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Abstract: Echocardiography is one of the imaging systems most often utilized for assessing heart
anatomy and function. Left ventricle ejection fraction (LVEF) is an important clinical variable
assessed from echocardiography via the measurement of left ventricle (LV) parameters. Significant
inter-observer and intra-observer variability is seen when LVEF is quantified by cardiologists using
huge echocardiography data. Machine learning algorithms have the capability to analyze such
extensive datasets and identify intricate patterns of structure and function of the heart that highly
skilled observers might overlook, hence paving the way for computer-assisted diagnostics in this field.
In this study, LV segmentation is performed on echocardiogram data followed by feature extraction
from the left ventricle based on clinical methods. The extracted features are then subjected to analysis
using both neural networks and traditional machine learning algorithms to estimate the LVEF. The
results indicate that employing machine learning techniques on the extracted features from the left
ventricle leads to higher accuracy than the utilization of Simpson’s method for estimating the LVEF.
The evaluations are performed on a publicly available echocardiogram dataset, EchoNet-Dynamic.
The best results are obtained when DeepLab, a convolutional neural network architecture, is used for
LV segmentation along with Long Short-Term Memory Networks (LSTM) for the regression of LVEF,
obtaining a dice similarity coefficient of 0.92 and a mean absolute error of 5.736%.

Keywords: medical imaging; transthoracic echocardiography; left ventricle ejection fraction; regres-
sion; machine learning; Simpson’s biplane method

1. Introduction

According to estimates, cardiovascular diseases (CVDs) account for the majority of
fatalities worldwide and approximately claim 18.6 million lives annually, 85% of which are
attributed to heart attacks and stroke [1]. Heart disease specifically refers to disorders that
have an impact on the structure and function of the heart. The detection of heart disease at
an early stage is of utmost importance, as obesity, hypertension, and metabolic disorders
such as diabetes are on the rise. A growing proportion of people are receiving heart
failure diagnoses, and the proportion is estimated to increase by 46% by 2030 [2]. A delay
in diagnosis might result in a poor prognosis, which is frequently linked to permanent
pathophysiologic alterations that develop over time. Cardiology has benefited from the
application of various imaging techniques, which include Computerized Tomography (CT),
Cardiovascular Magnetic Resonance Imaging (CMR), Fundus Photography, Intravascular
Ultrasound (IVUS), Echocardiography, and several others. Despite the high imaging
quality of CMR and CT, one of the most often utilized imaging systems for assessing heart
anatomy and function is echocardiography, mainly due to its accessibility, portability, and
cheaper cost as compared to other techniques [3]. These characteristics make it possible to
fully utilize echocardiography and apply it for diagnosis, even in low-resource situations.
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Transthoracic Echocardiography (TTE) is the primary diagnostic approach used to assess
both acute and chronic heart failure. It offers immediate and valuable information about
the condition of the left ventricle (LV), including its end-systolic and end-diastolic volume,
the function of the valve, and the thickness of the wall. Moreover, TTE plays a crucial role
in providing insights into the underlying causes or contributing factors of heart failure.

Echocardiography presents challenges that are not straightforward for multiple rea-
sons. Rather than comprising a single still image, an echocardiograph study can consist
of a number of videos collected from multiple views. This huge number of multidi-
mensional data generated in each study are difficult to comprehend and hence not fully
utilized. Additionally, measurements can differ from one video to another due to beat-
to-beat inconsistency and variability resulting from the estimation of a three-dimensional
object using two-dimensional images. Acquiring operator-dependent data, device incon-
sistency, and low image quality further restrict echocardiography. Given the presence
of these constraints, it appears that echocardiography could make use of an automated
learning technique to aid human interpretation. Artificial intelligence (AI) techniques,
which include machine learning (ML) and deep learning (DL), can play an effective role in
achieving this task. ML, with its developing applications in cardiac ultrasound, enables
the automatic detection of cut planes and heart structures, along with a wide range of
computerized measurements.

The measurement of the left ventricular ejection fraction (LVEF) is a key outcome
in echocardiography. The LV volume estimates are used to calculate the LVEF, which is
used to assess the pumping function of the heart. It represents the percentage of blood
pumped out of the left ventricle with each contraction, specifically during the systolic phase
of the cardiac cycle. It is a vital factor in the evaluation of risk among patients suffering
from heart failure [4]. One way to estimate the LVEF from echocardiogram data is to use a
technique called Simpson’s rule, which involves tracing the endocardial border of the left
ventricle on multiple frames of the echocardiogram to create a volume–time curve. LVEF is
determined by calculating the difference between the end-diastolic volume (EDV) and the
end-systolic volume (ESV), and then normalizing this difference by dividing it by the EDV;
LVEF = (EDV − ESV)/EDV. This method, however, depends on accurately tracing the
endocardial border on each frame of the echocardiogram, which can be difficult and time-
consuming, particularly when the endocardial border is poorly defined. Consequently,
an important step in achieving high measurement accuracy is obtaining reliable LV seg-
mentation. In addition, the exploitation of temporal information in echocardiogram data
can provide more accurate and reproducible estimates of the LVEF, which is an important
indicator of cardiac function and is used to diagnose and monitor various heart conditions.

For the measurement of LV volumes and LVEF, amongst the two common techniques
used in clinical practice, i.e., the area–length method and Simpson’s biplane method,
the latter is the most recommended methodology to evaluate LVEF [3]. There is not much
work on the use of Simpson’s method in extracting LV features from segmented chambers.
ML techniques can be used to explore the use of the extracted features in conjunction with
the clinical methods used by cardiologists in routine practice to estimate LV volumes and
LVEF. Zhang et al. [5] used the area–length method to compute LV volumes and LVEF from
the segmented images. Their method makes the assumption that the LV is bullet-shaped,
but this assumption about the shape of the LV does not always hold [3]. In this work,
Simpson’s method is studied for the extraction of structural features of the LV, which leads
to the estimation of LVEF.

Below are the main contributions of this work.

• The method proposed in this study is to first perform left ventricle segmentation on
A4C view of an echocardiogram and then extract pertinent features based on a clinical
technique (Simpson’s method) from segmented images, which is consistent with the
workflow of the methods used in clinical settings;

• To estimate the LVEF, machine learning methods are applied to features obtained from
the LV, and their efficacy, in this case, is investigated;
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• To leverage the temporal information present in the frames of an echocardiogram
effectively, Simple Recurrent Neural Networks (RNNs) and Long Short-Term Memory
Networks (LSTMs) are employed.

The paper is structured as follows: Section 2 provides an overview of the studies
conducted on echocardiographic data, focusing specifically on the segmentation of the
left ventricle and estimation of LVEF. In Section 3, the dataset and techniques used along
with the proposed method are described in detail. The obtained results are presented
in Section 4, followed by a comprehensive discussion and conclusion to summarize the
findings and implications of the study.

2. Related Work

Several studies have focused on the development of automatic interpretation and
clinical evaluation systems for medical images [6,7]. An echocardiogram diagnostic system
that is based on ML typically comprises automation of different tasks performed by human
experts in the clinical investigation, as given in the flow diagram in Figure 1. A considerable
amount of work is performed on quality assessment [8–10] and view classification [5,11–14].
A vital component of the automated echocardiography pipeline is the delineation of the left
ventricle in order to produce structural and functional indices using the traced boundaries.
Automating this procedure of heart chamber segmentation saves time by providing rapid,
precise, and objective segmentation throughout the cardiac cycle. To perform segmenta-
tion, certain conventional methods for image processing have been proposed, including
Otsu thresholding and edge detection [15], a watershed algorithm for LV border segmen-
tation [16] and K-means clustering [17]. These techniques are computationally efficient,
but they have a high signal-to-noise ratio and fail to produce acceptable results when there
are unclear borders and non-uniform regional intensities. In ML approaches for image
segmentation, an image is split into distinct regions by giving each pixel a label of its
associated class, as in [5,18–26]. Temporal coherence, which is found in heart motion
between the frames, is also incorporated along with CNNs by [23] for segmentation.

Figure 1. A typical diagnostic system in Automated Echocardiography.

Other techniques that can be explored for medical image processing and segmentation
include [27,28]. Zhang et al. [5] proposed an automated and extensible echocardiography
interpreting process. As part of their approach, they performed preprocessing of complete
echocardiogram studies, view classification, image segmentation, and detection of the
cardiac cycle using CNNs. Using the segmentation output, they estimated LV length,
area, volume, and mass, which further led to the calculation of LVEF using the area–
length method. The automated algorithms based on this method tend to overestimate
the structural estimates, including LVEF, left ventricular volume, and left atrial volume,
when compared to the ground truth values. In addition, large deviations could be seen
in the result because of outliers. Furthermore, individual frames that are influenced by
cardiac chamber foreshortening or variance from abnormal heartbeats, such as untimely
ventricular contractions or cardiac arrhythmia, are not selected in manual segmentation by
cardiologists, which might be disregarded in the case of an automated pipeline.

A complete automated pipeline that comprises tasks including the segmentation of
the left ventricle, calculation of LVEF, and disease classification using DL techniques is
proposed by Ouyang et al. [19]. For left ventricle segmentation, it used labels from human
experts for weak supervised learning for each frame of the video. After that, a three-
dimensional CNN was trained using native echocardiogram recordings to estimate LVEF
for each frame with a mean absolute error of 4.1%. Heart failure with a poor LVEF was
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also identified. The authors made the dataset Echonet-Dynamic publicly available, which
was used in this study and comprised around ten thousand echocardiogram recordings.
The proposed DL model did not perform well with the data that had incorrect human
labeling, low visual quality, or arrhythmias and heart rate fluctuations. As a result, further
research in a variety of clinical contexts is needed to overcome these challenges. This work
was further extended by using the same DL model to classify local cardiac structures as well
as estimate volumetric measures and heart performance metrics [29]. The identification
of left ventricular hypertrophy, aberrant size of the left atrial, and the existence of devices
such as defibrillators and pacemakers was also performed. When the model was trained to
estimate LVEF directly, the findings were more accurate than when it was estimated using
predicted volumes. In work by Ghorbani et al. [29], the prediction of EDV and ESV did not
give promising results, with low R2 resulting in a higher bias in LVEF, which is calculated
from EDV and ESV, as per the clinical convention. To properly evaluate cardiac mobility
and correlation in cardiac structures, future studies will require improved use of temporal
information across frames. ImageNet weights were used for pre-training the model due
to a lack of sufficient data for DL training; however, this might not improve the model
performance as expected due to the considerable disparity in image characteristics between
ImageNet and echocardiography images.

In Asch et al. [30], the estimation of LVEF was performed without measuring LV
volumes. Their approach assumed that during the systolic phase, the ventricle contracts
simultaneously along its length and diameter, allowing the calculation of LVEF using the
contraction coefficients they measured in both directions without measuring the volumes.
The proposed ML algorithm was designed to estimate the minimum values of these
coefficients at the end of a contraction. Another DL model was used for the classification
and segmentation of two-dimensional frames and Doppler in echocardiograms [31]. For the
EchoNet-Dynamic, this study assessed only high-quality views (6286) to measure LVEF.
Since the authors identified low view quality as a problem in this dataset, they selected
images of appropriate image quality for this work. This puts a limitation on the number of
images that may be annotated in this study. In another study [32], the authors employed a
DL algorithm based on VGG16 on the EchoNet-Dynamic dataset. Their algorithm obtained
an MAE of 8.08% for LVEF, with an RMSE of 11.98 and a correlation of 0.98.

Many existing methods for estimating LVEF on a sequence of frames have heav-
ily relied on deep learning techniques. In contrast, our approach follows a step-by-step
methodology that involves performing segmentation and then utilizing the relevant infor-
mation extracted as features to estimate LVEF. This approach not only provides detailed
insights into the intermediate steps involved but also remains consistent with the clinical
workflow. By explicitly incorporating the segmentation and feature extraction steps, we
can better understand and interpret the underlying processes, enhancing the transparency
and interpretability of the LVEF estimation process.

In addition, it is rational to align with the clinical workflow and acknowledge that
concentrating on features extracted from the end-diastolic and end-systolic frames may be
adequate for precise LVEF prediction, without the need to analyze the entire video sequence.
These specific frames correspond to the points of maximum and minimum volumes in the
left ventricle, capturing crucial information. By extracting essential information from these
frames, the model ensures consistency with clinical practices while achieving accurate
LVEF estimation.

3. Materials and Methods
3.1. Dataset

In this study, the EchoNet-Dynamic dataset [19] is used, which contains 10,030 apical
4-chamber (2D B-mode) echocardiography recordings. EchoNet-Dynamic is so far the
largest known labeled echocardiography dataset that is publicly available. The average
age of the patients is 68 ± 21, and 49 percent of them are female. The training, validation,
and testing sets have 7460, 1288, and 1277 patients, respectively. Each video includes a



Diagnostics 2023, 13, 2155 5 of 18

boundary tracing, also known as volume tracing, of the LV border at the end of systolic
and diastolic frames, as well as cardiac parameters, including LVEF, EDV, and ESV, which
are taken as the ground truth values.

3.2. Traditional Machine Learning Techniques

Traditional machine learning techniques for regression that are used in this study to
estimate LVEF include Support Vector Regression (SVR), random forest (RF), decision tree
(DT), and linear regression (LR). These traditional machine learning methods each have
their strengths and weaknesses and are suitable for different types of regression problems.

3.2.1. Linear Regression

Linear regression (LR) is a basic and widely used regression method that models the
relationship between the independent variables and the dependent variable as a linear
function. It assumes a linear relationship between the input features and the target vari-
able, with the goal of minimizing the difference between the predicted values and the
actual values.

3.2.2. Support Vector Regression

Support Vector Regression (SVR) is a supervised learning algorithm that aims to find
the best hyperplane that maximizes the margin between the predicted values and the target
variable. It finds a subset of training examples, called support vectors, that are used to
define the hyperplane. SVR can handle linear and non-linear relationships using different
kernel types, such as linear, polynomial, or radial basis function (RBF) kernels.

3.2.3. Decision Trees

Decision trees (DTs) represent a flowchart-like structure where each internal node rep-
resents a feature or attribute and each leaf node represents a predicted value. The decision
tree splits the data based on the values of the features, aiming to minimize the variance
within each resulting subset. Decision trees are easy to interpret and can handle both
numerical and categorical data. However, decision trees can be susceptible to overfitting,
meaning they may not generalize well to unseen data and may instead memorize the train-
ing data. To mitigate this issue, the maximum depth of the decision tree can be set. If the
maximum depth is set too high, the tree can become overly complex and capture noise or
irrelevant patterns in the training data, leading to overfitting. In this study, the maximum
depth of the decision tree was carefully selected to achieve a balance between capturing
important relationships in the data and avoiding overfitting.

3.2.4. Random Forest

Random forest (RF) is an ensemble learning method that combines multiple decision
trees to make predictions. It works by creating a set of decision trees using random
subsets of the training data and random subsets of features. Each tree in the random forest
independently predicts the target variable, and the final prediction is obtained by averaging
or voting on the predictions of individual trees. Random forests are known for their ability
to handle high-dimensional data along with non-linear relationships and provide feature
importance measures.

3.3. Neural-Network-Based Techniques

Neural networks are computational models inspired by the human brain. They
consist of interconnected nodes called neurons organized into layers. The network receives
input signals, processes them using activation functions, and produces output signals.
By adjusting the connections between neurons, known as weights, neural networks can
learn patterns and make predictions. They are commonly used in machine learning and
have been successful in tasks such as classification and regression.
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Recurrent Neural Networks(RNN) and Long Short-Term Memory Networks (LSTM)
are popular neural network (NN) architectures used in machine learning for regression tasks
involving sequential data. These networks are effective in capturing temporal patterns and
dependencies in sequential data, making them valuable tools for regression tasks involving
time series or other sequential data formats.

3.3.1. RNN

RNNs are designed to handle sequential data by maintaining a hidden state that
captures information from previous time steps. This allows them to capture temporal
dependencies and model the dynamics of the sequence. In the context of regression, RNNs
can learn to predict the next value in a sequence based on the previous values.

3.3.2. LSTM

LSTM is a variant of RNN that addresses the issue of vanishing gradients, which can
occur with RNNs. LSTM introduces a memory cell that can retain information over long
periods of time, allowing the network to capture dependencies over longer sequences. It
achieves this by using gates that control the flow of information into and out of the memory
cell. For regression tasks, RNNs and LSTM networks are trained to predict continuous
values based on the input sequence. The input sequence is represented as a time series,
where each element corresponds to a specific time step. The network processes the sequence
iteratively, updating its hidden state and producing an output at each time step. The final
output can be used as the regression prediction.

3.4. Proposed Method

The proposed method for estimating LVEF from the left ventricle involves two main
steps. Firstly, LV segmentation is performed on the A4C views of the dataset using deep
learning techniques. The resulting segmented LV masks are then utilized for feature extrac-
tion based on Simpson’s method. Regression techniques are subsequently applied to these
extracted features in order to estimate LVEF. These techniques encompass both traditional
machine learning approaches, chosen for their simplicity and ease of implementation, as
described in Section 3.2, as well as neural networks outlined in Section 3.3. The overall
framework of the proposed method is illustrated in Figure 2. The different blocks of the
framework are described in detail in Sections 3.4.1–3.4.3.

Figure 2. Proposed Method; (a) End-Diastolic (ED), End-Systolic (ES) input frames; (b) Left Ven-
tricle (LV) segmentation performed with DeepLab; (c) Simpson’s diameters extracted from LV;
(d) Regression performed using ML and NN algorithms.

Traditional machine learning algorithms present certain advantages. They offer inter-
pretability, require fewer computational resources, and exhibit reliable performance even
on smaller datasets with simpler relationships. These algorithms can provide insights and
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understanding into the underlying patterns within the data. Neural networks, on the other
hand, demonstrate their strength in capturing intricate patterns and modeling non-linear
relationships. They offer the advantage of requiring less explicit feature engineering and
exhibit strong performance on large and complex datasets. Neural networks have show-
cased exceptional performance across various domains and exhibit good generalization
capabilities when appropriately trained, albeit with the caveat of potential overfitting if
the model capacity is not effectively controlled. By employing both neural networks and
traditional machine learning algorithms, the aim is to leverage the respective strengths of
each approach and explore their effectiveness in addressing the research objectives.

3.4.1. LV Segmentation

The input to the LV segmentation module, as shown in Figure 2, consists of the end-
diastolic and end-systolic frames. These frames are processed by the LV segmentation
module to extract the left ventricle region of interest. In this work, DeepLab is employed for
the semantic segmentation of the LV chamber from an echocardiographic image. The use
of atrous convolutions, commonly referred to as dilated convolution, is the primary compo-
nent of the DeepLab model [33]. They enable the model to effectively capture features at
different scales. By using the DeepLab model with the ResNet architecture as its backbone,
the approach employs atrous convolution in a cascading or parallel manner. This allows
for the capturing of multi-scale context by utilizing different atrous rates [33]. Addition-
ally, the inclusion of the Atrous Spatial Pyramid Pooling module, along with image-level
features, further enhances the performance of the model.

For the purpose of segmentation training, DeepLabv3, with a Resnet50 backbone,
was employed, utilizing the PyTorch framework with pre-trained weights. The model
underwent training for a total of 45 epochs, employing a batch size of 16. The SGD optimizer
was utilized with an initial learning rate (LR) set to 10−3. To facilitate learning rate decay,
a ’Reduce LR On Plateau’ strategy was employed, decreasing the learning rate when no
improvement was observed for a consecutive number of epochs known as the ’patience’.
In our case, the ’patience’ value was set to 3.

During the segmentation process, the input image size was standardized to
112 × 112 pixels. The models were trained for A4C views by using the training, valida-
tion, and testing sets as mentioned in Section 3.1. The model implementation was carried
out using Python version 3.10.10 and PyTorch version 2.0.0, respectively. The experiments
were conducted on a server equipped with an NVIDIA Tesla P100 GPU.

3.4.2. Feature Extraction

After LV segmentation, feature extraction is performed on segmented LV based on
the modified Simpson’s method. The modified Simpson’s method is the most widely used
method in routine clinical practice to find LV volume from the volume tracings [3]. This
approach, commonly referred to as the Biplane Method of Disks, divides the left ventricle
into a number of elliptical disks aligned perpendicular to the ventricle’s major axis, as
shown in Figure 3a. Figure 3b shows a cross-section of one such disk.

The volume o f each disk shown in Figure 3b is given by Equation (1):

volume o f each disk =
π(ai × bi)l

4
(1)

where ai and bi are the semi-axis lengths of a disk, obtained from an apical four-chamber
and apical two-chamber, respectively, and l is the height of the disk. Adding the volumes
of these disks gives the total volume of the left ventricle. The respective volumes at the
end-systole and end-diastole are used to calculate the LVEF using Equation (2);

LVEF =
EDV − ESV

EDV
× 100%. (2)
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In our case, only A4C measurements are available; hence, the monoplane Simpson’s
method is utilized, which uses measurements obtained from A4C only. To extract features
from the segmented images, the contour points (volume tracings) are derived from the
segmented mask representing the left ventricle at the end-diastolic and end-systolic frames,
respectively. The localization process identifies the mitral valve and apex points, which
enable the determination of the major axis of the left ventricle. The major axis is the
length between these two points. Subsequently, the disks are positioned orthogonal to
the major axis, spaced at the positions obtained by dividing the major axis into 20 equal
parts. At each disk position, a region of interest (ROI) is defined as a disk shape centered
at that position, and the pixels within this ROI are extracted. To ascertain the diameter of
each disk, the maximum distance between any two points within the ROI is computed.
Figures 4 and 5 show the segmented images and their corresponding feature extraction at
the end-systole and end-diastole, respectively.

(a) (b)

Figure 3. Simpson’s Biplane Method (ai—disk diameters (A4C view), bi—disk diameters (A2C view),
L—length of major axis, l—height of a single disk). (a) Division of LV into elliptical disks (b) A disk
in Simpson’s Method.

(a)

(b)

Figure 4. LV Segmentation and Features Extraction on systolic frames. (a) LV segmentation masks
obtained on systolic frames. (b) Diameter tracings obtained on systolic frames.
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(a)

(b)

Figure 5. LV Segmentation and Feature Extraction on Diastolic Frames. (a) LV segmentation masks
obtained on diastolic frames. (b) Diameter tracings obtained on diastolic frames.

3.4.3. Estimation of LVEF

The features extracted from the dataset are utilized as the training set for both machine
learning algorithms, discussed in Section 3.2 and neural networks, described in Section 3.3.
To evaluate the performance of the model and optimize hyperparameters, a k-fold cross-
validation is conducted on a validation set. The trained model is then assessed on a
separate test set, employing various metrics, including the correlation coefficient (Corr),
mean absolute error (MAE), and root mean squared error (RMSE).

Recognizing the significance of temporal information encompassing the end-systolic
and end-diastolic frames in echocardiogram outcomes, RNNs and LSTMs are employed
to capture such temporal dependencies and investigate whether this method could yield
improved results compared to the traditional machine learning techniques.

The recurrent neural network is a variant of neural networks that is created to effec-
tively handle sequential data. RNNs exhibit remarkable suitability for tasks involving
the analysis and generation of sequences, owing to their unique ability to retain internal
memory or context. A distinguishing characteristic of RNNs lies in their recurrent con-
nections, which facilitate the transmission of information from one step in the sequence
to the subsequent step. This mechanism empowers the network to capture dependencies
and discern patterns that unfold over time or sequence. During each time step, the RNN
receives an input, which is processed alongside the internal memory derived from the pre-
ceding step. The network subsequently produces an output, along with an updated internal
memory. This iterative process continues throughout each step in the sequence, establishing
a temporal relationship that links the inputs and outputs. The internal memory of an RNN
assumes the form of a hidden state, evolving as the network traverses each element of the
sequence. This hidden state acts as a repository, preserving pertinent information related to
prior inputs and their influence on the current step. The Long Short-Term Memory network
is a common version of RNNs. When propagating information over lengthy sequences,
ordinary RNNs may have the issue of vanishing gradients. To manage information flow
and solve the vanishing gradient issue, LSTMs employ specialized memory cells and gating
systems. This makes LSTM a preferred choice when exploiting both spatial and temporal
information from the end-systolic and end-diastolic frames.

3.4.4. Hyperparameter Tuning

In this study, the best hyperparameters and the corresponding model were obtained
using a grid search with five-fold cross-validation. The hyperparameter values for the ML
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models, along with their descriptions and the range of values considered for grid search,
are provided in Table 1.

Table 1. Hyperparameters of Machine Learning Algorithms.

ML Algorithm Hyperparameter Definition Range of Values for
Grid Search

Values Selected for
the Model

SVR *

Kernel type The kernel function [Linear, RBF] RBF

Degree Degree of the kernel
function [2–6] 5

Gamma Kernel Coefficient [0.001, 0.01, 0.1, 1] 0.01

C Regularization
Parameter [0.1, 1, 10] 10

Epsilon Tolerance around the
ground truth [0.1, 0.01, 0.001] 0.1

RF *

n_estimators Number of trees in the
Forest [100–500] 400

max_depth Maximum depth of the
tree [None, 5, 10] None

max_features
Number of features to
consider when looking

for best split
[auto, sqrt, log2] Auto (40)

DT *

max_depth Maximum depth of the
tree [5–10] 9

min_samples_leaf
Minimum number of

samples required to be
at a leaf node

[5–20] 17

min_samples_split
Minimum number of
samples required to
split at internal node

[5–20] 15

* SVR: Support Vector Regression, RF: random forest, DT: decision tree.

Table 2 gives the hyperparameter values for the neural networks. For both simple
RNNs and LSTMs, sequential models were constructed using the Keras library, comprising
three layers of each followed by a dense layer. To determine the optimal number of hidden
units, different configurations were tested. The models’ hyperparameters were fine-tuned
to optimize their performance. The models were then compiled using the loss function and
optimizer as mentioned for each NN in Table 2. This hyperparameter configuration was
chosen based on the goal of minimizing the mean squared error between the predicted and
the ground truth values.

Table 2. Hyperparameters of neural networks.

Hyperparameter Simple RNN LSTM

Model Layers 3 3
Dense Layer 1 1

Nodes in Layers 1, 2 and 3 128, 32, 16 units 64, 32, 16 units
Loss Function MSE * MSE *

Optimizer Adam SGD *
Batch size 32 32

Epochs 70 100
Learning Rate 0.001 0.001

Activation Function tanh tanh

* MSE: Mean Squared Error, SGD: Stochastic Gradient Descent.
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4. Results
4.1. Evaluation Metrics

The dice similarity coefficient (DSC) is used to evaluate the performance of the seg-
mentation tasks by finding the similarity or overlap between the segmented image and
the ground truth mask [34–36]. It is particularly useful for evaluating the accuracy of
binary segmentation masks, as is the case in this study. The formula for calculating the dice
similarity coefficient is given in Equation (3).

DSC =
2|ω̂ ∩ω|
|ω̂|+ |ω| (3)

where ω̂ and ω represent the estimate of the segmented mask and the ground truth,
respectively. |ω̂| and |ω| represent the sizes of these masks, and |ω̂|+ |ω| represents the
intersection of these masks. The DSC ranges from 0 to 1, where 0 indicates no overlap or
dissimilarity between the sets, and 1 indicates a perfect match or complete overlap between
the sets.

To evaluate how accurately features have been extracted from LV masks based on
Simpson’s method, the Hausdorff Distance (HD) and mean absolute error (MAE) between
contour points is used. The Hausdorff distance between sets U and V can be calculated
as follows:

(U, V) = max
(

max
u∈U

min
v∈V
‖u− v‖, max

v∈V
min
u∈U
‖u− v‖

)
(4)

where U represents the set of contour points obtained from the ground truth LV mask and
V represents the set of contour points obtained from the predicted LV mask. The Hausdorff
distance and MAE in this case are given in millimeters (mm).

The accuracy of the regression estimates is measured using mean absolute error (MAE)
and root mean squared error (RMSE), which are the percentage errors in the case of LVEF.
RMSE gives comparatively large weight to big errors because the errors are squared before
being averaged. In our case, undesirably larger errors are present mostly because of a few
erroneous files in the data. Hence, MAE in this case is a more desirable metric from an
interpretation point of view.

To access the agreement between the estimated LVEF and the ground truth value of
LVEF, the Pearson correlation coefficient is used, which is given in Equation (5).

Corr = ∑n
i=1(pi − p)(qi − q)√

∑n
i=1(pi − p)2 ∑n

i=1(qi − q)2
(5)

where pi and qi are the individual data points and p and q are the averages of the estimated
and ground truth LVEFs, respectively. A perfect correlation has a value of 1, whereas 0
indicates no correlation between p and q.

4.2. Results of LV Segmentation and LVEF Estimation

The overall dice similarity coefficient obtained for LV segmentation is 0.92, which
indicates a considerably reasonable similarity index. The DSCs for segmentation of systolic
and diastolic frames are given in Table 3. The table also includes the Hausdorff distance and
mean absolute error for extracted features (volume tracings) in systolic and diastolic frames.

To estimate LVEF, the set of features derived from Simpson’s method comprises the
diameters of the disks obtained from Simpson’s method, along with the length of LV.
A combination of regression techniques was applied to this set of features. LSTM and RNN
were also used to estimate LVEF. Table 4 shows the results obtained.

We conclude from these results that the best estimations are obtained when LSTM is
used for the regression of LVEF on extracted features from LV segmentations. Amongst
traditional machine learning methods, SVR and RF also produced comparable results.
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Figure 6 displays the correlation and Bland–Altman plots, illustrating the relationship
between the ground truth and predicted values of LVEF. The comparison is conducted
between the utilization of LSTM as a regression technique and the direct application of
Simpson’s method for calculating LVEF.

(a)

(b)

Figure 6. Left: Bland–Altman Plot (The blue line shows the line of perfect average agreement, red
lines show limit of agreement bounds at ±1.96 standard deviation) Right: Correlation Plot (Red line
shows the line of perfect fit) : (a) LSTM; (b) Simpson’s method.

Table 3. LV Segmentation and Feature Extraction.

DSC * HD * (mm) MAE * (mm)

Segmentation—Systolic 0.930 - -
Segmentation—Diastolic 0.911 - -

Volume Tracings—Systolic - 6.324 6.704
Volume Tracings—Diastolic - 7.280 5.716

* DSC: Dice Similarity Coefficient, HD: Hausdorff Distance, MAE: Mean Absolute Error.
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Table 4. Regression on Extracted Features.

Regressors MAE RMSE Corr

LSTM * 5.736 7.726 0.777
Simple RNN * 6.489 9.180 0.746

SVR * 6.727 8.908 0.689
RF * 6.799 9.022 0.677
DT * 6.865 9.084 0.671
LR * 6.736 8.954 0.683

Simpson’s Method 9.492 13.300 0.638

* LSTM: Long short-term memory network, RNN: Simple Recurrent Neural Network, SVR: Support Vector
Regression, RF: random forest, DT: decision tree, LR: linear regression.

5. Discussion
5.1. Summary and Contributions

In this study, the proposed method aligns with the clinical workflow of the LVEF
estimation and gives insight into the intermediate steps undertaken by cardiologists in
the process of LVEF calculation, including LV segmentation and finding volume tracings.
By incorporating these essential components, the proposed method not only ensures
interpretability but also maintains consistency with the established clinical workflow.

In clinical practice, left ventricle segmentation is typically obtained from the end-
diastole and end-systole frames of an echocardiogram. The LV is divided into disks,
which are used to calculate the left ventricular end-diastolic and end-systolic volumes.
LVEF is then derived using these volumes obtained from both the apical two-chamber
(A2C) and apical four-chamber (A4C) views. In this research, the echocardiogram dataset
consists solely of A4C views, limiting the use of Simpson’s biplane method, which relies
on orthogonal views. To overcome this limitation, machine learning regression algorithms
are applied to estimate LVEF using the available A4C data. Additionally, the established
clinical workflow is also followed to calculate LVEF according to the equation for the
monoplane Simpson’s method for comparison. In situations where orthogonal views, such
as A2C and A4C, are not accessible, employing machine learning techniques to estimate
LVEF from the diameters of the disks yields improved outcomes.

In this study, both neural networks and traditional machine learning algorithms have
been utilized. A key consideration in this research revolves around the intrinsic need to
leverage the temporal information embedded within the data. The ejection fraction, which
quantifies the difference between the volume of blood pumped into the left ventricle during
systole and the volume pumped out during diastole, heavily relies on the temporal informa-
tion encapsulated between these two consecutive frames. The utilization of recurrent neural
network and Long-Short Term Memory models enable the exploitation of this information
between systolic and diastolic frames. These network architectures are specifically designed
to handle sequential data and capture the temporal dependencies between consecutive
inputs, enabling them to learn from the contextual information across time.

The minimum MAE for estimating LVEF was obtained when LSTM was employed
for regression with Simpson’s diameters and LV length taken as set of features. In Table 5,
a comparative analysis was conducted for LVEF estimation using various existing methods
on the EchoNet-Dynamic dataset. The proposed method outperformed the estimates by
other studies, demonstrating its superior performance in LVEF estimation. While many
studies typically estimate LVEF using many frames extracted from the video sequences,
our approach, in which we focused on features extracted solely from the end-diastolic and
end-systolic frames, can be sufficient for accurately predicting LVEF, rather than analyzing
the entire video sequence. These key frames represent the maximum and minimum
volumes of the left ventricle, and by capturing the essential information from these frames,
the model can ensure consistency with clinical practices while still achieving accurate
LVEF estimation.
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There were certain implementation challenges in this study, which include choosing
the appropriate machine learning architecture and optimizing its hyperparameters. Ex-
tensive experimentation with multiple architectures has been performed, including fully
convolutional networks (FCNs) and DeepLab Networks with different combinations of
backbone architectures, including ResNet18, ResNet50, and ResNet101, to identify the most
suitable segmentation model for our task. Similarly, for the regression model, thorough
hyperparameter tuning and cross-validation were conducted to optimize the model’s per-
formance. In addition, deep learning models require substantial computational resources
for training and inference. The availability of high-performance computing infrastructure,
including GPUs, was essential to efficiently train our models. We acknowledge that the com-
putational requirements may pose challenges in resource-constrained settings, and future
work should focus on developing more resource-efficient models without compromising
accuracy. Furthermore, there are a few cases in the dataset that contain erroneous volume
tracings. The presence of these samples might have decreased the overall efficiency of the
results. Some preprocessing steps might be introduced to tackle such cases in the future.

5.2. Clinical Relevance and Practical Implications

Estimating LVEF through ML techniques offers several advantages in daily clinical
practice. Machine learning algorithms can automate the process of LVEF estimation, re-
ducing the time and effort required by clinicians. This allows for faster and more efficient
assessment of cardiac function, enabling timely decision-making and patient manage-
ment. Moreover, by providing standardized and consistent LVEF measurements, the
inter-observer variability commonly seen in manual assessments can be considerably re-
duced. This ensures greater accuracy and reliability in the evaluation of cardiac function
across different healthcare settings and clinicians.

Automated LVEF estimation using ML techniques also has significant applicability
in point-of-care ultrasound (POCUS) devices. These devices are typically compact and
portable, making them suitable for use in ambulances, remote clinics, and far-flung areas.
POCUS devices equipped with ML-based LVEF estimation algorithms can be readily
used by non-expert healthcare providers, such as paramedics or clinicians in remote
areas and enable real-time LVEF estimation, providing immediate feedback to aid in
diagnostic decision-making and patient management. This enables remote consultation,
where acquired ultrasound images and LVEF estimations can be shared with experts located
in urban centers, facilitating expert guidance.

Table 5. Comparative analysis with other studies for LVEF estimation.

Model MAE RMSE Corr

MC3 * [37] 5.91 6.80 -
R2 + 1D * [37] 6.87 7.55 -

LSTM [32] 8.08 11.98 0.348
DL * Based Workflow [31] 6.5 - 0.76

Proposed Method 5.73 7.72 0.78

* MC3: Mixed Convolution 3, R2 + 1D: Spatiotemporal Convolutional block, DL: Deep Learning.

It is important to note that while these advantages hold great promise, the integration
of machine learning into daily clinical practice requires careful validation, standardization,
and regulatory considerations. Nonetheless, the potential benefits of machine-learning-
based LVEF estimation make it an exciting and promising avenue for enhancing clinical
decision-making and patient care.

5.3. Limitations and Future Directions

There are several limitations to consider in this work. The performance and generaliz-
ability of the proposed method heavily rely on the availability and quality of the training
data. Limited access to diverse and representative datasets may impact the model’s ability
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to generalize to different populations and imaging conditions. The proposed method
may also be sensitive to variations in imaging protocols and equipment. Factors such as
image resolution, image quality, and anatomical variations among individuals can affect
the accuracy and reliability of the LVEF estimation. These limitations provide opportunities
for future research and improvements to enhance the accuracy, interpretability, and clinical
applicability of the proposed LVEF estimation method.

The current study focused on using the A4C view for LVEF estimation. However,
the availability of A2C view data can give an opportunity for further extension of the study.
By incorporating the A2C view along with the A4C view already used, it is anticipated
that it can potentially improve the accuracy and reliability of the LVEF estimation. Fur-
ther, machine learning techniques can be used to incorporate patient-specific information
and adapt their algorithms to individual characteristics. This allows for a personalized
assessment of LVEF, considering factors such as age, gender, comorbidities, and previous
medical history. This personalized approach can lead to more tailored treatment plans and
improved patient outcomes.

6. Conclusions

The objective of this study was to estimate the left ventricle function utilizing echocar-
diographic videos from the EchoNet-Dynamic dataset, comprising the apical four-chamber
(A4C) views. The initial phase entailed the segmentation of the LV from the videos,
followed by the extraction of relevant features from the obtained segmentation results.
Subsequently, various regression algorithms were employed to estimate the left ventricular
ejection fraction based on these extracted features.

Among the regression techniques employed, the LSTM network gave the best results
with the least MAE. Additionally, the Support Vector Regression algorithm demonstrated
comparable outcomes while offering the advantage of lower computational complexity.

The evaluation of LVEF is limited when relying solely on the apical four-chamber
(A4C) view, as its accuracy is heavily dependent on the selection of a single imaging plane.
If the chosen plane does not adequately represent the entire LV volume, the measurements
may not accurately reflect the true LV function. However, tracing the endocardial border in
multiple phases of the cardiac cycle can be a time-consuming and labor-intensive process,
especially in challenging scenarios such as poor image quality or fast heart rates. As a
result, our proposed techniques offer a valuable alternative by yielding results of acceptable
accuracy even when measurements are based on a single imaging plane. This simplifies
the analysis process and provides a practical solution for clinical applications.
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Abbreviations
The following abbreviations are used in this manuscript:

LVEF Left Ventricle Ejection Fraction
EDV End-Diastolic Volume
ESV End-Systolic Volume
LSTM Long Short Term Memory
RNN Recurrent Neural Network
SVR Support Vector Regressor
RF Random Forest
DT Decision Tree
LR Linear Regression
HD Hausdorff Distance
MAE Mean Absolute Error
RMSE Root Mean Square Error
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