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Abstract: Background: Clinically, physicians diagnose portal vein diseases on abdominal CT angiog-
raphy (CTA) images scanned in the hepatic arterial phase (H-phase), portal vein phase (P-phase) and
equilibrium phase (E-phase) simultaneously. However, existing studies typically segment the portal
vein on P-phase images without considering other phase images. Method: We propose a method for
segmenting portal veins on multiphase images based on unsupervised domain transfer and pseudo
labels by using annotated P-phase images. Firstly, unsupervised domain transfer is performed to
make the H-phase and E-phase images of the same patient approach the P-phase image in style,
reducing the image differences caused by contrast media. Secondly, the H-phase (or E-phase) image
and its style transferred image are input into the segmentation module together with the P-phase
image. Under the constraints of pseudo labels, accurate prediction results are obtained. Results: This
method was evaluated on the multiphase CTA images of 169 patients. The portal vein segmented
from the H-phase and E-phase images achieved DSC values of 0.76 and 0.86 and Jaccard values of
0.61 and 0.76, respectively. Conclusion: The method can automatically segment the portal vein on
H-phase and E-phase images when only the portal vein on the P-phase CTA image is annotated,
which greatly assists in clinical diagnosis.

Keywords: portal vein segmentation; multiphase CTA image; pseudo label; unsupervised domain
transfer

1. Introduction

The portal vein enters the liver and supplies hepatic blood, accounting for approxi-
mately 75% of the total blood supply to the liver [1]. Portal vein thrombosis or cavernous
transformation of the portal vein causes obstruction of portal blood flow and reduces hep-
atic blood supply, which aggravates liver injuries, leads to increased portal vein pressure,
and further increases the risk of complications associated with portal hypertension such as
ascites, esophageal and gastric varices bleeding, thus affecting the prognosis and quality of
life of patients [2,3]. Many studies aim to use machine learning and deep learning methods
to segment the liver and related vessels in different modal medical images to promote
disease diagnosis, prognosis and surgical planning [4–6].

Clinically, multiphase computer tomography angiography (CTA) images are obtained
by scanning at different times of peak venous flow. Due to the complementary vessel
information on these images presenting a comprehensive status of the collateral circulation,
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they are routinely used for disease diagnosis and patient prognosis prediction [7]. For
example, the diagnosis of portal vein disease often depends on observing the portal vein
on the abdominal CTA images of the hepatic artery phase (H-phase), the portal vein phase
(P-phase) and the equilibrium phase (E-phase) simultaneously, and intuitively fusing CTA
images of different phases, so as to complement vessel information and implement effective
treatment [8]. Therefore, it is crucial to accurately segment portal veins on multiphase
CTA images.

Due to the different distribution of contrast media between portal veins and surround-
ing tissues in different phase CTA images, the contrast between the portal vein and the
surrounding tissues in the P-phase is the most obvious, which is beneficial for doctors
to manually label and construct labeled datasets. Therefore, the existing deep learning
methods almost only label the portal veins in P-phase images. Segmenting portal veins on
P-phase CTA images is a supervised problem. Supervised methods based on deep learning
can generate a best-fit internal representation of the vessel on the image. For example, deep
learning has been combined with anatomy for portal vein segmentation in 2D images for
liver SBRT planning [9]. As 3D medical images can retain more contextual information,
most vessel segmentation algorithms are implemented and improved on the basis of classic
3D segmentation models such as nnUNet and 3D U-Net [10]. For example, Kitrungrot-
sakul et al. [11] proposed a deep convolutional neural network with multiple pathways
called VesselNet for robust segmentation of liver vessels. Yu et al. [12] constructed a novel
3D residual U-Net framework for portal vein segmentation from abdominal CT images.
Xu et al. [13] proposed a mean-teacher-assisted confidence learning method for vessel
segmentation.

In order to segment the portal veins from unlabeled H-phase and E-phase images by
using the label of P-phase, the existing methods overlap the ground truth of the portal
veins in the P-phase images to the corresponding images by simple image alignment for
supervised learning. For example, liver segmentation based on EM clustering and GVF
level set was performed based on the registration of the multiphase CT dataset [14], and
automatic landmark detection and TPS deformation were used for non-rigid registration
of multiphase liver CT data [15]. However, these methods cannot accurately reflect the
status of the portal vein in different phase images. Specifically, Figure 1 shows the slices of
H-phase, P-phase and E-phase CTA images of a subject scanned on the same device, as well
as the corresponding portal vein annotation. The orange boxes highlight the portal vein in
different phases, while the red curves show the main portal vein. It can be seen that the
portal vein is a short and thick main vein [16], which is a smaller target compared to larger
organs such as the liver and spleen, making it relatively difficult for physicians to locate
the portal vein during observation, especially in H-phase and E-phase images. In addition,
the concentration of contrast media in the portal vein varies in the different phases: the
contrast between the portal vein and the adjacent tissues is the lowest in H-phase images,
the highest in P-phase images and decreases again in E-phase images. To make matters
worse, vessels and tissues undergo a certain degree of displacement and distortion between
phases. As can be seen, there is an inter-phase shift in the annotation results of the vessels,
and the complete portal vein trunk cannot be obtained directly on each phase image by
simple alignment.

The above research shows that the existing supervised vascular segmentation deep
learning methods mainly focus on changing the network structure, segmenting single-phase
images and not exploring cross-phase information. The existing exploration of interphase
information utilization, that is, the simple alignment method, ignores the contrast and
morphological changes of intertemporal blood vessels. Therefore, we believe that the key to
portal vein segmentation in H-phase and E-phase CTA images is to solve the unsupervised
domain transfer problem, which is limited by vessel labeling.
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Figure 1. Illustration of the original and aligned CTA images of H-phase, P-phase and E-phase,
as well as the magnified portal vein region (orange box) and main portal vein (red curve) in the
corresponding images. (a) Original image. (b) Aligned image.

It is known that Generative Adversarial Network (GAN) [17] provides a way to
learn deep representations without a large amount of annotated training data. And it
can generalize the models trained on the source domain (annotated training datasets)
to the target domain (test datasets) through transfer learning [18] and visual domain
transfer techniques [19]. In particular, the technological breakthrough around GAN, such
as CycleGAN [20], can generate high-quality images under unsupervised conditions and is
often applied to multimodality image annotation problems. Recently, Xu et al. [13] used
noise-labeled data for the challenging task of liver vessel segmentation. Jiang et al. [21] used
unpaired CT and MRI images for domain adaptive transformations and guided the student
CT networks with the help of an informative teacher MRI network to extract features
indicating foreground and background differences. Other studies have explored domain
transfer segmentation on CT and MRI images of the heart [22,23]. In general, obtaining the
similarity between different images by domain transfer is a feasible annotation method.

In addition, the lack of sufficient public datasets has led to an increasing interest in
the study of unsupervised and semi-supervised deep learning [24,25]. Medical images are
usually presented in multiple modalities, such as MRI and CT, so unsupervised domain
adaptive learning using annotations of one modality to obtain annotations of another
modality is a frequently explored topic. For example, Raju et al. [26] proposed the co-
heterogeneous and adaptive segmentation (CHASe) method based on liver-enhanced CT
images, which requires only a small amount of annotated monophasic data to adapt to any
unannotated heterogeneous multiphase data and is highly labor-saving. Qu et al. [27] con-
ducted a similar study on pancreatic-enhanced CT images using two-phase scanning, and
their proposed framework can integrate multi-scale and multi-view information for multi-
phase pancreas segmentation. This study has a strong reference value for the segmentation
of portal veins on the multiphase images. Currently, most studies on unsupervised domain
adaptation for image segmentation focus on simple tasks such as organs and tumors. Few
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unsupervised cross-modality studies have been applied to vessel segmentation due to the
inconsistent size and a number of vessels observed on CTA images of different phases.

Therefore, for the multiphase CTA dataset of patients with portal-related diseases,
based on the annotated P-phase images, this paper proposes a method to segment portal
veins on the H-phase and E-phase images based on unsupervised domain transfer and
pseudo labels. Firstly, a style transfer network is used to implement modal transformation
from H-phase (or E-phase) images to P-phase images, narrowing the style differences
between different phases and achieving higher apparent similarity. At the same time, the
limitation of insufficient contrast of the portal vein in the original images of the different
phases is suppressed on the corresponding ones after style transfer, which is conducive to
constructing the pseudo labels. Secondly, the H-phase (or E-phase) images and the style
transferred ones that will be input into the 3D U-Net network along with the P-phase
images. When training the segmentation model, under the constraint of the ground truths
of the portal vein of the P-phase images, the predicted results of the H-phase (or E-phase)
images are used to jointly construct pseudo labels with confidence for the corresponding
phase. This not only reduces the impact of vessel shift between different phases but also
achieves accurate segmentation of portal veins in corresponding phases. Finally, in the case
of only one phase image annotation, this method can obtain segmented portal veins on the
other two phase images, respectively.

2. Materials and Methods
2.1. Data Description

The dataset included 169 patients with liver cirrhosis and portal vein disease who
visited Zhongshan Hospital, affiliated with Fudan University in Shanghai, China, between
January 2016 and May 2020. These patients were scanned for abdominal CTA images in the
H-phase, the P-phase and the E-phase. The CTA images were acquired with a delayed scan
time of 25 to 30 s for the H-phase, 60 to 70 s for the P-phase and 85 to 90 s for E-phase after
contrast media injection. The imaging parameters were as follows: in-plane resolution is
between 0.610 mm × 0.610 mm and 0.881 mm × 0.881 mm; slice thickness is 5.0 mm; and
the size of the image acquisition matrix is 512 × 512.

Finally, an experienced physician annotated the portal vein trunk on all images.

2.2. Image Preprocessing

The preprocessing of CTA images includes removing the CT beds, aligning images of
different phases of the same patient, and extracting and normalizing the portal vein blocks.

Removing the CT beds. Selecting a threshold of −300 Hounsfield units to binarize
the image can remove the CT bed from all images completely and preserve the largest body
contour in the images.

Aligning images of different phases. Figure 1a shows coronal views of H-phase,
P-phase and E-phase CTA images of the same patient. The images of different phases
contain different numbers of axial slices, indicating that even for the same patient, it is not
possible to determine the location of portal veins in other phases solely based on portal vein
annotation in P-phase. According to the body contour extracted by binarization, the slice
locations with the largest intersection of the binary images of the three phases were taken
so that the images of different phases of the same patient were aligned axially. Figure 1b
shows the results of the H-phase, P-phase and E-phase CTA images after the removal of
the CT bed and alignment of the images of the three phases.

Extracting and normalizing the portal vein blocks. The portal vein occupies a rela-
tively small volume in the whole CTA image and has an irregular shape, especially the
weak contrast between the portal vein and the surrounding tissues in H-phase and E-phase
images, making it difficult to segment directly in the original image. For this purpose, this
study utilizes portal vein annotation in the P-phase image to automatically crop image
blocks containing portal veins from the aligned H-phase and E-phase images, with a size of
32 × 128 × 128.
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2.3. Multiphase Segmentation Network

Figure 2 depicts the portal vein segmentation network (called as PVSegNet) on the
multiphase images, which consists of two parts: a style transfer module and a segmentation
module. The inputs to the network are the H-phase (or E-phase) image, IA, and the P-phase
image, IV . The ground truth of the portal vein in the P-phase image is denoted as TrueV.
The output of the network is the prediction results of the portal vein on the H-phase (or
E-phase) image, PA. In the style transfer module, the H-phase (or E-phase) image, IA, is
transformed to construct the image, IA→V, with a similar style to the P-phase image, IV .
Similarly, the P-phase image, IV , itself can also be transferred to the image, IV→V, with a
consistent style. Then, in the segmentation module, these style-transferred images, IA→V

and IV→V, and their original images, IA and Iv are trained only under the constraint of
the ground truth of the portal vein in the P-phase image, Truev, and the corresponding
prediction results are generated to construct pseudo labels for further optimizing the
segmentation. Finally, the portal vein on the H-phase (or E-phase) images is segmented
automatically and accurately.
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2.3.1. Style Transfer Module

Traditional style transfer neural networks are capable of converting information from
one representation to another. In order to enable the H-phase (or E-phase) image to have
similar characteristics to the P-phase image and segment the portal vein on the correspond-
ing images, inspired by the idea of the domain transfer of the CycleGan network [20], this
paper builds the style transfer module composed of a generator and a discriminator, as
shown in Figure 2.

First, IA is input into the generator G to generate an image IA→V with a similar style
to IV. Since there is a high similarity of organs and tissues between the two-phase images,
in order to ensure that the semantic characteristics similar to IV in IA are not changed by
the generator and can be preserved, IV also goes through the generator to get IV→V. The
image block input to the generator is represented by a tensor with size 1 × 32 × 128 × 128
(representing channel× depth× height ×width). These images are sequentially processed
through three encoding convolution layers, nine residual structures (ResBlock) and two
decoding convolution layers, and the output is the result of style transfer transformation
with the same size as the input image. Here, the convolutional kernels of the encoding and
decoding layers are connected with InstanceNorm3d and LeakyReLU to form the basic
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structural module. The size of the convolution kernel is 3 × 3 × 3, and the step sizes of the
convolution kernels are all 2.

Secondly, whether the style transfer result IA→V is similar to IV in terms of style char-
acteristics will be determined by the discriminator DA shown in Figure 2. At the same time,
the discriminator also evaluates the transferred image, IV→V, to enhance the ability of the
generator to preserve the transformation P-phase image style characteristics. The image block
input to the discriminator is represented by a tensor with a size of 1 × 32 × 128 × 128. And
these images are sequentially processed through five layers of convolution, and finally, the
value 1 or 0 is output by the average pooling (avg_pool3d), which indicates whether the style
transfer result is similar to IV. The step size of the convolutional kernel in the discriminator
network is 2.

It should be noted that in Figure 2, IV is an annotated P-phase image, and IA may be an
H-phase or E-phase image to be segmented. This study separately trains the style transfer
module on the H-phase or E-phase images and its subsequent segmentation module on the
corresponding phase under the guidance of the P-phase images.

2.3.2. Segmentation Module

When the H-phase (or E-phase) images undergo the style transfer transformation and
have a similar style as the P-phase image, the segmentation module can segment both
the P-phase image IV and its style-transferred image IV→V, as well as the H-phase (or
E-phase) image IA and its corresponding style-transferred image IA→V, and output the
corresponding prediction results, respectively. The segmentation module consists of a 3D
U-Net [10] segmentation network and a discriminator, DB, as shown in Figure 2.

Figure 3 shows the 3D U-Net network. The image represented by a tensor with size
1 × 32 × 128 × 128 sequentially undergoes four downsamplings (max-pooling) operations
with a step size of 2, and four upsampling (ConvTranspose) operations with a step size of 2.
And each level’s upsampling layer is directly concatenated with the same level’s downsam-
pling layer through skip connections. The final output is the binary segmentation result
of the portal vein on the image. Before each downsampling and upsampling operation,
the input image or intermediate calculation results are sequentially extracted at pixel level
by two basic structures formed by connecting the convolutional layers, InstanceNorm3d
and LeakyReLU.
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The discriminator DB of the segmentation module is used to judge whether the output
of the 3D U-net network is similar to the ground truth TrueV on the P-phase image, which
is an image-level judgment and more suitable as a soft constraint of the segmentation
module. The discriminator DB judges the authenticity of the prediction results, PA→V and
PA, enhancing the constraint of the network on the final prediction result PA. Here, the
structure of the discriminator DB is the same as that of DA, as shown in Figure 2.

2.3.3. Construction of Pseudo Label

During the training process, when using the ground truth TrueV of the P-phase image
to guide the segmentation network in training the H-phase (or E-phase) images, it is
common to learn incorrect information due to the vessel shift on different phase images.
Therefore, this study proposes to use the ground truth of the portal vein in the P-phase
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image and the prediction results of the segmentation network to jointly construct pseudo
labels and guide network training through pseudo labels. Figure 4 shows the process of
constructing pseudo labels.
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Figure 4. Construction of pseudo label.

The original H-phase (or E-phase) image IA and its style transferred image IA→V are
input into the 3D U-Net network, and the predicted results PA and PA→V are obtained.
Although they are similar, there are differences between the two. In particular, the inter-
section area, PA∩PA→V, may belong to the possible label area. This intersection area of
PA∩PA→V further intersects with the ground truth TrueV of the P-phase image IV, and the
resulting intersection PA∩PA→V∩TrueV can be used as the correct label area on image IA.
The remaining part of TrueV is also considered as a possible label area for image IA→V.
Then, set weights λ2 − λ1 and λ1 for the correct and possible label regions separately, and
the pseudo labels are calculated as Equation (1):

PseuA = λ1PA ∩ PA→V + λ1TrueV + (λ 2−2λ1

)(
PA ∩ PA→V ∩ TrueV

)
(1)

Here, referring to the overlapping area between the predicted results and the ground
truths in Figure 4, λ1 and λ2 are set as 0.1 and 1 for the H-phase image, 0.7 and 1 for the
E-phase image and 0 for the remaining areas. In addition, Dice loss is set between the
pseudo label PseuA and the network prediction result PA→V for guiding the PVSegNet
network to better train and segment IA→V.

2.3.4. Loss Function

The cost function optimized by this method, Loss, is calculated in Equation (2) and
consists of five types of the loss function, including Identity loss, Liden_img and Liden_pred,
Consistency loss, LCON , Cross entropy loss, LCE1 and LCE2, Dice Loss, Ldice, as well as the
Discrimination loss, LG_img and LG_pred.

Loss = ω1Liden_img + ω2Liden_pred + ω3LG_img + ω4LG_pred + ω5LCON + ω6LCE1 + ω7Ldice + ω8LCE2 (2)

where ω1, ω2, . . . , ω8 represent the weights of the loss functions, respectively, and in this
study, ω1 = ω2 = ω7 = ω8 = 5, ω3 = ω4 = 0.01, ω5 = 1, ω6 = 10.

Identity loss. It is generally believed that images should retain their own features
after style transfer [20]. This study uses Identity loss to constrain the image IV in order to
preserve its own features after transformation by the generator, as shown in Equation (3).
Liden_img measures the difference between the style-transferred image IV→V and the original
image IV . In addition, using the same segmentation network to predict the same images
should result in the same results. That is to say, the predicted results of images IV and
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IV→V, PV and PV→V, should also be subject to the constraint of Identity loss, as shown in
Equation (4).

Liden_img =

{
∑H×W×D

i=1

(
IV
i − IV→V

i )2 i f
∣∣IV

i − IV→V
i

∣∣< 1

∑H×W×D
i=1

∣∣∣IV
i − IV→V

i

∣∣∣−0.5 otherwise
(3)

Liden_pred = ∑C
c=1

∑H×W×D
i=1

(
PV c

i−PV→V c
i )

2 i f
∣∣∣PV c

i−PV→V c
i

∣∣∣< 1

∑H×W×D
i=1

∣∣∣PV c
i−PV→V c

i

∣∣∣−0.5 otherwise
(4)

where C = 2 denotes the portal vein and the background. H, W and D represent the height,
width and depth of the image, respectively.

Discrimination loss. The discriminator network DA in the style transfer module used
the binary cross entropy loss function to separate the original P-phase image from the
generated P-phase image. When training discriminator DA, set the discriminator DA to
judge IA→V as 0, and judge IV and IV→V as 1.

The discriminator network DB in the segmentation module also optimized the binary
cross entropy loss function to discriminate the ground truth TrueV from the predicted
results PA→V or PA. When training the discriminator, set the discriminator DB to judge
the predicted results PA→V and PA as 0 and determine that the annotation TrueV of the
P-phase image is 1.

In order to ensure that the image IA→V generated by the generator predicts sufficiently
realistic results through the segmentation network so as to deceive the discriminator DA which
judges that the generated image IA→V is 1, and at the same time, makes the discriminator DB
determines that the predicted image PA→V is 1. Therefore, the Discrimination loss functions,
i.e., LG_img and LG_pred, are set respectively in the training process to enhance the effectiveness
of the generator and segmentation network, as shown in Equations (5) and (6).

LG_img = − log
(

D
(

IA→V
))

(5)

LG_pred = −log
(

D
(

PA→V
))

(6)

where D(IA→V) and D(PA→V) represent the binary cross entropy loss results of IA→V and
PA→V input to the corresponding discriminator, respectively.

Consistency loss. In order to form constraints between the original H-phase (or
E-phase) image and its style-transferred image and make the segmentation network learn
useful knowledge lost due to style transfer, Consistency loss LCON is set between the
corresponding prediction results PA and PA→V, as shown in Equation (7).

LCON = ∑C
c=1

1
H ×W × D ∑H×W×D

i=1

(
PAc

i−PA→V c
i )

2 (7)

Cross entropy loss. As shown in Equation (8), Cross entropy loss LCE1 is set between
the segmentation result PV on the P-phase image and the ground truth TrueV to guide the
correct convergence of the segmentation network. Multiphase images have similarities,
and to some extent, there is information that can be gleaned from one another. Therefore,
the Cross entropy loss LCE2 is also set to calculate the similarity between the prediction
result PA→V and the ground truth TrueV, as shown in Equation (9).

LCE1 = −∑C
c=1 ∑H×W×D

i=1 PV c
i log

(
eTureV c

i

∑C
j=1 ej

)
(8)

LCE2 = −∑C
c=1 ∑H×W×D

i=1 PA→V c
i log

(
eTureV c

i

∑C
j=1 ej

)
(9)
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Dice loss. In addition to the Cross entropy loss, the Dice loss is also set in the
segmentation network to reduce the impact caused by the vessel shift between different
phases, as shown in Equation (10), which is used to calculate the loss between the prediction
result PA→V and the pseudo label PseuA.

Ldice = ∑C
c=1

1−
2 ∑H×W×D

i=1 PA→Vc
i PseuAc

i

∑H×W×D
i=1

(
PA→Vc

i
)2

+ ∑H×W×D
i=1

(
PseuAc

i

)2

 (10)

3. Experiments
3.1. Experimental Setup and Evaluation Index

The experiments were conducted on Ubuntu 18.04 operating system and PyTorch
framework, configured with Intel® Core™ i5-9600K (3.70 GHz × 6 CPUs), 64 GB RAM and
one RTX 3090 GPU.

All the experiments are performed using three-fold cross-validation. During the
training stage, the H-phase and E-phase training datasets were trained for 50 and 40 epochs
to obtain the model with the best performance for testing on the respective test dataset,
respectively. The training was performed using the Adam optimizer with an initial learning
rate of 0.001.

The evaluation metrics of the segmentation results are standard metrics based on the
pixel-level confusion matrix calculation, including the dice similarity coefficient (DSC) [28]
and the Jaccard coefficient (Jaccard), as shown in Equations (11) and (12), respectively.

DSC =
2TPc

2TPc + FPc + FNc
(11)

Jaccard =
TNc + TPc

TNc + TPc + FPc + FNc
(12)

where c denotes a category region. TPc and TNc denote the numbers of the true positive and
the true negative pixels in the cth region, while FPc and FNc are the numbers of the false
positive and the false negative pixels in that category, respectively. Two-tailed student t-test
was used to test the p-value between the prediction results of PVSegNet and other methods.
And a p-value less than 0.05 indicates a significant difference between the predicted results
of these two methods. The specific p-value results are shown in Tables A1–A3.

3.2. Comparison of Experimental Results

To evaluate the effectiveness of the proposed network architecture, nnUNet, 3D U-Net
and CycleGan are used for comparison experiments. The supervised experiments use the
annotations of the corresponding portal vein in the H-phase or E-phase images to train
the 3D U-Net network. In the other comparison experiments, the portal vein annotation
of the P-phase images will be used directly as pseudo labels for training the network on
the H-phase or E-phase images. And the same portal vein training dataset was used for all
methods. Table 1 shows the performance of different methods in segmenting the portal
vein on the H-phase and E-phase images in the test dataset. For fair comparisons, no data
enhancement was performed for all experiments in this paper.

In the segmentation results of the portal vein on the H-phase images, the supervised
segmentation results of nnUNet can reach 0.832 for DSC and 0.724 for Jaccard, respectively.
The supervised segmentation results of 3D U-Net can reach 0.724 for DSC and 0.581 for
Jaccard, respectively. Using images IA or IV and annotations TrueV in the P-phase, 3D
U-Net can reach 0.590 and 0.117 for DSC and 0.581 and 0.079 for Jaccard, respectively.
The results show that the model trained with only the P-phase image IV and TrueV has
poor generalization results in the H-phase and can barely recognize the features of the
portal vein. The results of the model trained with image IA as well as TrueV show that
useful information can be learned from H-phase images and ground truths, but the lack of
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contrast has an impact on H-phase image segmentation. According to the segmentation
results of CycleGan, the effect of using only style transfer can reach 0.633 for DSC and
0.482 for Jaccard, respectively. Finally, the DSC value is 0.689 and Jaccard is 0.546 for the
PVSegNet method proposed in this study, which is better than the segmentation results in
the comparative experiments that also used portal vein annotations TrueV.

Table 1. Performance comparison of different methods in segmenting the portal vein on H-phase
and E-phase images in the test set. Inputs with “4” are used to train the models.

Methods IA IV TrueA TrueV
H-Phase E-Phase

DSC Jaccard DSC Jaccard

nnUNet
(Supervised) 4 4 0.832 ± 0.001 0.724 ± 0.001 0.894 ± 0.000 0.816 ± 0.001

3D U-Net
(Supervised) 4 4 0.724 ± 0.000 0.581 ± 0.000 0.832 ± 0.000 0.723 ± 0.001

3D U-Net 4 4 0.590 ± 0.001 0.437 ± 0.001 0.650 ± 0.001 0.500 ± 0.001

3D U-Net 4 4 0.117 ± 0.000 0.079 ± 0.000 0.801 ± 0.001 0.680 ± 0.001

CycleGan 4 4 4 0.633 ± 0.001 0.482 ± 0.001 0.643 ± 0.001 0.493 ± 0.001

PVSegNet 4 4 4 0.689 ± 0.001 0.546 ± 0.001 0.826 ± 0.001 0.712 ± 0.001

In the results of portal vein segmentation on the E-phase images, the supervised
segmentation results of nnUNet can reach 0.894 for DSC and 0.816 for Jaccard and the
supervised segmentation results of 3D U-Net can reach 0.832 for DSC and 0.723 for Jaccard,
respectively. Three-dimensional U-Net can reach 0.650 and 0.801 for DSC and 0.500 and
0.680 for Jaccard using images IA or IV and TrueV in the P-phase, respectively. The results
show that the E-phase image is more similar to the P-phase image than the H-phase image,
and the model trained on the P-phase images has higher generalization in the E-phase. The
results trained on image IA as well as TrueV show that different phase vessel shifts still exist
when using P-phase ground truth TrueV as pseudo labels. In addition, the segmentation
results using only style transfer of CycleGan can reach 0.643 for DSC and 0.493 for Jaccard,
respectively. And DSC value is 0.828 and Jaccard is 0.712 for the PVSegNet method
proposed in this study, which is superior to the results in other comparative experiments
trained with the ground truths of P-phase images.

3.3. Ablation Experimental Results

In this section, ablation experiments were conducted on two parts of the proposed
PVSegNet network, analyzing the effect of each module of our method and the pseudo
label weights on the experimental results.

(1) Effect of each module on experimental results

Table 2 shows the impact of each module of our method on the experimental results
when using the ground truths of the P-phase images to guide the portal vein segmentation
on the H-phase or E-phase images. The first row shows the results of removing the style
transfer module, discriminator DB and pseudo labels; the second row shows the results of
removing the pseudo labels; the third row shows the results of removing the style transfer
module, i.e., removing the generator G and discriminator DA; and the fourth row shows
the results of removing the discriminator DB. The experimental results in Table 2 show
that the results all decrease after removing these structures. And our proposed PVSegNet
network contains each structure and achieves the best segmentation performance.

(2) Effect of pseudo label weights on experimental results
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Table 2. Effect of each module of PVSegNet on the experimental results. Modules with “4” are included.

# DB G&DA PL
H-Phase E-Phase

DSC Jaccard DSC Jaccard

PVSegNet
based

1 0.643 ± 0.000 0.486 ± 0.000 0.758 ± 0.003 0.672 ± 0.007

2 4 4 0.666 ± 0.000 0.485 ± 0.002 0.819 ± 0.000 0.702 ± 0.001

3 4 4 0.648 ± 0.000 0.493 ± 0.000 0.759 ± 0.003 0.624 ± 0.004

4 4 4 0.676 ± 0.002 0.534 ± 0.002 0.823 ± 0.001 0.709 ± 0.002

PVSegNet 5 4 4 4 0.689 ± 0.001 0.546 ± 0.001 0.826 ± 0.001 0.712 ± 0.001

Notes: #: Method number; DB: Discriminator DB; G&DA: Generator G and Discriminator DA; PL: Pseudo labels.

Table 3 shows that when different weights are set to construct pseudo labels, the
network can obtain different portal vein segmentation results for H-phase and E-phase
images. According to Table 3, when λ1 is set as the weights of 0.1 or 0.7, the constructed
pseudo labels can achieve the best results when segmenting the portal vein on H-phase or
E-phase images, respectively.

Table 3. Effect of setting different weights for the pseudo labels on the experimental results.

λ1
H-Phase E-Phase

DSC Jaccard DSC Jaccard

0.1 0.689 ± 0.001 0.546 ± 0.001 0.818 ± 0.000 0.708 ± 0.000
0.3 0.665 ± 0.001 0.529 ± 0.001 0.815 ± 0.001 0.698 ± 0.002
0.5 0.681 ± 0.002 0.520 ± 0.002 0.819 ± 0.001 0.703 ± 0.001
0.7 0.621 ± 0.002 0.474 ± 0.002 0.826 ± 0.001 0.712 ± 0.001
0.9 0.656 ± 0.000 0.498 ± 0.000 0.824 ± 0.001 0.708 ± 0.002

3.4. Visualization Results

Figure 5 shows the images of two cases from the sagittal plane. Each case was
visualized with its original three-phase images and style transferred images generated by
the generator G. The transferred P-phase image retains the features of the original portal
vein after going through the generator G. There are contrast media on both the E-phase and
P-phase images and the portal vein is clear. And after these images are transferred by the
generator G, the transferred images also retain most of the information used to segment
the portal vein even. The portal vein is not clear in the H-phase image, but after being
transferred by generator G, the portal vein is clearer compared to the original image, and
the global position information of the portal vein can be extracted despite the loss of some
edge information.

To observe whether the proposed PVSegNet method achieves an effective segmen-
tation of the portal vein, Figure 6 shows the segmentation results on the H-phase and
E-phase images, respectively, with the green line indicating the contours of the ground
truth and the red line indicating the contours of the segmentation results. From Figure 6, it
can be seen that the networks trained directly with the annotations of portal vein images
as pseudo-labels, i.e., 3D U-Net and CycleGan, have obviously missed the segmentation
phenomenon and cannot segment the complete portal vein, and the segmentation results
are slightly worse than those of PVSegNet. In the visualization results, the segmentation
results in the E-phase are better relative to those in the H-phase because the vessels in the
E-phase are more clearly defined.



Diagnostics 2023, 13, 2250 12 of 16
Diagnostics 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 5. Images generated by the generator G in the style transfer module with similar styles to 

their respective P-phase image of case 1 (a) and case 2 (b). 

To observe whether the proposed PVSegNet method achieves an effective segmenta-

tion of the portal vein, Figure 6 shows the segmentation results on the H-phase and E-

phase images, respectively, with the green line indicating the contours of the ground truth 

and the red line indicating the contours of the segmentation results. From Figure 6, it can 

be seen that the networks trained directly with the annotations of portal vein images as 

pseudo-labels, i.e., 3D U-Net and CycleGan, have obviously missed the segmentation phe-

nomenon and cannot segment the complete portal vein, and the segmentation results are 

slightly worse than those of PVSegNet. In the visualization results, the segmentation re-

sults in the E-phase are better relative to those in the H-phase because the vessels in the E-

phase are more clearly defined. 

H-phase

P-phase

E-phase

Original image Generated Image             Original image Generated Image

(a) Case 1                                                          (b) Case 2

Figure 5. Images generated by the generator G in the style transfer module with similar styles to
their respective P-phase image of case 1 (a) and case 2 (b).

Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

 

 

Figure 6. Visualization results of the comparison experiment in the coronal, axial and sagittal planes 

for the H-phase (a) and E-phase (b) images, respectively. The green line is the outline of the ground 

truth and the red line is the outline of segmentation results. 

4. Discussion 

Due to the labor-intensive and time-consuming manual annotation of the portal vein 

on multiphase abdominal CTA images, as well as the challenge of manually annotating 

the portal vein on H-phase images, we propose a multiphase portal vein segmentation 

method based on style transfer and pseudo labels. This method can automatically segment 

the portal vein on H-phase or E-phase images when only P-phase images have portal vein 

annotations. 

The portal vein segmentation network, PVSegNet, mainly consists of a style transfer 

module and a segmentation module. The style transfer module can convert the H-phase 

Figure 6. Visualization results of the comparison experiment in the coronal, axial and sagittal planes
for the H-phase (a) and E-phase (b) images, respectively. The green line is the outline of the ground
truth and the red line is the outline of segmentation results.



Diagnostics 2023, 13, 2250 13 of 16

4. Discussion

Due to the labor-intensive and time-consuming manual annotation of the portal vein
on multiphase abdominal CTA images, as well as the challenge of manually annotating
the portal vein on H-phase images, we propose a multiphase portal vein segmentation
method based on style transfer and pseudo labels. This method can automatically segment
the portal vein on H-phase or E-phase images when only P-phase images have portal
vein annotations.

The portal vein segmentation network, PVSegNet, mainly consists of a style transfer
module and a segmentation module. The style transfer module can convert the H-phase and
E-phase images of the same patient to the P-phase images, which makes the segmentation
network more easily adaptable to both H-phase and E-phase images. The segmentation
module consists of a 3D U-Net network and a discriminator. The discriminator is used
to determine whether the segmentation results are similar to the P-phase ground truth,
forming a soft constraint on the segmentation network. When using only the annotation
of the P-phase images as the pseudo labels to guide the training of the network on the
H-phase, as well as the E-phase images, the wrong information is often learned due to
the vessel shift. In this paper, we use the annotation of P-phase images and the prediction
results obtained from the segmentation network to jointly construct the pseudo labels of
the corresponding phase during the training process so as to reduce the effect of vessel shift
and obtain more accurate segmentation results. From Table 1, it can be concluded that the
proposed method outperforms the model trained directly with the P-phase annotations and
H-phase images in the H-phase test dataset. And the segmentation effect in the E-phase
images is even better.

However, there is still room for improvement in the study. Firstly, the portal vein
segmentation performance in the H-phase images needs further enhancement for the task.
The next work will make full use of the annotations of P-phase images to improve the
construction of pseudo labels and set strong constraints in the style transfer to achieve the
improvement of the algorithm. Secondly, the deep learning segmentation method proposed
in this study has been evaluated only on a CT dataset from one hospital, and the future
plan is to apply the results of this study to multi-center data for validating the reliability
of the algorithm through more clinical applications. Finally, there is a lack of diagnostic
studies. Although the portal vein has been segmented, this paper did not use the portal
vein to predict portal pressure, and the clinical study will be carried out after collecting
more data from relevant patients.

5. Conclusions

In this paper, we propose a multiphase segmentation algorithm for portal veins based
on style transfer and pseudo labels. Under the condition that only the P-phase portal vein
is annotated, this method achieves automatic and effective segmentation of the portal vein
in H-phase and E-phase CTA images. The portal vein segmentation network PVSegNet
mainly consists of a style transfer module and a segmentation module. The style transfer
module converts the E-phase and H-phase images of the same patient to the P-phase images
with the same style. The segmentation module consists of pseudo labels guided 3D U-Net
network and a discriminator with a soft constraint function. Since the pseudo labels are
constructed based on three mutually constrained components, which are annotations on
the P-phase image, prediction results obtained from the segmentation network, and soft
constraints of the discriminator on the segmentation network, the method can reduce the
effect of learned misinformation from vessel shift and distortion. And the method obtains
more accurate portal vein segmentation results on both H-phase and E-phase images. This
greatly aids clinical practice.
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Appendix A

Table A1. The p-value obtained by comparing the DSC and Jaccard of PVSegNet with other methods
using a two-tailed student t-test. Inputs with “4” are used to train the models.

Methods (vs.
PVSegNet) IA IV TrueA TrueV

H-Phase E-Phase

DSC Jaccard DSC Jaccard

nnUNet
(Supervised) 4 4 ** 4.91 × 10−22 ** 9.09× 10−46 ** 1.15 × 10−26 2.73 × 10−1

3D U-Net
(Supervised) 4 4 ** 4.02 × 10−3 ** 4.98 × 10−3 2.40 × 10−1 1.50 × 10−1

3D U-Net 4 4 ** 1.24 × 10−9 ** 1.38 × 10−11 ** 1.52 × 10−33 ** 5.89 × 10−40

3D U-Net 4 4 ** 1.75 × 10−75 ** 1.36 × 10−74 ** 1.06 × 10−5 ** 1.37 × 10−5

CycleGan 4 4 4 ** 4.15 × 10−4 ** 3.66 × 10−5 ** 6.48 × 10−34 ** 5.15 × 10−41

Notes: **: p-value < 0.01, significant statistical difference.

Table A2. The p-value obtained by comparing the DSC and Jaccard of PVSegNet with PVSegNet-
based methods using a two-tailed student t-test. Modules with “4” are included.

# DB G&DA PL
H-Phase E-Phase

DSC Jaccard DSC Jaccard

PVSegNet
Based

vs.
PVSegNet

1 ** 1.59 × 10−4 ** 4.15 × 10−6 ** 2.98 × 10−20 * 9.82 × 10−22

2 4 4 * 1.72 × 10−2 ** 1.05 × 10−3 9.76 × 10−2 5.92 × 10−2

3 4 4 ** 3.47 × 10−4 ** 2.58 × 10−6 ** 3.93 × 10−18 * 1.61 × 10−20

4 4 4 1.06 × 10−1 1.10 × 10−1 4.31 × 10−1 6.63 × 10−1

Notes: #: Method number; DB: Discriminator DB; G&DA: Generator G and Discriminator DA; PL: Pseudo labels;
*: p-value < 0.05, statistical difference; **: p-value < 0.01, significant statistical difference.

Table A3. The p-value obtained by comparing the DSC and Jaccard of different λ1 using a two-tailed
student t-test. For the H-phase, compare the values of λ1 = 0.1 with other λ1 values, and for the
E-phase, compare the values of λ1 = 0.7 with other λ1 values.

λ1
H-Phase E-Phase

DSC Jaccard DSC Jaccard

0.1 * 4.65 × 10−2 * 2.77 × 10−2

0.3 ** 8.89 × 10−3 ** 5.24 × 10−3 ** 6.81 × 10−3 ** 8.92 × 10−3

0.5 ** 8.79 × 10−3 ** 1.58 × 10−3 8.66 × 10−2 9.18 × 10−2

0.7 ** 4.60 × 10−10 ** 3.09 × 10−11

0.9 ** 8.12 × 10−4 ** 1.99 × 10−4 5.49 × 10−1 4.70 × 10−1

Notes: *: p-value < 0.05, statistical difference; **: p-value < 0.01, significant statistical difference.
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