasoconstriction [105]. We
present cases of septic/cardiogenic shock with a massively distended, fluid-filled hypotonic
stomach, with poor thin wall enhancement in early and late arterial phases, but preserved
parietography in the delayed phase (shock stomach) (Figure 8C,D). To the best of our
knowledge, this finding was not described previously in the literature.

4.2.9. Kidneys

Renal perfusion abnormalities commonly present as heightened and prolonged parenchy-
mal enhancement, often referred to as “white kidneys”. Nonetheless, it is important to note
that focal and heterogeneous enhancement patterns may also be detected. After an early
period of intense prolonged enhancement, the kidneys may progress to non-enhancement if
the patient’s condition continues to deteriorate. Absent enhancement of the kidneys may
cause “black kidney sign” [106]. After an acute fall in systolic pressure and sympathetic
stimulation, efferent glomerular arteriole vasoconstriction develops with renal parenchy-
mal CM stasis, resulting in prolonged cortical hyperenhancement of the kidneys [19,20].
It is also associated with absent enhancement or hypoenhancement of the renal medulla
on delayed phase image acquisition, attributable to acute tubular necrosis, which is a
poor prognostic sign in the presence of a hypovolemic state [19,20,22]. Persistent bilateral
nephrograms are characteristically and usually distinguished from delayed nephrograms,
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which occur unilaterally. However, renal enhancement must be evaluated carefully as a
sign of hypovolemia, as the timing of contrast injection can affect the appearance of renal
enhancement [26].

4.2.10. Ascites

Ascites is a non-specific sign that correlates with the underlying etiology and multior-
gan dysfunction.

5. CECT Findings/Biomarkers as Prognostic Indicators

The clinical diagnosis of hypovolemic shock is not always obvious in an acute setting
due to hemodynamic compensatory mechanisms. Most of the published literature refers to
hypovolemic shock, and cardiogenic shock to a lesser extent, often in a trauma setting. There
is a scarcity of radiological literature regarding CT findings in distributive and obstructive
shock. CT findings are biomarkers that can be used to predict the diagnosis and prognosis
of shock as well as being useful for monitoring the response to treatment. While specific
CT signs in different subtypes of shock depend on the underlying etiology(ies), CT features
generally overlap all forms. To confirm the diagnosis of CT shock syndrome, the presence
of two or more vascular, visceral, or parenchymal signs is required [18,27]. The incidence of
CT findings as prognostic indicators in various shock types is summarized in Table 2.

Table 2. Incidence and prognostic meaning of CECT findings in each shock type (from references
[15–32,43–106]). The presence of two or more vascular, visceral, or parenchymal signs is deemed
necessary to establish the presence of CT shock syndrome. IVC, Inferior vena cava; NA, not available;
SMA/V, Superior mesenteric artery/vein; AV, Atrio-ventricular.

CECT Findings Cardiogenic Distributive Hypovolemic Obstructive Outcome

Small-caliber aorta ~25% ~28% ~30% ~35% poor
Slit/flattened cava ~70% ~55% ~77% ~50% very poor

Halo sign IVC ~70% ~65% ~75% NA poor
Narrow SMA/V NA NA NA NA NA

Lack of left AV enhancement ~65% ~35% ~55% ~20–50% very poor
CM vascular layering ~75% NA ~65% ~70% very poor

Hot-spot sign NA NA NA NA NA
Periportal halo ~60% NA ~40% NA NA

Ongoing hemorrhage 10% 15% 65% 25% poor
Shock Thyroid NA NA NA NA very poor
Shock Lungs NA NA NA NA NA
Shock Bowel ~55% ~50% ~70% ~40% poor
Shock Spleen ~40% ~50% ~50% ~25% poor

Liver altered density ~85% ~55% ~57% ~45% poor
Shock gallbladder 20–30% ~12% 13–35% ~9% poor

Shock pancreas ~35% ~55% ~45% ~35% very poor
Shock Stomach NA NA NA NA NA
Shock Kidneys ~55% ~50% ~60% ~40% poor
Shock Adrenals ~60% ~65% ~55% ~50% poor

6. Conclusions and Future Directions

Patients in shock require focused management without delay in order to improve
morbidity and mortality. In the right clinical context, various imaging signs can be utilized
to stratify urgency and direct future management. Radiologists need to acquaint themselves
with imaging findings associated with different types of shock and become familiar with
several factors limiting interpretation. In addition, radiologists should readily communicate
their findings to the responsible physicians in order to provide the best quality care in a
timely manner.
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Future development of technologies (e.g., photon counting CT) aiming to reduce
artifacts and improve resolution will undoubtedly promote the superior delineation of acute
findings related to different states of shock while minimizing patient radiation exposure.
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