
Citation: Escobar-Grisales, D.;

Ríos-Urrego, C.D.; Orozco-Arroyave,

J.R. Deep Learning and Artificial

Intelligence Applied to Model Speech

and Language in Parkinson’s Disease.

Diagnostics 2023, 13, 2163. https://

doi.org/10.3390/diagnostics13132163

Academic Editor: Frank Weber

Received: 26 May 2023

Revised: 16 June 2023

Accepted: 18 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Deep Learning and Artificial Intelligence Applied to Model
Speech and Language in Parkinson’s Disease
Daniel Escobar-Grisales 1,† , Cristian David Ríos-Urrego 1,† and Juan Rafael Orozco-Arroyave 1,2,*

1 GITA Lab, Faculty of Engineering, University of Antioquia, Medellín 050010, Colombia;
daniel.esobar@udea.edu.co (D.E.-G.); cdavid.rios@udea.edu.co (C.D.R.-U.)

2 LME Lab, University of Erlangen, 91054 Erlangen, Germany
* Correspondence: rafael.orozco@udea.edu.co
† These authors contributed equally to this work.

Abstract: Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder in
the world, and it is characterized by the production of different motor and non-motor symptoms
which negatively affect speech and language production. For decades, the research community has
been working on methodologies to automatically model these biomarkers to detect and monitor
the disease; however, although speech impairments have been widely explored, language remains
underexplored despite being a valuable source of information, especially to assess cognitive impair-
ments associated with non-motor symptoms. This study proposes the automatic assessment of PD
patients using different methodologies to model speech and language biomarkers. One-dimensional
and two-dimensional convolutional neural networks (CNNs), along with pre-trained models such
as Wav2Vec 2.0, BERT, and BETO, were considered to classify PD patients vs. Healthy Control (HC)
subjects. The first approach consisted of modeling speech and language independently. Then, the best
representations from each modality were combined following early, joint, and late fusion strategies.
The results show that the speech modality yielded an accuracy of up to 88%, thus outperforming all
language representations, including the multi-modal approach. These results suggest that speech
representations better discriminate PD patients and HC subjects than language representations.
When analyzing the fusion strategies, we observed that changes in the time span of the multi-modal
representation could produce a significant loss of information in the speech modality, which was
likely linked to a decrease in accuracy in the multi-modal experiments. Further experiments are
necessary to validate this claim with other fusion methods using different time spans.

Keywords: Parkinson’s disease; natural language processing; speech processing; convolutional
neural networks; Wav2Vec; word embeddings

1. Introduction
1.1. Motivation

Neurodegenerative diseases are the leading cause of disability and the second cause of
death worldwide. Parkinson’s disease (PD) is the second most prevalent neurodegenerative
disorder worldwide after Alzheimer’s disease [1]. PD is characterized by different motor
and non-motor symptoms, such as bradykinesia, rigidity, cognitive decline, sleep disorders,
and others [2].

About 90% of PD patients develop speech disorders [3], which makes speech anal-
ysis a very good biomarker to assess and monitor the disorder. The speech symptoms
suffered by PD patients are known as hypokinetic dysarthria. This type of dysarthria
appears as the result of losing movement control of the muscles and limbs involved in the
speech production process. It affects different dimensions of speech production, includ-
ing respiratory, phonatory, articulatory, and prosodic dimensions [4,5]. All these factors
also affect the intelligibility of patients, as well as limit their quality of life and effective
communication [6,7].
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Regarding non-motor symptoms developed by PD patients, they range from mood
disorders to depression. These symptoms can be modeled using the information of lan-
guage [8], facial expressions [9], and others. This study focuses on modeling speech and
language to evaluate motor and non-motor aspects that are affected due to PD. Although
few studies consider language in PD, recent advances have shown that different cognitive
impairments, which are reflected in language production, are associated with PD [10]. Sim-
ilarly, different neurological analyses show that action verb processing depends on motor
brain circuits, including the basal ganglia. Therefore, the damage of these regions or net-
works has been hypothesized to yield differential deficits in processing action verbs [11,12].
Additionally,deficits in verb inflection [13], verbal fluency [14], and verb generation, have
been studied in PD [15,16]. In addition, other scientists have connected language deficits to
working memory and executive function [17]. There is also evidence showing that syntaxis
is also affected in PD [18].

1.2. Literature Review in Speech Analysis for PD Evaluation

The scientific community has addressed different approaches based on speech signals
and deep learning architectures. In 2019, two frameworks based on CNNs to classify
PD using sets of vocal features were proposed in [19]. The first one combined different
feature sets before feeding the CNN (feature-level fusion), and the second one passed the
feature sets through the parallel input layers, which were directly connected to convolution
layers (model-level fusion). The frameworks were trained and evaluated with the UCI
Machine Learning repository database, which consists of vocal features extracted from
sustained phonations of the vowel /A/ produced by 188 PD patients and 64 HC subjects.
Experimental results showed that the second framework worked best, where it yielded an
accuracy of 86.9%. Later, in [20], the authors proposed a methodology based on different
pre-trained convolutional neural networks (CNNs) such as ResNet-18, ResNet-50, and
ResNet-101. A long short-term (LSTM) network was also evaluated. All architectures
were fed with mel spectrograms obtained from the speech signals of a corpus called
PC-GITA [21], which were collected from a total of 100 speakers (50 of them with PD).
The highest classification performance reported by the authors was obtained from the
ResNet-101 + LSTM model, with an accuracy of 98.61%. Unfortunately, the results were
over-optimistic, because the hyper-parameters were optimized on the test set. Speaker
independence was not declared in the paper. Additionally, in 2021, the authors in [22] used
bidirectional LSTMs and followed the paradigm originally proposed in [23] to model the
energy in the onset and offset transitions and to encode relevant articulatory information in
dysarthric speech. The study considered recordings collected at the GYENNO SCIENCE PD
Research Center (https://www.gyenno.com/aboutUs/introduce-en (accessed on 21 June
2023)), which include 15 HC subjects and 30 PD patients. The authors showed that accuracy
was improved compared to classical approaches. Recently, the same authors presented
a study in [24] and considered recordings from the PC-GITA database, together with the
ones collected in the GYENNO SCIENCE PD Research Center. The authors implemented a
model that combined 1D-CNN and 2D-CNN to capture time and frequency information,
and they reported accuracies of 92% and 81% for each database, respectively.

1.3. Literature Review in Language Analysis for PD Evaluation

Language has been less studied in PD patients; however, some works have reported
different patterns associated with PD. About seven years ago, in [15], the authors evaluated
the impact of PD on spontaneous discourses produced by a group of 50 PD patients and
50 HC subjects. Three feature sets were considered: semantic fields (via latent semantic
analyses), grammatical (using parts-of-speech tagging), and word-level repetitions (with
graph embedding tools). The grammatical features achieved the best classification results,
with accuracies of 75% using a KNN classifier. In addition, a linear model was estimated
using the word-level repetition features. The authors reported a Pearson’s correlation
coefficient of 0.77 between the predicted scores and the MDS-UPDRS-III scores. Four
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years later, in [18], the authors extracted features such as the morpheme frequencies in a
specific category, morpheme lengths, and others. Morphological features were used to
model language produced by speakers of three different languages: Spanish, German, and
Czech. The Spanish corpus contained 50 PD patients and 50 HC subjects, the German one
had a total of 176 speakers (88 with PD), and the Czech corpus consisted of 36 subjects
(20 with PD). All subjects were asked to describe a typical day in their life, and manual
transcriptions were generated to proceed with language analyses. The authors trained
a support vector machine (SVM) with a linear kernel following a leave-one-out cross-
validation (LOOCV) and reported accuracies of 71% to classify between PD patients and
HC subjects in Spanish and German. For the Czech cohort, the accuracy was 80%. The
authors also estimated the neurological states of the patients and evaluated their models
with the Pearson’s correlation coefficient computed between the estimated values and
the labels assigned by expert neurologists according to the third section of the Movement
Disorders Society - Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III) score [25].
The highest correlation was found for the Czech data, with r = 0.61, while, for Spanish and
German data, the results were 0.35 and 0.26, respectively.

On the other hand, deep learning architectures have also been considered for mod-
eling language patterns in patients with PD. In [26], transliterations of the monologue
task of the PC-GITA corpus were used to classify PD patients and HC subjects. Popular
natural language processing (NLP) methods, such as Word2Vec (W2V) [27], Bag of Words
(BoW) [28], and Term Frequency–Inverse Document Frequency (TF–IDF) [29], were used to
create numerical representations from transliterations. An SVM was used as a classifier,
and accuracies of up to 72% were obtained using the W2V approach. In [30], 1D-CNN
and bidirectional LSTMs were proposed to model the linguistic content of PD patients
when typing different sentences. First, the authors obtained the numerical representation of
each character using an adaptation of the continuous BoW method [27]. The embeddings
resulting from each sentence were used as inputs for the 1D-CNN. The approach was tested
in Spanish and English, and the results showed AUCs of up to 0.8% and 0.7%, respectively.
Recently, the authors in [31] presented the Proximity to Reference Semantic Field (P-RSF)
metric, which was used to weight action and non-action concepts included by 80 partic-
ipants (40 of them with PD) while retelling action and non-action stories. Accuracies of
85% and 43% were obtained with each story, respectively, thus indicating that retelling
action stories is a more sensible task to detect PD patients than other tasks where the
action/non-action paradigm is not taken into account. A summary with recent studies that
consider speech and language analyses for PD detection and evaluation is presented in
Table 1.

1.4. Contribution of This Study

This work is in line with the interest of the scientific community in evaluating and
understanding PD and its related symptoms by means of modeling speech and language
biomarkers. The following are the main contributions of this paper:

(i) Speech recordings were modeled using different modern methods based on deep
learning architectures, including representations extracted from the Wav2Vec 2.0
model, as well as 1-dimensional and 2-dimensional CNNs, which were all originally
proposed in this paper.

(ii) Transliterations of the recordings were modeled using different strategies to represent
language patterns, including models such as W2V, BERT, and BETO. We introduced
an original method based on CNNs adapted to NLP to consider different n-gram
relationships/contexts among the words.

(iii) The best representations from each modality were combined using three different
fusion strategies; namely, these were early, joint, and late fusion.

The rest of the paper is structured as follows: Section 2 describes the corpora and the
methods used in the study. Section 3 presents the experiments and results, and, finally,
Section 4 contains the conclusions and future work.
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Table 1. Summary of recent studies in speech and language analysis for PD detection and evaluation.
DB: Database. Acc: Accuracy. AUC: Area under the ROC curve.

Ref. Datasets Features/Representation ML/DL Models Validation Results

Speech analysis

[20] 50 PD–50 HC Mel spectrograms 2D-CNNs and LSTMs Cross-validation:
10 folds

Acc: 98.6%

[24] DB1: 30 PD–15 HC
DB2: 50 PD–50 HC

Mel spectrograms 1D-CNNs and 2D-CNNs Training, validation,
test split

DB1 Acc: 81.6%
DB2 Acc: 92.0%

[22] 30 PD–15 HC MFCCs and Bark
band energies

Bidirectional LSTMs Cross-validation:
10 folds

Acc: 84.3%

[19] 188 PD–64 HC Tunable Q-factor and time
frequency wavelet transform;
MFCCs and vocal fold features

1D-CNNs in parallel Leave-One-Person-Out
cross-validation

Acc: 85.7%

[32] 400 PD–400 HC Perceptual linear
predictive coefficients

Gaussian mixture
models

Cross-validation:
5 folds

AUC: 0.95

Language analysis

[31] 40 PD–40 HC P-RSF metric SVM Cross-validation:
10 folds

Acc: 85.0%

[26] 50 PD–50 HC W2V, BoW
TF-IDF

SVM Cross-validation:
10 folds

Acc: 72.0%

[33] 88 PD–88 HC Morphological features SVM Leave-One-Out
cross validation

Acc: 81.0%

[18] Spanish: 91 PD–57 HC
German: 88 PD–88 HC
Czech: 20 PD–16 HC

Morphological features LR
SVM
SGD

Leave-One-Out
cross-validation

Spanish Acc: 71.0%
German Acc: 71.0%
Czech Acc: 80.0%

[15] 51 PD–50 HC Semantic fields;
Grammatical
word-level repetitions

KNN Leave-One-Out
cross-validation

Pearson’s
correlation: 0.77

[30] Spanish: 11 PD–9 HC
English: 16 PD–25 HC

Continuous BoW 1D-CNN
Bidirectional-LSTM

Cross-validation:
5 folds

Spanish AUC: 0.7
English AUC: 0.8

2. Materials and Methods
2.1. Data

The database considered in this study includes 165 Colombian Spanish native speakers,
wherein 80 of them suffer from PD. All speakers were matched in age and gender, and
each participant was asked to describe a regular day in his/her life for approximately
90 s. Speech recordings were collected at a sampling frequency of 44.1 kHz and 16-bit
resolution. The recordings were normalized using a GSM full-rate compression technique
and down-sampled to 8 kHz [34]. All patients were recorded in an on state during the
session, i.e., no more than three hours after the medication intake. A neurologist expert
evaluated every PD patient to determine the disease severity according to the MDS-UPDRS-
III. Table 2 shows the demographic and clinical information of the speakers. Figure 1
shows the distribution of the number of words in the transliterations generated using the
Amazon transcribe service for HCs and PD patients. Both distributions followed the same
distribution according to the Mann–Whitney test, with a confidence level of α = 0.01.

Table 2. Clinical and demographic information of the subjects included in this work. [F/M]: Fe-
male/Male. Values are reported in terms of mean ± standard deviation.

PD Patients HC Subjects PD vs. HC

Gender [F/M] 38/42 43/42 * p = 0.81
Age [F/M] 63.7 ± 7.3/64.5 ± 10.2 60.9 ± 8.2/64.8 ± 10.5 ** p = 0.38
Range of age [F/M] 51–81/45–86 49–83/42–86
MDS-UPDRS-III [F/M] 34.6± 19.9/38.5± 19.6
Range of MDS-UPDRS-III [F/M] 9–106/7–92

* p—value calculated through Chi-square test. ** p—value calculated through t-test.
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Figure 1. Distribution of the number of words in the transliterations.

2.2. Methods

Figure 2 illustrates a general overview of the methodology proposed in this work.
Speech and language information were extracted independently using different charac-
terization strategies. For speech signals, we used the 1D-CNN, 2D-CNN, and a Wav2Vec
2.0 models. For language, we used three state-of-the-art word-embedding models: W2V,
BERT, and BETO. These three methods create numerical representations of each word in
the transliteration. These embeddings were further processed using a CNN model adapted
to NLP. Another approach, based on the estimation of several statistical functionals of the
embeddings, was also considered. Finally, the best representations of speech and language
were combined following early, joint, and late fusion strategies. Additional details about
the methods are presented below.
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Figure 2. General methodology proposed in this study.

2.3. Speech

Speech embeddings were created using time-frequency representations to feed 1D and
2D CNNs. In addition, the Wav2vec 2.0 approach was also used to generate another speech
representation. Details of each method are presented below.

2.3.1. 1D-CNN

This approach is based on 1D convolutional layers followed by LSTMs. The 1D
convolutional layer configurations are typically used to model sequential data. The main
idea is to extract different representations in the temporal domain. The layer consists
of 2 main elements, the number of channels and the kernel, which act as filters for the
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input data and move across the signal to extract information based on its weight and
size. The layer includes as many kernels as channels. Thus, the output data have several
representations of the same signal, which correspond to the number of channels. The
kernel’s weights are learned during the training process, while its size is specified as a
hyperparameter. The output value of a convolutional layer with input size (N, Cin, L) and
output (N, Cout, L) is described in Equation (1).

out(Ni, Coutj , L) = bias(Coutj , L) +
Cin−1

∑
k=0

weight(Coutj , k, L) ? input(Ni, k, L), (1)

where ? is the valid cross-correlation operator, N is a batch size, C denotes a number of
channels, and L is the length of the signal sequence. Then, each convolutional layer is
commonly followed by a temporal max pooling layer, which is similar to a down-sampling
technique used to reduce the temporal size of the data.

The sequential information represented by the convolutional and pooling layers
is modeled with LSTMs. This network is a type of cell designed to retain sequential
information over longer durations. It incorporates a cell state ct, which serves to store
long-term information. Additionally, the LSTM introduces three concepts: the forget gate ft,
the input gate it, and the output gate ot. To decide what information is forgotten from the
cell state, the forget gate ft is used. Equation (2) defines the ft, where ht−1 is the previous
hidden state, xt is the current input, W f is the weights matrix, and b f is the bias in the
forget gate. The relevant information to be added to the cell state using the input gate it
and the vectors of new candidates c̃ are defined by Equations (3) and (4), respectively. The
cell state is updated using Equation (5). Finally, the output gate ot determines the new
hidden state; this gate is defined by Equation (6), and the new hidden state ht is defined by
Equation (7), where, ∗ denotes a point-wise (Hadamard) multiplication operator.

ft = σ(W f [ht−1, xt] + b f ). (2)

it = σ(Wi[ht−1, xt] + bi). (3)

c̃ = tanh(Wc[ht−1, xt] + bc). (4)

ct = ft ∗ ct−1 + it ∗ c̃, (5)

ot = σ(Wo[ht−1, xt] + bo). (6)

ht = ot ∗ tanh(ct). (7)

In our particular case, the architecture was composed of two 1D convolutional layers
with 16 and 32 channels, respectively. Each layer was followed by a temporal max pooling
with a kernel size of 2. The characterization performed by the convolutional layers was the
input into an LSTM responsible for performing the temporal analysis of the network. This
stage was composed of 2 LSTM layers with 64 cells. Finally, the output of the LSTM fed a
fully connected network to make the final decision about whether a given speech recording
belonged to a PD patient or a healthy speaker.

2.3.2. 2D-CNN

The 2D-CNN has been widely used in computer vision applications [35], and, recently,
its application has been extended to other domains such as speech processing and natural
language processing. Equation (8) defines the convolutional layer, where I is an image
with only one channel, H is a matrix known as a kernel and whose size must be smaller
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than the image dimension, G is the output of the convolutional layer and is known as
the feature map, m and n are the indexes of the rows and columns of G, respectively, and
∗ represents the convolution operator. This expression can be extended for images with
different channel numbers. The convolutional layer is followed by a pooling layer, which is
used to reduce the feature map size and speed up calculations. In this layer, the feature map
is divided into different regions, and then a simple operation is performed. For instance, the
maximum value from each region used to build a new feature map of the whole dimension
is smaller than the original feature map. Finally, the flattening layer is used to obtain a
one-dimensional array from a multi-dimensional array, which allows for creating a valid
vector that feeds a fully connected layer that is responsible for performing the classification.

G[m, n] = (I ∗H)[m, n] = ∑
j

∑
k

H[j, k]I[m− j, n− k]. (8)

One of the topologies that has excelled in CNN is the ResNet one. ResNet allows for
continuous learning of the gradient by adding additional information to the output of each
block through the addition operation. In a plain CNN topology, consecutive layers use a
nonlinear mapping function. In contrast, ResNet includes an identity mapping where the
block input is added to the output. ResNet defines a residual function F(x) = H(x)− x,
where F(x) represents the stacked layers of the neural network, H(x) represents the direct
mapping of x, and x is the identity function. ResNet architecture aims for the residuals to
converge to zero (F(x) = 0) rather than adjusting an identity mapping (x, input = output)
through the network layers. It suggests that finding a solution such as F(x) = 0 is easier
than achieving F(x) = x when using the stack of nonlinear CNN layers as a function.

Particularly, the second approach is one of the most used in state-of-the-art approaches,
and it is based on 2D convolution layers, which are fed by time–frequency representations.
First, each recording was segmented into 500 ms chunks with 250 ms time shifts. Next,
each chunk was transformed into a time–frequency representation using short-time Fourier
transform (STFT). Then, each representation was transformed into a mel scale spectrogram
with 128 mel filters; therefore, the final representation to feed the CNN was 128 × 63.
The CNN architecture was based on a ResNet topology; specifically, the architecture was
composed of a convolutional layer in its input with 16 channels to adjust the spectrograms
to a ResNet topology; as a result, the architecture had 6 residual blocks and 3 main blocks
with 16, 32, and 64 feature maps. Then, we performed an average pooling per channel
representing each chunk in an embedding of 64 dimensions. Finally, we used a fully
connected network for the classification to make the final decision [36].

2.3.3. Wav2vec 2.0

The third approach was based on the Wav2vec 2.0 architecture, which is based on
transformers [37]. The main idea of this architecture is to encode speech audio via a
multi-layer convolutional neural network and then mask spans of the resulting latent
speech representations. The latent representations are fed to a transformer network to
build contextualized representations. The model is trained via a contrastive task, where
the true latent is to be distinguished from distractors. Particularly in this work, we used
a pre-trained Wav2Vec 2.0 model available in Pytorch to obtain a speech representation
for each recording from scratch in its input. This architecture was pre-trained on 960 h of
unlabeled data from the LibriSpeech dataset and fine-tuned for ASR on the same audio files
with the corresponding transcripts. After that, we performed a temporal mean to obtain a
768-dimensional representation per audio file. Finally, we used a fully connected layer to
decide whether the recording corresponded to a PD patient or HC subject.

2.4. Language

Three state-of-the-art word-embedding models were used to obtain the numerical rep-
resentations of the words in the transliterations: W2V, BERT, and BETO. These embeddings
allow for obtaining an embedding matrix Mn×d per transliteration, where n is the number
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of words in the transliteration, and d is the dimension of the word embedding. Details
about each method are presented below.

2.4.1. W2V

This method generates context-independent word embeddings, because the represen-
tation of each word is the same regardless of its context. This embedding has been widely
used in different NLP tasks, including emotion recognition, depression detection, and oth-
ers. Furthermore, these numerical representations of the words preserve several semantic
properties; for instance, word vectors live in the same vector space such that words sharing
a common context in the corpus are geometrically close to each other [38]. W2V represen-
tations are obtained using a simple architecture with one hidden layer. This architecture
is trained in a self-supervised way; therefore, the architectures can be fine-tuned using
unlabeled information. We used a W2V model trained with the Spanish WikiCorpus, which
contains 120 million words [39]. The word-embedding dimension was 300, and the model
was trained using a skip-gram strategy with eight context words.

2.4.2. BERT

This is one of the most popular context-dependent embeddings; in this case, the
representation of the word is not unique, because the representation depends on the word’s
context. This word embedding is computed using a transformer architecture’s encoder,
which was created initially for machine translation [40]. The most important part of the
encoder is the multi-head attention mechanism, which consists of several attention layers
running in parallel. Each layer learns contextual relations among words. Similarly to
the W2V model, the BERT is trained in a self-supervised way using two strategies: the
masked language modeling (MLM) and next sentence prediction (NSP). In this work, we
used BERT-Base, a multi-lingual uncased pre-trained model, which was trained with the
Multi-Genre Natural Language Inference (MultiNLI) corpus.

2.4.3. BETO

This word-embedding model is a Spanish version of BERT proposed in [41]. The
model was trained with Spanish data from Wikipedia and all of the resources of the OPUS
project [42]. The source code to compute the BERT and BETO embeddings is available
online (https://github.com/PauPerezT/WEBERT (accessed on 21 June 2023) [43].

The aforementioned embeddings were used to create an embedding matrix for each
transliteration, which was processed following two approaches: (i) A static representation
was created per subject by computing four statistical functionals—mean, standard devia-
tion, skewness, and kurtosis. This static representation was used to train an SVM and make
the final decision. (ii) The embedding matrix was used to feed a CNN with different kernel
sizes to map different n-gram relations between words. The convolution was computed
in one dimension, and, in this case, we used three kernel sizes, 2× d, 3× d, and 4× d, to
map bi-gram, tri-gram, and f our-gram relations, respectively. A max-pooling layer was
applied to the output of each filter. All outputs were used to feed a fully connected layer,
which made the final decision after a Softmax activation function. Further details about
this architecture are presented in [44].

2.5. Fusion Strategies

Different fusion strategies were used to combine the best representations of speech
and language. Figure 3 shows the different fusion strategies considered in this paper, and
additional details are presented below.

https://github.com/PauPerezT/WEBERT
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Figure 3. Fusion strategies.

2.5.1. Early Fusion

Early fusion is a traditional way of fusing multiple data. This method is known as
input-level fusion and refers to merging multiple input modalities into a single feature
vector/matrix before training and testing. Input modalities can be merged in many ways,
including concatenation, pooling, or applying a gated unit. This strategy has two disadvan-
tages: First, a large amount of information is lost by representing each modality from a static
feature vector. Second, it is required to synchronize the time stamp of the different modali-
ties, which potentially results in a loss of information. In this approach, we considered the
best representation of each modality (speech and language) to concatenate them.

2.5.2. Joint Fusion

Joint fusion (or intermediate fusion) is the process of joining learned feature represen-
tations from the intermediate layers of neural networks with features from other modalities
as input into a new model. The main difference with early fusion is that, in joint fusion,
the loss is back-propagated to the feature extraction stage of the neural network, thereby
generating a loop that enables it to find better feature representations based on multi-modal
information. Different modalities can be fused simultaneously into a single shared repre-
sentation layer or performed gradually using one or several modalities simultaneously.
For the joint fusion between speech and language, it was necessary to generate a static
representation from the speech model. To do that, we created GMM supervectors encod-
ing dynamic information per speaker. Then, we incorporated the language model in an
intermediate stage of the network to be merged with each static speech representation
created per participant. Language and speech representations were concatenated prior to
employing the fully connected layer.

2.5.3. Late Fusion

Late fusion uses data sources independently, followed by a fusion step at the classifi-
cation stage. This technique is much simpler than the previous fusion method, particularly
when the data sources differ significantly from each other in terms of the sampling fre-
quency and dimensionality. Late fusion offers potentially better performance, because the
errors from various models are processed independently; therefore, the errors are assumed
to be uncorrelated. There are different rules to determine the optimal way to combine the
models. Bayes rules, max fusion, and averag fusion are among the most popular. In this
strategy, we obtained the scores of the best representations for each modality; they were
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then merged and used to train and test an SVM to make the final decision based on this
new representation.

3. Results

We developed three main experiments in this work: (i) Speech recordings were pro-
cessed considering the three methods described in Section 2.3. (ii) Automatic transcriptions
were analyzed using the three different word-embedding models presented in Section 2.4.
(iii) Individual models with the best accuracy for each modality were used to set up a
multimodal approach, where both modalities were combined using the early, joint, and
late fusion strategies described in Section 2.5. In all experiments, the models were trained
and evaluated following the same speaker-independent 10-fold cross-validation strategy.
In experiments where an SVM was implemented, we used a Gaussian kernel, and its
hyper-parameters were optimized using a grid search with C ∈ {0.001, 0.01, · · · , 100} and
γ ∈ {0.0001, 0.001, · · · , 100}. Finally, for the deep learning methods, the architectures
were trained with 200 epochs using the cross-entropy loss function and using an Adam
optimizer [45]. We used different regularization strategies, including early stopping with
a patience of 40. In addition, dropout and l2 regularization were also implemented with
values defined between [0.2, 0.4, 0.6] and [0.0001, 0.005, 0.001], respectively.

3.1. Speech

The results obtained with the three implemented methods are reported in Table 3. No-
tice that, although, for the Wav2vec 2.0 experiments, we evaluated different segmentation
lengths, (1 sec, 2 sec, 5 sec, and the full recording), we only reported the best result, which
was obtained with 2 s. The best result was obtained with Wav2vec 2.0, with an accuracy of
88.5% and an F1-score of 88.3%. Similar results were obtained with the 2D-CNN approach,
which achieved an accuracy of 84.4%. For the case of the 1D-CNN approach, the network
seemed to be overfitted towards the negative class (HC subjects), because this approach
yielded an accuracy of 72.6% with a high specificity. These results show that obtaining the
representations of a robust model such as Wav2vec 2.0 trained with a large amount of data
for speech recognition provides better results than training models from scratch, such as
those obtained with the 1-D and 2-D CNN introduced in this paper. In addition, more data
are needed to obtain more robust and stable results.

Table 3. Classification between PD patients vs. HC subjects using speech recordings. Values are
reported in terms of mean ± standard deviation.

2D-CNN 1D-CNN Wav2vec 2.0

Accuracy 84.4 ± 8.8 72.6 ± 7.9 88.5 ± 8.3
Sensitivity 81.3 ± 15.1 53.8 ± 16.8 82.5 ± 16.9
Specificity 87.6 ± 15.8 92.5 ± 9.7 94.0 ± 6.3
F1-Score 84.3 ± 9.2 68.0 ± 7.7 88.3 ± 8.7

Figure 4 shows the histograms and the fitted probability density distributions of the
scores obtained when classifying the samples with the best model (Wav2vec 2.0). It can be
observed that the error for the discrimination of HC subjects was small (i.e., high specificity),
while the error in discriminating PD patients was larger (i.e., relatively low sensitivity). In
addition, it is important to mention that, for both classes, the highest bin was located at the
extremes of the distribution, which suggests that many patients and controls were correctly
classified with a high certainty.
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Figure 4. Histogram and the corresponding probability density distribution of the scores obtained
from the classification of PD patients and HC subjects in the Wav2vec 2.0 model.

3.2. Language

In the language modality, three word-embedding models (W2V, BERT, and BETO)
were used to generate the embedding matrix for each transliteration. The resultant embed-
ding matrix for each embedding model was processed using two approaches: statistical
functionals and CNNs. Table 4 shows the results obtained in classifying PD patients vs
HC subjects for both approaches using the different word-embedding models. The BETO
and CNN model achieved an accuracy of up to 77.9%, which outperformed the model
based on the BERT and CNN model by about 3.7% and by 4.1% for the model based on
the W2V and CNN model. This result was expected, because the BETO was only trained
with Spanish data, while the BERT is a multi-lingual model trained with corpora from
104 different languages. Similarly, W2V is a simple word-embedding model and does not
incorporate information about the context.

The proposed method based on CNNs systematically outperformed the models based
on statistical functionals. According to our observations, this result is because the method
modeled the relation between word representations through convolution operations with
different contexts using different kernel sizes, which made the approach more robust and
suitable to capture paralinguistic information encoded in the language of the patients.
Conversely, in the method based on statistical functionals, all word representations were
reduced to a single vector, therefore reducing the chances for the classifier to find specific
patterns along the encoded texts.

Table 4. Classification between PD patients vs. HC subjects using language embeddings. Values are
reported in terms of mean ± standard deviation.

Statistical Functionals CNN

W2V BERT BETO W2V BERT BETO

Accuracy 69.7 ± 6.1 61.8 ± 7.4 62.5 ± 6.9 73.8±10.3 74.2±10.2 77.9 ± 8.4
Sensitivity 71.3 ± 17.7 47.5 ± 19.2 56.3 ± 23.9 75.0 ± 22.4 76.3 ± 11.8 76.4 ± 12.4
Specificity 68.2 ± 17.4 75.7 ± 22.3 70.0 ± 21.0 72.6 ± 20.2 72.1±17.8 79.2 ± 15.7
F1-Score 68.6 ± 8.5 53.1±11.2 56.9 ± 13.3 72.2 ± 14.8 74.2 ± 9.2 76.9 ± 8.4

Figure 5 shows the distribution of the scores obtained with the best language model
(the BETO and CNN model). In this case, the error for both classes was balanced, as shown
in Table 4. Notice also that the area of error was larger than the one obtained with the
speech modality using Wav2vec 2.0 (see Figure 4). This is, to some extent, expected, because
PD is prominently a motor disorder that eventually (for a subset of patients) results in
cognitive impairments, which resultingly affect language production. This is a matter of
research, and this is the reason why the subject matter addressed in this paper is relevant,
because any finding could guide future directions.
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Figure 5. Histograms and probability density distribution of the scores obtained from the classification
of PD patients and HC subjects using BETO and CNN.

3.3. Multi-Modal

Modes that yielded the best results from each modality were combined in the follow-
ing experiments, i.e., the Wav2vec 2.0 model and the BETO and CNN model. Different
resolutions were obtained per modality. The Wav2vec 2.0 approach had different repre-
sentations per subject—one for each segment of 2 sec. For the case of the BETO and CNN
approach, we had one representation per subject. Therefore, we decided to compute a
speech representation per subject to perform the combination at a speaker level following
three fusion strategies: early, joint, and late fusion. In early fusion, the mean of the embed-
dings generated per segment was computed to create the speech representation per subject.
Then, it was concatenated with the language embedding (resulting from the BETO and
CNN model) to form a bi-modal representation, which was used to train an SVM. In the
joint fusion, the CNN initially created for language was fine-tuned using information from
speech and language. In this case, the speech representation per subject was generated
using GMM supervectors, which were created by stacking the means (µ) and the diagonal
of the covariance matrix (Σ) of the GMM. We considered two, four, and eight Gaussians
to create the static representation, but we only reported the results obtained with eight
Gaussians. The GMM supervector per subject was concatenated with the resulting lan-
guage embedding in an intermediate layer of the CNN, just before the fully connected layer,
which developed the classification stage. Finally, in the late fusion strategy, we obtained the
speech score per subject by computing the mean of all decision scores per segment. Then,
the scores from speech and language were concatenated to form a bi-modal representation
with two dimensions, which was used to train and test an SVM.

Table 5 shows the results for the different fusion strategies. The best result was
obtained with the joint fusion strategy, where an accuracy of 77.2% was obtained. This
accuracy slightly outperformed the one obtained with the late fusion strategy; nevertheless,
joint fusion yielded a more balanced sensitivity and specificity. In addition, Figure 6 shows
the distribution of the scores resulting from the joint fusion model. Notice that the PD
patients and HC subjects were relatively far from the decision threshold. Finally, notice that
the standard deviation values, in this case, were smaller than those obtained in previous
experiments with language embeddings, thereby indicating that, although there is still
work to do, the fusion yielded advantages in robustness and stability.

Table 5. Classification between PD patients vs. HC subjects using three different fusion strategies.
Values are reported in terms of mean ± standard deviation.

Early Joint Late

Accuracy 73.9 ± 12.8 77.2 ± 2.0 77.6 ± 8.3
Sensitivity 86.3 ± 15.3 77.3 ± 5.3 75.0 ± 11.2
Specificity 62.4 ± 26.9 77.0 ± 4.4 80.1 ± 11.7
F1-Score 76.5 ± 11.0 76.3 ± 2.3 76.4 ± 9.3
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Figure 6. Histogram and the corresponding probability density distribution of the scores obtained
from the classification of PD patients and HC subjects in the model with joint fusion.

4. Conclusions

This paper presented different methods to automatically discriminate between PD
patients and HC subjects using speech and language information. Both modalities were
analyzed independently while considering different methods. Finally, the best uni-modal
models were used to set up a multi-modal approach, where we aimed to take advantage of
joint information in both modalities. Audio recordings were processed using three main
approaches: 1D-CNN, 2D-CNN, and Wav2vec 2.0. Transliterations were represented using
three word-embedding models: W2V, BERT, and BETO. Static language representations
were created by computing statistical functionals. In addition, a novel approach based on
a CNN model adapted to NLP was introduced to model language information. Finally,
the multi-modal approach consisted of evaluating three fusion strategies where the best
individual models were combined: early, joint, and late fusion. To overcome the mismatch
between dynamic speech representations and static language representations, speech
recordings per speaker were represented via GMM supervectors.

The results indicate that it is possible to discriminate between PD patients and HC
subjects with an accuracy of up to 88% using speech modeled with the Wav2vec 2.0
approach, while the accuracy with language was 77% when using the BETO and CNN
model. This result validates the fact that PD is mainly a motor disorder, which, therefore,
affects speech production mainly and language to a lesser extent. The results obtained
with speech modality outperformed the results of the multi-modal approach by up to 11%.
However, we showed that the fusion of speech and language information yields more
robust and stable results. We hypothesize that this reduced performance is due to the time
span in multi-modal representations. We think that the principal loss of information in the
speech modality happens when GMM supervectors are created to encode the speaker’s
information. Similarly, information on language embeddings is reduced by the computation
of mean values. This study has limitations due to the reduced amount of data considered in
the experiments, which did not allow us to re-train and fine-tune models such as Wav2Vec
or BETO. This constraint prevented us from obtaining representations that were specifically
focused on capturing patterns of the disease. In addition, we found that CNNs adapted to
NLP yielded the best results in the language modality. We hypothesize that these results
could be improved by considering a larger dataset. In future experiments, we plan to
implement different language representations to model specific cognitive impairment in
PD patients, i.e., incorporating clinically inspired features such as P-RSF [31]. We will
also explore diverse data augmentation strategies to fine-tune pre-trained models and
generate representations focusing on modeling different disease patterns based on each
modality. Finally, we will evaluate different time spans during the fusion stage to mitigate
information loss.
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