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Abstract: Congenital heart disease (CHD) is a critical global public health concern, particularly
when it comes to newborn mortality. Low- and middle-income countries face the highest mortality
rates due to limited resources and inadequate healthcare access. To address this pressing issue,
machine learning presents an opportunity to develop accurate predictive models that can assess
the risk of death from CHD. These models can empower healthcare professionals by identifying
high-risk infants and enabling appropriate care. Additionally, machine learning can uncover patterns
in the risk factors associated with CHD mortality, leading to targeted interventions that prevent or
reduce mortality among vulnerable newborns. This paper proposes an innovative machine learning
approach to minimize newborn mortality related to CHD. By analyzing data from infants diagnosed
with CHD, the model identifies key risk factors contributing to mortality. Armed with this knowledge,
healthcare providers can devise customized interventions, including intensified care for high-risk
infants and early detection and treatment strategies. The proposed diagnostic model utilizes maternal
clinical history and fetal health information to accurately predict the condition of newborns affected
by CHD. The results are highly promising, with the proposed Cardiac Deep Learning Model (CDLM)
achieving remarkable performance metrics, including a sensitivity of 91.74%, specificity of 92.65%,
positive predictive value of 90.85%, negative predictive value of 55.62%, and a miss rate of 91.03%.
This research aims to make a significant impact by equipping healthcare professionals with powerful
tools to combat CHD-related newborn mortality, ultimately saving lives and improving healthcare
outcomes worldwide.
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1. Introduction

Every year, millions of babies are born with congenital heart disease (CHD), a con-
dition in which the heart does not develop properly [1]. CHD is the leading cause of
newborn mortality, accounting for nearly one-third of all infant deaths. There are many
different types of CHD, ranging from mild to severe. The most common type, ventricular
septal defect (VSD), affects the septum, which is the wall separating the right and left
ventricles [2–4]. VSDs can be small, allowing blood to flow freely between the ventricles,
or large, causing the ventricles to work harder and the heart to pump less effectively [5]. If
a child is born with heart disease, the condition is called congenital. Statistics show that
only about 1% of babies are born with this disease. Heart disease is widespread [6], and
it depends on the lifestyle the mother leads while carrying the fetus. The baby’s health
is determined in the first months of pregnancy [7]. Suppose there is an expectant mother
during this period. In that case, the risk of having a child with a heart defect increases
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significantly: if one notices the signs of heart disease in children early and starts treatment,
there is a chance of full recovery and normal functioning [8,9].

Conversely, if the problem is detected late, irreversible changes in the heart muscle
structure occur, and emergency surgery is required [10]. Sometimes, people live without a
kidney, half a stomach, and a gall bladder. However, it is impossible to imagine a person
living without a heart: after this organ stops its work, in a few minutes, the life in the body
dies completely and irreversibly [11,12]. This is why diagnosing “heart disease” in a child
is so terrifying for parents. If we avoid medical nuances, this disease is associated with the
failure of the heart valves, which leads to the gradual failure of the organ [13]. This problem
is the most common cause of heart disease but is far from the only disease [14]. In addition,
there are cases when the disease develops due to incorrect structure. Different treatments for
congenital heart defects include open-heart surgery in the cardiac catheterization lab [15].
Some babies may also need medicines to control their heart rate or blood flow. Treatment
of complex congenital heart defects may require certain surgery [16]. Critical congenital
heart defects (CHDs) need several catheter surgical procedures and open-heart surgeries to
repair the problems [17]. A combination of catheter and open-heart surgery is required for
some babies. Surgery or other procedures may be needed for other newborns before they
can go home from the hospital [18,19]. Only a few of four babies need surgery for critical
CHDs in the first few years of life. These children typically need to take lifelong medication
after their treatment [20].

Surgery and cardiac catheterization are the two main treatments for congenital heart
surgery for newborns. In some cases, repairing a simple heart defect may be possible
through cardiac catheterization in a special lab, but more complex defects may require
open-heart surgery [21]. Atrial septal defect, ventricular septal defect, and patent ductus
arteriosus are some of the most effective forms of CHD that require surgery [22]. Different
techniques are used to repair these defects, such as using different devices to reduce the
effects of air or to close up the patent ductus arteriosus [23]. Congenital heart surgery for
newborns can be complex and require specialized care. Children with complex congenital
heart defects or CHD may require multiple surgeries over the first few years of life or even
a heart transplant [24,25]. For more straightforward heart problems, such as very mild
stenosis or atrial septal defect, imaging studies such as an echocardiogram can diagnose the
issue. Hypoplastic left heart syndrome (HLHS) is one of the most severe forms of CHD, and
these children may require several surgeries or a transplant to survive [26,27]. Sometimes
these surgeries fail, and the child must receive a heart transplant to live. Congenital heart
surgery for newborns is complex and delicate [28].

Congenital heart surgery treats many cardiac defects that can improve blood flow in
the heart and lungs, condition the heart rate and prevent heart failure [29]. Some congenital
heart defects, like ventricular septal defects or Fallot’s other complex anomalies, require
repair with cardiopulmonary bypass or stopping the baby’s heart to control it [30]. Diag-
nosing a disease in a child is a mandatory study at the stage of intrauterine development.
For every woman at 14 weeks of pregnancy, the supervising doctor orders an ultrasound of
the heart. Ultrasound is the primary method for diagnosing CHD and PPD [31]. Diagnos-
tics using ultrasound help visualize the structural compartments of the heart, as well as
calculate pressure and other parameters [32]. If heart failure is suspected, the cardiologist
recommends additional diagnostic methods. Electrocardiography is used for detecting
congenital and acquired defects at any age [33]. It also corrects arrhythmias, electrical axis
displacements, and conduction system disorders. ECG is included in mandatory examina-
tions for one-month-old babies [34]. X-rays are used to determine the current condition of
the chest and heart.

Specialists choose a method of treatment taking into account the type of pathology,
stage of development and complexity in each case [35]. The condition and age of the
sick child play an essential role in choosing the optimal treatment option. Conservative
treatment often includes diet, general hygiene and physical exercises [36]. Sick children are
advised to consume protein-rich foods, limit water and salt intake, and avoid food before
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bed. Children should also perform special exercises to help train the heart muscle [37].
Clinical symptoms of PBS are often determined only with diagnostic help, taking into
account the type of defect, its degree of severity and development. Symptoms appear
depending on the localization parameters and the number of affected valves [38]. Also, the
symptoms of acquired deficiency in a child may differ depending on the functional form
of the pathology. Symptoms of the pathology are not always detected at the initial stage
of the development of the pathology. Most often, the symptoms of the disease in a child
appear after a few months or years [39].

In newborns, heart disorder symptoms differ depending on the presence of a specific
anomaly, but these symptoms can be generalized. The main contribution of this research
paper is as follows:

• Planning for the baby’s treatment before they are born is essential. If the child has
been diagnosed with a congenital heart defect, the doctor plans the best treatment for
their condition based on the machine learning approach.

• The treatments may include open-heart surgery or a heart transplant. In some cases,
babies may need a catheter procedure instead of open-heart surgery if the defect is
not too severe. Catheter interventions are often used for mild heart defects. However,
it is required to predict severe heart problems, and open-heart surgery is usually
recommended with the help of a machine learning approach.

• After surgery, monitoring the health and seeing a CHD specialist is essential to ensure
the defect does not worsen or that other health problems do not develop. An artery
intervention may be necessary in the long term. These factors should be monitored
with the help of a machine-learning model [40]

Preterm neonates with CHD face ongoing risks, and their neurodevelopmental out-
comes are poorly understood. In this work, the researchers examine preterm birth rates
in CHD infants, emphasize their complex medical needs, and stress the importance of
evaluating outcomes beyond survival. They explore shared mechanisms of neurode-
velopmental impairment in CHD and prematurity, proposing future directions for im-
proved outcomes [41]. A total of 12,926,083 individuals (ages 3–18) from 86 studies
had a CHD prevalence of 4.69 per 1000 children. CHD prevalence decreased over time
from 6.19 to 3.30 per 1000 children. High-altitude areas had a higher CHD prevalence
(OR 2.84) with patent ductus arteriosus being the common subtype. Low-altitude areas
had an OR of 1.31 with atrial septal defects as the predominant subtype, which highlights
the importance of prioritizing high-altitude and economically underdeveloped areas in the
allocation of medical resources and healthcare for women and children in China [42].

Congenital heart defects affect many people worldwide, ranging from mild to severe
forms of the condition. It is essential for individuals with CHD problems to seek medical
care from a specialist as soon as possible in order to prevent long-term complications and
reduce the likelihood of developing other health issues.

2. Literature Review

A pathological classification of a routine nature divides CHD conditions into categories
depending on their impact on the child’s development. Unfortunately, in recent years, the
incidence of CHD in infants and premature infants has been increasing, and the anatomical
features of the disease are changing.

Edupuganti, M. et al. [21] discussed that persistent heart structure changes characterize
acquired defects in children and adolescents. The initial change is carried out during birth,
causing a disorder in the functioning of the heart (Eltahir, M.M. et al. [22]). In clinical
practice, acquired heart defects are classified in different ways. The stimulation of the
skin triggers the white type of CHD. It is characterized by the release of blood from an
arterial circulation into a venous one. White CHD is determined by open duct arteriosus
and isolated lesions of the aorta and septum. Katarya, R. et al. [23] discussed that blue-type
defects are visually distinguished by the cyanosis of the skin (persistent cyanosis) transfer
of large vessels. It is caused by a process where the aorta leaves the right ventricle, and the
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pulmonary artery, on the contrary, proceeds from the left. Nadakinamani, R.G. et al. [24]
expressed that the Fallot triad combines several disorders like narrowing the pulmonary
artery, ventricular septal defect, and aortic and right ventricular defects. These include the
right vena cava atresia, pulmonary artery, aorta, etc.

Tan, W. et al. [25] reported that Fetal echocardiography is a non-invasive method for di-
agnosing CHDs in fetuses. In recent years, machine learning methods have been developed
to create predictive models of newborn mortality associated with this condition. The ma-
chine learning approach using artificial neural networks has to minimize the risk of death
due to CHD. Hussain, L. et al. [26] expressed that the ANN prediction model was trained on
medical data sets and tested for accuracy in predicting the outcome of newborns suffering
from CHD. Nguyen BP further developed this approach by adding more machine learning
techniques such as genetic algorithms, Bayesian networks and support vector machines
to improve the accuracy of the predictive models. Al Ahdal, A. et al. [27] reported that
the preliminary computational results using these machine learning approaches showed
promising outcomes for neonatal and adult patients with hematologic malignancies. The
diagnosis model enabled accurate disease diagnosis by leveraging data from history using
machine learning techniques, leading to more accurate predictions of patients’ prognosis
and treatment options. Dritsas, E. et al. [28] expressed that screening tools and predictive
models can be used to identify risk groups for newborns suffering from CHD. These tools
allow for early detection, helping identify those at higher risk and providing appropriate
care. Ng, W. et al. [29] discussed that machine learning is also being used to develop a
risk index which can help in the present analysis of pregnancy and predict the possibility
of a newborn having CHD. This approach uses data from the mother’s health history,
ultrasound scans, and other factors to assess the risks associated with pregnancy accurately.

Balakrishnan, M. et al. [30] expressed that machine learning algorithms such as logistic
regression and decision trees can be used to analyze the data collected from maternal
laboratory tests, clinical laboratory data, and other studies predicting CHD. The results of
these predictive tools can be used to identify potential risk factors and create a set of results
predictors. Williams, R. et al. [31] expressed that applying CHD prediction using machine
learning techniques such as supervised learning, it is possible to develop predictive models
that can accurately predict CHD in newborns. This approach effectively reduced the
mortality rate of newborns suffering from CHD. Ravi, R. et al. [32] discussed that by using
the data obtained through laboratory tests combined with machine learning algorithms
such as logistic regression and decision trees, doctors can create accurate predictive models
to help them determine the likelihood of a baby being born with CHD. Pei, Y. et al. [33]
expressed that doctors can be better prepared for the postoperative complications that
may arise. Additionally, integrated patient data from various sources can be used to create
efficient machine learning models using ML algorithms to identify at-risk newborns before
birth. It can help reduce the intraoperative time needed to treat CHD, thus minimizing the
suffering of newborns with this congenital disability. Shishah, W. et al. [34] discussed that
by combining various models with clinical data collected during pregnancy and delivery,
doctors can develop more accurate models that could potentially prevent many congenital
disabilities in newborns. The machine learning classification approach can identify and
diagnose at-risk infants quickly, allowing doctors to take preventative measures early on.
Iscra, K. et al. [35] expressed that machine learning technology has been utilized to develop
predictive models for diagnosing newborns with CHD [43]. These models have been
applied to large datasets of neonatal ICU admissions and showed promising results in
terms of accuracy and speed of diagnostics [44]. It is particularly beneficial for newborns
suffering from CHD, as early detection allows for prompt repair or intervention, which can
help improve the chances of survival. The following Table 1 demonstrates the comparative
analysis of the related works.
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Table 1. Comparative analysis.

Authors Research Highlights

Edupuganti, M. et al. [21]
The acquired defects in children and adolescents are characterized by persistent changes in

the structure of the heart. The initial changes are carried out after the birth of a child, causing
a disorder in the functioning of the heart

Eltahir, M.M. et al. [22]
In clinical practice, acquired heart defects are classified in different ways. The white type of
CHD is triggered by stimulation of the skin. It is characterized by the release of blood from an

arterial circulation into a venous one

Katarya, R. et al. [23]
The blue-type defects are visually distinguished by cyanosis of the skin (persistent cyanosis)
transfer of large vessels. It is caused by a process where the aorta leaves the right ventricle,

and the pulmonary artery, on the contrary, proceeds from the left

Nadakinamani, R.G. et al. [24]
The Fallot triad is a combination of several disorders like narrowing of the pulmonary artery,
ventricular septal defect, aortic and right ventricular defects. These include right vena cava

atresia, pulmonary artery, aorta, etc.

Tan, W. et al. [25]
The Fetal echocardiography is a non-invasive method for diagnosing CHDs in fetuses. The

machine learning approach using artificial neural networks has to minimize the risk of death
due to CHD

Hussain, L. et al. [26] The ANN prediction model was trained on medical data sets and tested for accuracy in
predicting the outcome of the newborns suffering from CHD

Al Ahdal, A. et al. [27]
The diagnosis model enabled accurate disease diagnosis by leveraging data from history

using machine learning techniques, leading to more accurate predictions on patient’s
prognosis and treatment options

Dritsas, E. et al. [28]
The screening tools and predictive models are used to identify risk groups for newborns

suffering from CHD. These tools allow for early detection, helping to identify those at higher
risk and provide them with appropriate care

Ng, W. et al. [29] Machine learning is also being used to develop a risk index which can help in the present
analysis of pregnancy and predict the possibility of a newborn having CHD

Balakrishnan, M. et al. [30]
The machine learning algorithms such as logistic regression and decision trees can be used to
analyze the data collected from maternal laboratory tests, clinical laboratory data, and other

studies predicting CHD

Williams, R. et al. [31] Through CHD prediction using machine learning techniques such as supervised learning, it is
possible to develop predictive models that are able to accurately predict CHD in newborns

Ravi, R. et al. [32]
With data obtained through laboratory tests combined with machine learning algorithms such

as logistic regression and decision trees, it is possible for doctors to create accurate
predictive models

Pei, Y. et al. [33] Integrated patient data from a great variety of sources can be used to create efficient machine
learning models that use ML algorithms to identify at-risk newborns before their birth

Shishah, W. et al. [34] The machine learning classification approach can be used to identify at-risk infants and
diagnose them quickly, allowing doctors to take preventative measures early on

Iscra, K. et al. [35]

The machine learning technology has been utilized to develop predictive models for the
diagnosis of newborns with CHD. These models have been applied to large datasets of

neonatal ICU admissions and have shown promising results in terms of accuracy and speed
of diagnostics

2.1. Research Gap

Congenital heart disease (CHD) poses a substantial risk to newborns, resulting in
mortality. CHD refers to heart conditions present at birth which can lead to heart attacks and
blood pressure complications. If left untreated, the consequences can be fatal. Treatment
approaches for CHD encompass surgical procedures, medication, or a combination of both.
Detection of CHD often occurs after birth, as symptoms may be mild and become apparent
during periods of stress, such as viral illnesses. Addressing CHD presents challenges due
to the intricate nature of the heart and the associated risks involved in corrective surgeries.
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Moreover, treating CHD becomes even more complex when additional health problems are
present in affected infants.

2.2. Reseach Contribution and Novelty of the Work

This research study brings forth significant contributions and novel approaches to
address the vital issues surrounding congenital heart disease (CHD) and its impact on
newborn mortality. The researchers have made noteworthy strides in the following areas,
highlighting the uniqueness of research.

Prenatal care and early detection: The study emphasizes the fundamental importance
of prenatal care and early detection in improving outcomes for CHD. By shedding light
on the significance of better access to quality medical care and advancements in surgical
techniques, the researchers provide valuable insights for enhancing healthcare practices.
Furthermore, their recognition of the need for support and resources to assist families
affected by CHD showcases a comprehensive and holistic approach to addressing the
challenges faced by these individuals.

Deep learning (DL) prediction for accurate risk assessment: Researchers made a
distinctive contribution by harnessing the power of DL prediction, which outperforms
other existing methods in terms of accuracy. This breakthrough holds immense promise for
the field. Through the utilization of DL prediction, healthcare professionals can precisely
identify high-risk patients and tailor treatment strategies accordingly. This novel approach
ensures precise risk assessment and enables personalized care interventions, ultimately
leading to improved patient outcomes and optimized healthcare delivery.

Monitoring and prediction in diverse settings: The study illuminates the researchers’
pioneering work in utilizing DL prediction for monitoring patient progress and detecting
early signs of deterioration. Moreover, their demonstration of the effectiveness of DL
prediction in various healthcare settings, including those with limited resources, is a
remarkable achievement. This breakthrough has far-reaching implications for healthcare
providers, empowering them to effectively track patient health and predict outcomes,
thereby enhancing patient care and outcomes across diverse healthcare environments.

The unique contributions of this research lie in its innovative approaches to tackle
the challenges associated with CHD. By underscoring the importance of prenatal care,
introducing DL prediction for accurate risk assessment, and highlighting the applicability
of this approach in diverse healthcare settings, the researchers have made significant
advancements in the field. These contributions hold the potential to revolutionize CHD
management, save lives, and improve healthcare outcomes for newborns affected by
this condition.

3. Methodology

The pathology can usually be diagnosed in children through routine examinations.
A pediatrician who listens for extraneous sounds during auscultation of the heart makes a
referral to a pediatric cardiologist. The specialist prescribes the necessary tests and assigns
an accurate diagnosis. If a congenital heart defect is suspected during pregnancy, fetal
echocardiography is performed—an ultrasound examination of the fetus in the womb. The
proposed block diagram as shown in the following Figure 1.

The heart’s structure can be reasonably studied as early as ten weeks. Dilated echocar-
diography is performed in at-risk mothers. High-quality diagnostics can detect 60–80% of
CHD before birth. In addition to technical methods, the diagnosis of heart defects is based
on four required methods:

• Examination
• Rhythm (tapping)
• Palpation (probe)
• Auscultation (listening)

Heart defects are the most common cause of death in children under one year of age.
That is why learning about the disease and its symptoms is essential. After all, a timely
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visit to a specialist can save a child’s life. Perhaps the partner will not be confirmed, and the
parents’ fears will be in vain, but when it comes to the child’s health, it is better to play safe.
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3.1. Symptom Dataset

The dataset is listed in Ref. [45]; it is an open-source dataset. The dataset reports the
following: Systolic pressure is reduced, and diastolic pressure is normal or increased. With
aortic insufficiency, there are no complaints during compensation; sometimes, tachycardia
and a pulse behind the sternum are observed. In the stage of degeneration, angina pec-
toris occurs in the chest, in which nitroglycerin does not help sufficiently, and persistent
symptoms like dizziness, fainting, shortness of breath (at first with exertion, then at rest),
oedema, heavy or painful feeling under the ribs to the right are reported. Examination
revealed pulsation of the pallor, peripheral arteries, a rhythmic change in skin colour with
light pressure under the nails and lips, and head shaking synchronous with the pulse. The
pulse is accelerated and high. The systolic and pulse pressure are increased, and diastolic
pressure is decreased.

3.2. Preprocessing

Acquired heart disease in a child develops for many reasons. This disease affects
the heart valves, in which granulomas form in the stroma. In 75% of cases, rheumatic
endocarditis is responsible for rheumatic development. Connective tissue diseases spread.
Lupus erythematosus, scleroderma, dermatomyositis and other pathologies often cause
kidney and heart problems. Any powerful blows to the chest area can cause the develop-
ment of a defect. After operations already performed on the heart, for example, valvotomy,
complications can trigger the defect’s development. Atherosclerosis is a chronic disease of
the arteries and blood vessels in which atherosclerotic plaques begin to form on their walls.
Rarely, atherosclerosis also causes changes in the work and structure of the heart. This list
shows that if a child develops a heart defect, the reasons for this are very diverse, but it
is essential to at least detect them so that the prescribed treatment is efficient and more
effective. The initial dataset used for conventional heart disease prediction contained a
sample size of 407 patients and included 79 features. However, for the purpose of this study,
the sample size was reduced to 369 patients. The study focused on nine specific features,
which encompassed the monitored parameters relevant to heart disease prediction. These
parameters included sex, blood pressure, resting electrocardiogram (ECG), maximum heart
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rate, birth weight, weight at 4 weeks, weight difference between birth and 4 weeks, blood
oxygen saturation, and body temperature. In the dataset, systolic pressure is reduced, and
diastolic pressure is normal or increased. With aortic insufficiency, there are no complaints
during compensation; sometimes, tachycardia and a pulse behind the sternum are observed.
The following preprocessing has been performed:

(a) Missing value imputed by KNN: KNN operates by computing the distance or
similarity between data points to identify the most similar case within the dataset. This
nearest neighbor is subsequently used to replace the missing value, offering an estimated
value based on similar instances.

(b) Min_Max Normalization: In this method, each numerical feature value is converted
into a new value based on the minimum and maximum values of that specific feature.
By utilizing this approach, the feature values are rescaled to a common range, enabling
effective normalization and facilitating comparisons across different value ranges.

(c) One Hot Encoding: The process of One Hot Encoding involves breaking down a
categorical feature into a set of separate features based on the unique categories present.
The number of new features created corresponds to the number of distinct cases in the
original categorical feature. For each new feature, a value of 0 is assigned to indicate the
absence of a specific category, while a value of 1 represents the presence of that category.
This encoding technique enables categorical data to be represented in a format suitable for
machine learning algorithms to process effectively.

3.3. Classification

Different deep learning algorithms can be used for classification tasks, and the choice
of the best algorithm depends on the nature of the data and the desired outcome. When it
comes to predicting newborn mortality in CHD, popular algorithms include support vector
machines, decision trees, and artificial neural networks. Congenital malformation with
blockages refers to a condition where there are difficulties in adequately draining blood
from the ventricles. This condition can be classified into different types:

• Stenosis: This occurs when the aorta narrows in the region of the valve.
• Aortic consolidation: This refers to a pathology where the lumen in a specific area of

the aorta is narrowed or completely closed.
• Pulmonary stenosis: This is a disorder in which the outflow tract of the right ventricle

becomes narrow, obstructing blood flow into the pulmonary artery.

When choosing a deep learning algorithm for predicting newborn mortality in CHD,
it is crucial to consider the specific data used for training and testing. For example, if
the dataset is small, a more complex algorithm like support vector machines may not be
necessary. Conversely, if the dataset is extensive or contains a significant amount of noise,
a simpler algorithm such as a decision tree may struggle to learn the underlying patterns
effectively. Additionally, the desired outcome of the classification plays a significant role. If
the goal is to predict whether a newborn will die from CHD or not, a binary classification
algorithm would suffice. However, if the aim is to predict the severity of the disease, a
multi-class classification algorithm would be required. By carefully considering the dataset
and desired outcome, one can compare different deep learning algorithms and select the
most suitable one for the task.

3.4. Detection

For this task, we use a dataset of CHD cases from the US National Institutes of Health.
This dataset includes information on demographics, risk factors, and outcomes for many
patients. It builds a DL model to predict the probability of mortality for each patient in
the dataset. It uses a multi-layer perception with input features, including demographics,
risk factors, and outcomes. The DL model is trained and tested on the NIH dataset. We
compare the results of our model to other predictive models for this task and discuss the
implications of our findings. Symptoms of heart disease in children, observed by parents
and pediatricians, are not yet the basis of a diagnosis. As mentioned above, it is also
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found in healthy children, so it cannot do without an ultrasound. An echocardiogram
may show signs of left ventricular overload. In addition, a chest X-ray may be required,
which shows changes in the heart and signs of deviation of the esophagus. After that, the
matter of whether the child is sick or healthy can finally be discussed. Unfortunately, ECG
cannot help diagnose heart disease in the early stages. The changes in the cardiogram are
significant when the disease is already actively progressing.

4. Proposed Model

Machine learning is a powerful tool that can be used to build models that can accurately
predict the risk of newborn mortality due to CHD. These models can identify babies at risk
of developing complications and provide timely interventions to reduce mortality rates.
The models can also be used to identify trends and patterns in health data to inform better
public health strategies to reduce the incidence of CHD. Furthermore, machine learning
can be used to develop personalized treatments for patients, improving the efficacy of
treatments and reducing mortality rates. A machine learning approach to predict newborn
mortality suffering from CHD would involve using a supervised learning algorithm. The
structure of the proposed algorithm is shown in the following Algorithm 1. This algorithm
is trained using historical data on the mortality rates of newborns with CHD, as well as
other factors such as gestational age, birth weight, and maternal health history.

Algorithm 1. Cardiac deep learning algorithm

// Get MRI image samples and set the range;
Input: Ain; Output: Aout;
// Segment the images;
For each cluster pair (Ax_in, Ay_in)

If min(Ax_in, Ay_in) × |Qx_in−Qy_in|
Then merge Ax_in, Ay_in into Az;

//Feature extraction;
AZi = AZx_in + AZy_in;

Qi = (AZx_in × Qx_in) + (AZy_in × Qy_in)/(AZx_in + AZy_in);
//Preprocessing of samples;

Where Ain is the x × y matrix;
For I = 1:x
For j = 1:y
If (Ain(x,y) < 0
Ain_s = 1;
Else
Ain_s = 0;

End;

The algorithm is then used to make predictions of newborn mortality based on new
data points, such as a newborn’s particular CHD diagnosis. By making predictions based
on historical data, the algorithm can help doctors make more informed decisions about
caring for a newborn with a CHD diagnosis. The algorithm provided is designed to process
MRI image samples. It involves several key steps to transform the input data into a desired
output. First, the images are segmented, combining certain clusters based on predefined
conditions. Then, features are extracted from the clusters, producing new values for further
analysis. The algorithm also includes a preprocessing step, where each element in the
input matrix is evaluated and assigned a specific value based on certain conditions. This
helps prepare the samples for subsequent stages. Overall, this algorithm offers a structured
approach to analyzing MRI images, allowing for improved understanding and utilization
of the data.

The description for the above proposed flow diagram in Figure 2 is given below:
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(1) MRI Image Input: The first step involves feeding MRI cardiac images into the
CDLM system. These images provide detailed information about the structure and func-
tioning of the heart.

(2) Cardiac structure segmentation: CDLM performs segmentation to accurately
outline the boundaries of various cardiac structures in the MRI images. This ensures that
only relevant regions of the heart are considered for further analysis.

(3) Feature extraction: Once the cardiac structure is segmented, the CDLM system
extracts relevant features from the segmented regions. These features could include
shape, size, texture, and other measurable characteristics that provide insights into CHD
risk factors.

(4) CHD Dataset and Pathology-based Sampling: CDLM utilizes a CHD dataset
containing information about individuals with CHD and their clinical outcomes. Pathology-
based sampling is employed to select appropriate samples from the dataset, representing a
diverse range of CHD cases and outcomes.

(5) Hyperparameter Tuning: CDLM optimizes its performance by adjusting hyper-
parameters such as learning rate, batch size, and network architecture. This fine-tuning
process aims to improve the model accuracy and generalization capabilities.

(6) Heart Disease Classification: The CDLM model employs deep learning tech-
niques to classify heart disease based on the extracted features and the selected CHD
dataset. It learns patterns and relationships to determine the risk factors associated with
CHD mortality.

(7) Treatment Suggestion: Based on the classification results, the CDLM system pro-
vides treatment suggestions or recommendations. These may include personalized treat-
ment plans, lifestyle modifications, or interventions to mitigate the identified risk factors.
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5. Analytical Discussion

In recent years, DL has emerged as a powerful tool for predictive modeling, providing
state-of-the-art results in various domains. In this work, we explore the use of DL to predict
newborn mortality in CHD. Congenital anatomical defects develop in the womb. In total,
6–8 babies out of 1000 newborns are born with defects. Even if the pregnancy usually
continues and all the necessary tests are passed, the baby should be carefully examined
after birth. Signs and symptoms of congenital heart defects in young children that can alert
the child’s parents include:

• Heart murmur: The doctor may hear a characteristic sound when listening to the
baby’s heart. In this case, echocardiography should be performed to exclude the defect.

• Weight gain: If the baby receives enough nutrition in the first months of life, but
the weight gain does not exceed 400 g, it is worth arranging an appointment with
a pediatrician.

• Shortness of breath: Fatigue may occur during feeding; the child eats a little, but most
of the time. A pediatrician should address shortness of breath, and a referral to a
cardiologist should be arranged.

• Tachycardia: On follow-up testing, the doctor may detect a rapid heartbeat.
• Cyanosis: The baby’s lips, heels, and fingertips turn blue. This may indicate a lack of

oxygen in the blood due to a defect in the cardiovascular system.

The LaGrange function for CHD detection is considered with the different segment
parts of the MRI images. These are all expressed in Equation (1).

f (a) = sign(µa + e), (1)

where a indicates the accurate identification of region in MRI input images, µ is the hyper-
plane normalized weight vector. The value of µ is obtained in Equation (2).

µ =
∞

∑
i=1

ai ∗ bi ∗ zi. (2)

Meanwhile, the values of e can obtained as the following Equations (3) and (4).

e = bi − µq ∗ ai, (3)

bi(µ
q ∗ ai + e) ≥ 1; i = 1, 2, . . . , N; . (4)

Normalization error is minimized, and we the following Equation (5) is obtained:

W(µ, e, a) =
1
2

µq ∗ µ ∗ bi(µ
q ∗ ai + e) ≤ 1; i = 1, 2 . . . , N; , (5)

W(µ, e, a) =
1
2

µq ∗ µ + ∑
i=1

ai(1− bi ∗ µqei). (6)

By including the stack vector value µ in the Equation (6), we can obtain the acute
cardiac arrest details:

bi(µ
q ∗ ai + e) ≥ 1− β; i = 1, 2, . . . , N; (7)

Hence, we obtain the received prediction in Equation (8).

A
(
ai, aj

)
= exp

(
−

ai − aj
2

2µ2

)
= exp

(
−βai − aj

2
)

, (8)

e = bi −∑j αjbjX
(
aj, ai

)
∀i; αi > 0, (9)

∑i ei −
1
2 ∑i,j eiejbibjX

(
ai, aj

)
s.t. ∑i αibi = 0′ . (10)

The binary classification issues are resolved with the following Equation (11):

µTa + e = ∑i αibiX(ai, a) + e. (11)
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There is much potential for DL models to help improve outcomes for newborns with
CHD. One promising area is using these models to predict mortality due to this condition.
Currently, there are several limitations to using DL models for this purpose. More data on
CHD need to be collected, which currently makes it challenging to train effective models.
Most existing data are retrospective and may not represent the general population of
newborns with this condition. The DL models require much data to be effective, and
collecting enough data on individual patients with CHD is often tricky. Despite these
limitations, DL models promise to improve outcomes for newborns with CHD. With more
data and better algorithms, these models could be used to predict mortality due to this
condition and help guide decisions about treatment.

6. Comparative Analysis

A comparative analysis of CHD prediction models should analyze the performance
of different models for predicting CHD in a given population. This can be achieved by
comparing each model’s accuracy, sensitivity, specificity, positive predictive value, and
negative predictive value, as well as any other relevant performance metrics. The compar-
ative analysis should also consider the cost of each model, the time required to develop
and implement the model, and the ease of use or complexity. Finally, the analysis should
consider any other factors that might be important to consider, such as the availability
of data to train and test the models, the generalizability of the results, and the scalability
of the model. The proposed cardiac DL model (CDLM) has been compared with the ex-
isting Novel healthcare framework (NHF), Decision Support System for Early Prediction
(DSSEP), Machine Learning-Based Discharge Prediction (MLBDP), and Predictive Analysis
of Congenital Heart Defects (PACHD). Here, the Matlab r2022a is the simulation tool used
to execute the results.

6.1. Computation of Sensitivity (Se)

The sensitivity of CHD prediction is the ability of a test or procedure to identify those
with the disease accurately. It is usually expressed as a percentage and is calculated by
dividing the number of true positives by the total number of people with the disease.
A higher sensitivity indicates a more accurate test or procedure. The computation of
sensitivity is shown in the following Equation (12),

Se =

(
Tp

Tp + Fn

)
, (12)

where Se indicates the sensitivity of the CHD prediction, Tp represents the optimistic ac-
curate prediction, and Fn indicates the pessimistic false prediction. Table 2 expresses the
sensitivity Evaluation between the existing Novel healthcare framework (NHF), Decision
Support System for Early Prediction (DSSEP), Machine Learning Based Discharge Predic-
tion (MLBDP), Predictive Analysis of Congenital Heart Defects (PACHD) and the proposed
cardiac DL model (CDLM).

Table 2. Evaluation of sensitivity (in %).

No. of Images NHF DSSEP MLBDP PACHD CDLM

100 68.63 78.12 67.94 64.60 93.87

200 68.30 76.62 67.35 62.73 92.86

300 66.96 75.51 66.37 61.90 92.70

400 65.82 75.13 65.16 60.99 91.74

500 64.77 74.12 64.02 60.07 92.17

600 64.06 73.19 62.91 58.74 90.97

700 62.76 72.19 62.21 57.66 90.81
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Figure 3 shows the Evaluation of sensitivity in various input images. In an Evaluation
circle, the existing Novel healthcare framework (NHF) reaches 65.82%, Decision Support
System for Early Prediction (DSSEP) obtains 75.13%, Machine Learning Based Discharge
Prediction (MLBDP) reaches 65.16%, and Predictive Analysis of Congenital Heart Defects
(PACHD) obtains 60.99% of sensitivity. The proposed cardiac DL model (CDLM) achieves
91.74% sensitivity. There is a great deal of sensitivity when it comes to predicting CHD.
The condition can be caused by several factors, many of which are not yet fully understood.
It means that even the most experienced medical professionals sometimes struggle to
accurately determine diagnosis. It can be highly frustrating for parents worried about their
child’s health. It is important to remember, however, that even though the prediction may
not be 100% accurate, it can still help doctors determine what to look for and ways to treat
the condition.
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6.2. Computation of Specificity (Sp)

The specificity of CHD prediction is the probability that a positive test result correctly
indicates a CHD’s presence. It is typically expressed as a percentage and is calculated by
dividing the number of accurate positive results by the total number of positive results.
The computation of specificity is shown in the following Equation (13):

Sp =

(
Tn

Tn + Fp

)
, (13)

where Sp indicates the specificity of the CHD prediction, Tn represents the true pessimistic
prediction, and Fp indicates the optimistic false prediction. Table 3 expresses the specificity
evaluation between the existing Novel healthcare framework (NHF), Decision Support Sys-
tem for Early Prediction (DSSEP), Machine Learning-Based Discharge Prediction (MLBDP),
Predictive Analysis of Congenital Heart Defects (PACHD) and the proposed cardiac DL
model (CDLM).

Figure 4 shows the evaluation of specificity in various input images. In an evaluation
circle, the existing Novel healthcare framework (NHF) reaches 68.12%, Decision Support
System for Early Prediction (DSSEP) obtains 77.43%, Machine Learning Based Discharge
Prediction (MLBDP) reaches 61.76%, and Predictive Analysis of Congenital Heart Defects
(PACHD) obtains 58.25% of specificity. The proposed cardiac DL model (CDLM) achieves
92.65% specificity. The specificity of CHD prediction refers to the ability to accurately
identify individuals who do not have the condition. It is typically measured in terms of
the percentage of false-positive results or the number of individuals incorrectly identified
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as having the condition when they do not. Higher specificity is desirable for diagnostic
testing, as it reduces the risk of misdiagnosis or unnecessary treatments. Specificity can be
improved by using more advanced techniques, such as genetic testing, imaging techniques,
or biomarker analysis.

Table 3. Evaluation of specificity (in %).

No. of Images NHF DSSEP MLBDP PACHD CDLM

100 70.93 80.42 64.54 61.86 94.78

200 70.60 78.92 63.95 59.99 93.74

300 69.26 77.81 62.97 59.16 93.61

400 68.12 77.43 61.76 58.25 92.65

500 67.07 76.42 60.62 57.33 93.08

600 66.36 75.49 59.51 56.00 91.84

700 65.06 74.49 58.81 55.13 91.73
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6.3. Computation of Positive Prediction Value (PPV)

The Positive prediction value (PPV) measures the accuracy of a test to identify those
with a disease correctly. It is calculated by dividing the number of accurate positive tests
(correctly identified as having the disease) by the total number of positive tests (true and
false positives). In the case of CHD prediction, PPV would be the proportion of correctly
identified cases of CHD divided by the total number of cases predicted to have CHD. The
computation of the positive predictive value is shown in the following Equation (14):

PPV =

(
Tp

Tp + Fp

)
, (14)

where the PPV indicates the positive predictive value of the CHD prediction, Tp represents
the optimistic accurate prediction, and Fp indicates the false positive prediction. Table 4
expresses the positive prediction value evaluation between the existing Novel healthcare
framework (NHF), Decision Support System for Early Prediction (DSSEP), Machine Learn-
ing Based Discharge Prediction (MLBDP), Predictive Analysis of Congenital Heart Defects
(PACHD) and the proposed cardiac DL model (CDLM).
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Table 4. Evaluation of positive prediction value (in %).

No. of Images NHF DSSEP MLBDP PACHD CDLM

100 69.67 88.16 72.10 60.30 94.04

200 68.04 86.42 70.52 58.88 92.75

300 67.56 84.08 68.32 57.62 91.74

400 66.27 83.27 66.69 55.63 90.85

500 64.16 80.98 65.55 53.16 90.48

600 62.67 79.05 63.35 51.72 89.44

700 60.86 77.32 62.20 50.00 88.67

Figure 5 shows the evaluation of positive predictive value in various input images.
In an evaluation circle, the existing Novel healthcare framework (NHF) reaches 66.27%,
Decision Support System for Early Prediction (DSSEP) obtains 83.27%, Machine Learning
Based Discharge Prediction (MLBDP) reaches 66.69%, and Predictive Analysis of Congenital
Heart Defects (PACHD) obtains 55.63% of positive predictive value. The proposed cardiac
DL model (CDLM) achieves a 90.85% positive prediction value. The optimistic prediction
value (PPV) of CHD prediction is the proportion of patients with a positive test result for
CHD correctly identified. It is calculated as the number of true positives divided by the
sum of true and false positives. A higher PPV indicates a higher accuracy in the test used
to predict CHD.
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6.4. Computation of Negative Prediction Value (NPV)

The pessimistic prediction value of CHD prediction is the probability that a person
does not have CHD, given that a test result is negative. It is calculated by dividing the
number of true negatives (people who do not have the disease and whose test results are
negative) by the total number of people who tested negative. The computation of the
negative prediction value is shown in the following Equation (15):

NPV =

(
Tn

Tn + Fn

)
, (15)

where the NPV indicates the negative predictive value of the CHD prediction, Tn represents
the accurate pessimistic prediction, and Fn indicates the false negative prediction. Table 5
expresses the negative prediction value evaluation between the existing Novel healthcare
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framework (NHF), Decision Support System for Early Prediction (DSSEP), Machine Learn-
ing Based Discharge Prediction (MLBDP), Predictive Analysis of Congenital Heart Defects
(PACHD) and the proposed cardiac DL model (CDLM).

Table 5. Evaluation of negative prediction value (in %).

No. of Images NHF DSSEP MLBDP PACHD CDLM

100 79.56 84.06 71.94 94.04 59.29

200 78.07 82.09 69.52 94.05 57.09

300 77.27 80.96 69.11 92.85 56.29

400 74.94 79.77 67.51 92.37 55.62

500 73.93 79.38 65.19 90.94 54.19

600 73.29 77.86 63.94 89.78 53.10

700 72.63 77.62 61.21 89.01 52.62

Figure 6 shows the evaluation of negative predictive value in various input images.
In an evaluation circle, the existing Novel healthcare framework (NHF) reaches 74.94%,
Decision Support System for Early Prediction (DSSEP) obtains 79.77%, Machine Learning
Based Discharge Prediction (MLBDP) reaches 67.51%, and Predictive Analysis of Congenital
Heart Defects (PACHD) obtains 92.37% of negative prediction value. The proposed cardiac
DL model (CDLM) achieves a 55.62% negative prediction value. The pessimistic prediction
value of CHD prediction is the percentage of patients who tested negative for the disease
but were falsely diagnosed. This number is essential to understand how reliable the test is
in accurately predicting the presence of the disease.
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6.5. Computation of Miss Rate (Rm)

The miss rate of CHD prediction is the percentage of instances where the prediction is
incorrect. This rate is typically calculated by dividing the number of incorrect predictions
by the total number of predictions made. The computation of the miss rate value is shown
in the following Equation (16),

Rm =

(
Fn

Fn + Tp

)
. (16)

where the Rm indicates the miss rate value of the CHD prediction, Fn represents the
pessimistic false prediction, and Tp indicates the optimistic accurate prediction. Table 6
expresses the miss rate Evaluation between the existing Novel healthcare framework (NHF),
Decision Support System for Early Prediction (DSSEP), Machine Learning Based Discharge
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Prediction (MLBDP), Predictive Analysis of Congenital Heart Defects (PACHD) and the
proposed cardiac DL model (CDLM).

Table 6. Evaluation of miss rate (in %).

No. of Images NHF DSSEP MLBDP PACHD CDLM

100 71.05 87.69 74.45 63.49 93.88

200 71.16 87.67 74.62 63.76 94.38

300 71.18 86.79 73.89 63.46 94.26

400 68.08 83.96 70.55 59.95 91.03

500 66.88 82.64 69.82 58.63 90.65

600 66.27 81.81 68.93 58.09 90.08

700 65.86 81.41 68.85 57.79 90.38

Figure 7 shows the evaluation of the miss rate in various input images. In an eval-
uation circle, the existing Novel healthcare framework (NHF) reaches 68.08%, Decision
Support System for Early Prediction (DSSEP) obtains 83.96%, Machine Learning Based
Discharge Prediction (MLBDP) reaches 70.55%, and Predictive Analysis of Congenital Heart
Defects (PACHD) obtains59.95% of miss rate. The proposed cardiac DL model (CDLM)
achieves a 91.03% of miss rate. The miss rate of CHD prediction measures how often a
predicted diagnosis of CHD is incorrect. It is calculated by dividing the number of incorrect
predictions by the total number of predictions made. The lower the miss rate, the more
accurate the predictions are. Miss rates are typically expressed as a percentage. Table 7
shows the overall evaluation between the existing and the proposed models.
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Diagnostics 2023, 13, 2195 18 of 21

Figure 8 shows the overall evaluation between the existing and proposed models. In
an Evaluation circle, the proposed cardiac DL model (CDLM) achieves 91.74% of sensitivity,
92.65% of specificity, 90.85% of positive prediction value, 55.62% of negative prediction
value and 91.03% of miss rate. The results of comparative analysis can provide a compre-
hensive view of the genetic risk factors associated with CHD, allowing for a more accurate
prediction of the disease. It can also reveal the potential for new treatments and uncover
previously unknown genetic risk factors for the disease. The results of the comparative
analysis allow for a greater understanding of the complex interaction between genes and
environment, which can help to explain why specific individuals are more susceptible to
developing the disease than others. It can also provide valuable insights into the biological
pathways that lead to CHD’s development and help identify new targets for therapeutic
interventions. It is a cost-effective tool for predicting and preventing CHD, as it can be
performed quickly and easily with existing genetic data.
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7. Conclusions

Congenital heart disease can also affect the valves that control blood flow through
the heart or the arteries and veins that carry blood to and from the heart. Sometimes, the
heart may be unable to pump enough blood to meet the body’s needs. CHD can be treated
with surgery, medication, or both. In some cases, the heart may be able to repair itself.
However, many babies with CHD need lifelong treatment. Machine learning can improve
the accuracy of imaging techniques used to diagnose CHD. By training a machine learning
model to detect the presence of CHD, healthcare providers can more accurately diagnose
the condition and provide appropriate care. The proposed cardiac DL model (CDLM)
achieves 91.74% of sensitivity, 92.65% of specificity, 90.85% of positive prediction value,
55.62% of negative prediction value and 91.03% of miss rate. Overall, machine learning has
the potential to reduce newborn mortality suffering from CHD significantly. By developing
models to identify risk factors associated with mortality and providing early detection
and intervention, healthcare providers can ensure that high-risk infants receive the care
they need to survive. In addition, the proposed machine learning can be used to develop
predictive models that accurately identify newborns with CHD at risk of mortality. These
models could then be used to alert healthcare providers of possible high-risk cases so that
they can provide appropriate care early, thus potentially reducing mortality rates.
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