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Abstract: Predicting outcomes after mechanical thrombectomy (MT) remains challenging for patients
with acute ischemic stroke (AIS). This study aimed to explore the usefulness of machine learning (ML)
methods using detailed apparent diffusion coefficient (ADC) analysis to predict patient outcomes
and simulate the time limit for MT in AIS. A total of 75 consecutive patients with AIS with complete
reperfusion in MT were included; 20% were separated to test data. The threshold ranged from
620 × 10−6 mm2/s to 480 × 10−6 mm2/s with a 20 × 10−6 mm2/s step. The mean, standard
deviation, and pixel number of the region of interest were obtained according to the threshold.
Simulation data were created by mean measurement value of patients with a modified Rankin score
of 3–4. The time limit was simulated from the cross point of the prediction score according to the
time to perform reperfusion from imaging. The extra tree classifier accurately predicted the outcome
(AUC: 0.833. Accuracy: 0.933). In simulation data, the prediction score to obtain a good outcome
decreased according to increasing time to reperfusion, and the time limit was longer among younger
patients. ML methods using detailed ADC analysis accurately predicted patient outcomes in AIS and
simulated tolerance time for MT.

Keywords: acute ischemic stroke; MRI; ADC; machine learning

1. Introduction

Cerebral vascular diseases are commonly confronted in the neuro-emergency field.
Stroke is the most common serious manifestation of cerebrovascular disease. Stroke is the
fifth-leading cause of death in the fourth in Japan, and a major cause of severe disability.
According to the 2020 American Heart Association’s report on Heart Disease and Stroke
Statistics, it was estimated that approximately 2.5% of the population in the United States
experienced a stroke in 2016. This equates to around 7 million Americans aged 20 years
or older who had suffered from a stroke, resulting in nearly 800,000 stroke incidents and
approximately 150,000 deaths. Age is the primary demographic factor that contributes to
the risk of stroke, and although the incidence of stroke has decreased in recent years, the
lifetime risk of stroke has risen due to the aging population. Additional risk factors include
being female and belonging to the African American race. The estimated cost of stroke for
the year 2014–2015 was $45.5 billion [1].

Cerebral infarction is the main characteristic of ischemic stroke. When there is insuf-
ficient blood supply to the cerebral tissue, the first stage involves a reversible decline in
tissue function. If this condition persists, it progresses to infarction, resulting in the loss
of neurons and supportive structures. Ischemia triggers a series of events, starting with
the loss of electrical function and leading to membrane dysfunction. This dysfunction
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involves an influx of calcium, which induces calcium-dependent excitotoxicity, the produc-
tion of reactive oxygen species, and ultimately the breakdown of cell membranes and cell
lysis [2–4].

Cerebral infarction has several different mechanisms [5]. Cardio embolism, which
involves the formation of blood clots in the heart, is the prevailing cause of stroke. Most
emboli originate from the heart and are typically associated with cardiac conditions. Exam-
ples of common heart disorders that increase the risk of stroke include atrial fibrillation,
valvular heart disease, and cardiomyopathy resulting from myocardial infarction or hy-
pertension. Although less frequent, other factors can also contribute to cardiomyopathy.
In acute cardioembolism, the main cerebral arteries are often occluded by a blood clot.
Another prevalent underlying cause of stroke is large vessel disease. This type of disease is
commonly associated with atherosclerosis in the proximal cervical internal carotid arteries,
although it can also occur in more distal parts of the internal carotid arteries, the aorta, the
vertebral and basilar arteries, or intracranially. The second most common cause of large
vessel disease is arterial dissection, which typically affects the internal carotid or vertebral
arteries. Arterial dissection is often responsible for strokes in young patients who do not
have other risk factors, as well as in individuals with specific predisposing conditions.
These acute large vessel occlusions are called Acute ischemic stroke (AIS).

The development of irreversible infarction in cerebral tissue is influenced by the degree
and duration of the decline in cerebral blood flow. When cerebral blood flow drops by
approximately 50%, patients generally do not experience any symptoms. However, as
the flow further decreases, reversible dysfunction of neurons takes place, resulting in
ischemic symptoms that typically manifest as functional deficits corresponding to the
affected area. If blood flow is restored promptly enough, neuronal function can return
without any infarction, which is referred to as a transient ischemic attack [2,6,7]. However,
if low blood flow leading to ischemia persists for a significant duration, irreversible tissue
damage occurs, triggering the same pathophysiological processes observed in cerebral
infarction or ischemic stroke. The time it takes for irreversible tissue injury to develop from
the onset of symptoms is dependent on the extent and duration of the decline in cerebral
blood flow. The acute management of stroke focuses on the timely reperfusion of at-risk
tissue through intravenous thrombolysis or endovascular thrombectomy, as well as the
optimization of hemodynamic status by carefully managing fluid volume, blood pressure,
and cardiovascular health. A significant breakthrough in acute stroke care was the use of
intravenous tissue plasminogen activator (tPA, alteplase) for acute ischemic stroke. While
IV tPA is generally beneficial, it may not effectively treat many patients, particularly those
with occlusions in proximal large vessels such as the middle cerebral artery (MCA) or
internal carotid artery (ICA) [8,9].

Although traditional treatment methods such as thrombolytics have been used to
restore blood flow in AIS, mechanical thrombectomy (MT) has emerged as a highly ef-
fective alternative in recent years [10–15]. Time to recanalization is crucial in MT for AIS,
with the best results achieved when the procedure is performed as early as possible after
symptom onset [16]. Patients who exhibit substantial functional deficits, along with a
large vessel occlusion, and present within 6 h of symptom onset, without evidence of a
significant stroke on CT or MRI scans, and without contraindications, should be evaluated
for endovascular thrombectomy. Additionally, certain selected patients who meet specific
criteria, even beyond the initial 6-h window, may also be considered for this intervention,
with the timeframe extended up to 24 h. The decision to proceed with late-window (>6 h)
intervention is based on imaging assessments that confirm the presence of salvageable
tissue at risk and a relatively small established core infarct. It is through these imaging
findings that patients can be identified and selected for the appropriate course of treatment.
MT involves minimally invasive procedures to remove blood clots, particularly in cases of
large-vessel occlusions, resulting in improved outcomes, and functional recovery.

Efforts to streamline the process of stroke care and reduce treatment times for MT have
led to advancements in procedural techniques and technologies, such as stent retrievers
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and improved imaging analysis [17,18]. Despite these efforts, achieving favorable clinical
outcomes in AIS, such as a modified Rankin score (mRS) of 0–2, has remained challenging.
Thus, knowledge of the time limit from imaging to obtain a good outcome will greatly
assist in the decision-making process of performing MT at the time of imaging examination
and carries great clinical merit. In particular, the time boundaries between poor and good
outcomes will be a crucial factor in clinicians’ decisions to apply MT.

To address this challenge, we focused on the apparent diffusion coefficient (ADC)
value and machine learning (ML) as potential solutions. The ADC value is calculated from
diffusion-weighted imaging (DWI) using two different b-values in magnetic resonance
imaging (MRI). The ADC value is a readily accessible quantitative value for assessing brain
tissue in the acute stage of AIS, even immediately after onset, and has been used to assess
AIS. DWI and ADC sequences demonstrate an almost 100% sensitivity in the detection of
acute infarction. The presence of bright lesions on DWI and dark lesions on ADC, without
early changes on FLAIR, typically indicates acute strokes captured within approximately
6 h from the onset [19–21].

ML is a powerful tool in the artificial intelligence (AI) field for analyzing complex
relationships among various factors and has been widely used in medical applications,
including outcome prediction [22–24]. AI is useful in triaging, diagnosing, patient selection,
and outcome prediction of large vessel occlusion (LVO), but its application is still in the
exploratory stage. Most literature focuses on diagnosis and demonstrates reasonably high
accuracy. The future priority of AI applications should shift beyond diagnosis to optimizing
treatment through more nuanced patient selection for mechanical thrombectomy (MT) and
predicting clinical and angiographic outcomes associated with it [22].

By leveraging ML techniques in obtaining ADC values, it may be possible to accurately
classify patient outcomes after MT. Moreover, the change in prediction score according to
the time process may allow us to simulate the time limit in which good outcomes can be
obtained.

Such predictive models could optimize patient selection for MT, leading to improved
clinical outcomes and better resource allocation in stroke care. Hence, this study aims
to investigate whether ML methods using detailed ADC analysis can accurately predict
patient outcomes in AIS and whether these models can simulate the tolerance time for MT.

2. Materials and Methods

This retrospective cohort study was carried out following the guidelines set forth in
the Declaration of Helsinki and received approval from the Institutional Review Board
(IRB) of Otaru General Hospital (IRB approval 04-019). Prior to their involvement in the
study, all patients or their respective families provided informed consent either orally or in
writing. The authors of this study declare that they have no conflicts of interest.

2.1. Patients

We included consecutive AIS patients with occlusion sites in the anterior circula-
tion who underwent MRI as their first imaging examination and endovascular treatment
immediately after arrival in our institution between January 2016 and December 2021.

To eliminate the impact of technical differences in the outcome, we targeted patients
who achieved complete reperfusion with thrombolysis in cerebral infarction grade 3 (TICI 3).
Patients who did not obtain complete reperfusion such as TICI 1 or 2 were excluded because
these patients did not avoid an impact of the remaining infarcted region. Additionally, pa-
tients who had an intra-cerebral hemorrhage in pre-post image examination were excluded.

Detailed patient information was obtained from medical records. The following data
were obtained; patient’s age, time to re-perfusion time from the imaging examination, num-
ber of passes to achieve TICI3, mRS in pre-AIS, National Institutes of Health Stroke Scale
(NIHSS) score in pre-AIS, Alberta Stroke Program Early CT Score (ASPECTS). ASPECTS
was manually identified using DWI with b = 1000 s/mm2 by the neurosurgeon. We defined
the patient outcome as either the mRS 3 months after onset or at the time of discharge.
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2.2. Image Acquisition

All MRIs were acquired using a 3-Tesla machine with a 32-channel head coil (Ingenia
3.0T, Philips Healthcare, Best, The Netherlands). The DWI parameters were as follows:
sequence was single-shot spin-echo–echo-planar imaging; repetition time was in the range
of 2000 milliseconds to 5000 msec; echo time was 79 msec; field of view was 230 mm; spatial
resolution was 1.8 × 2.34 mm; Flip angle was 90 degree; slice thickness was 5 mm; slice
number was 22; parallel imaging factor was 3; and scan time was 14 s. Other acquired
sequences were the following; arterial spin labeling, head and neck magnetic resonance
angiography, fluid-inversion recovery (FLAIR), T2* weighted imaging, and chest coronal
MRA. The protocol for AIS was performed for a total of about 10 min of actual scan time.

2.3. ADC Analysis

To perform the detailed evaluation of the ADC value, we developed original graphic
user interface software using in-house MATLAB software (The Mathworks, Inc., Natick,
MA, USA). Figure 1 depicts the software structure. This software allows semiautomatic
analysis according to the threshold of ADC. The procedure was as follows: at first, analysts
roughly drew circular regions of interest (ROIs) covering high signal areas in DWI and low
value in ADC or occlusion sites. Then, ROIs with ADC values less than 620 × 10−6 mm2/s
were created by automatically processing according to the threshold roughly ROI in the
above. The extra parts were removed manually with care. All 22 slices were used for ADC
analysis.
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Figure 1. The graphic user interface of original software in MATLAB. According to threshold of
ADC value (620 × 10−6 mm2/s–480 × 10−6 mm2/s, 20 × 10−6 mm2/s step), low ADC value area
was semi-automatically segmented. The mean, standard deviation (SD), and voxel number were
measured of each ROI. (Personal information was masked).

We could obtain all pixel values of each ROI corresponding to each threshold using
MATLAB software. Therefore, the sum or average of them is simply obtained. Therefore,
upon pressing the calculate button, the values corresponding to each ADC value were
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calculated from the ROI, and the mean, standard deviation (SD), and pixel number were
measured with each threshold.

The ADC threshold was used in increments of 20× 10−6 mm2/s from 620 × 10−6 mm2/s
to 480 × 10−6 mm2/s. All values were saved into a comma-separated value file. Two
experienced radiographers with 21 and 9 years of experience performed the measurements
under an individual separate setting. Intraclass correlation coefficients (ICCs) were calculated
for all measurement values.

Eight thresholds were used. Additionally, ROIs were created corresponding to each
threshold. The fusion images were created in the following steps. Mask image which had 0
or 1 signal was created according to ROIs. Eight mask images were accumulated into one
image. Therefore, each pixel of accumulated images would have a maximum value of 8
and a minimum value of 0. This pixel value was displayed in steps by color and fused with
a b = 1000 image.

In all cases, the neurosurgeon confirmed the consistency between the occlusion point
and ROI using the fusion image (Figure 2). Furthermore, fusion images between DWI with
b = 1000 s/mm2 and each ROI of the ADC value were created automatically.
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Figure 2. The fusion image ROI of each threshold and b = 1000 image. Stepwise color tone changes
can be observed according to the ADC value. All images were reviewed by the neurosurgeon for any
differences from the occlusion point.
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In the fusion image, the discrepancy of threshold was described as a gradual color
change from white to deep red. Therefore, observers can understand the discrepancy as
texture according to the threshold in the ischemic region.

2.4. Data Handling and ML

At first, we divided patients into two groups which were the good outcomes group and
the poor outcome group. We defined an mRS of 0–2 as indicating a good outcome and any
score greater than 3 as indicating a poor outcome. We attempted to construct a classification
model to distinguish between good and poor outcomes using ML methods. We used
Python 3.8.6 (Jupyter Lab and the Pycaret Library) for data handling and construction of
ML models.

Initially, patients were randomly split into 80% training data and 20% testing data
groups. We performed data augmentation on the training data by reversing the occlusion
site from left to right and vice-versa. In addition, we performed synthetic data generated
using the ctgan method. The sample size of the training data was increased to 220 cases.
Normalization was performed using the robust method. To address the imbalance in
data. we also applied the synthetic minority oversampling technique (SMOTE). The
feature selection threshold was set to 0.80 [25]. The following features were used for the
construction of the classification ML models: patients’ age, sex, occlusion location (right or
left), time to reperfusion from imaging, mean of ADC, SD of ADC, and pixel number of
region. In total, we used 28 features to create the ML models. All features were used as
continuous values.

The ML algorithms were used to identify significant models. We compared the
performance of 15 ML algorithms based on accuracy, the area under the curve (AUC),
recall, precision, and F1 scores by validation data. To create a single model for predicting
the output, a voting classifier ML model was also constructed by combining the two best
models. We applied five-fold cross-validation in all model construction processes. The
importance of features was confirmed in the top two models. The top three features were
then compared between the good and poor outcomes.

We then evaluated the two best and the created blend models in terms of accuracy
and AUC on the test set. The confusion matrix provided AUC, accuracy, recall, precision,
and F1 scores.

2.5. Simulation to Estimate the Time Limit for MT

We conducted a simulation study to investigate the time limit to obtain good outcomes
by the MT. The simulation data were created from the average values of overall patients
with mRS 3 or 4 in the same cohort group of the model construction. The simulation data
with three different ages were prepared to investigate the difference in outcomes due to
age. Three ages were mean values and ±SD. The other parameters were set as follows: sex,
male; occlusion site, right. The time to reperfusion from imaging was changed from 10 to
360 min. Prediction scores were calculated according to the time to reperfusion from the
imaging, using the best model which was created in the above studies. The relationship
between time to reperfusion from imaging and prediction score, the time limit was defined
from the cross point of the prediction score in both good and poor outcomes. We evaluated
the time limit from the relationship between time and prediction scores. The time limit for
MT was defined as the cross point of the prediction score in both good and poor outcomes.
Differences in time limit by age and trends in the dynamics of the prediction score were
confirmed.

2.6. Statistical Analysis

We used the Wilcoxon signed test to compare the performance of the ML model and
each value in the good outcome group and the poor outcome group. A p-value < 0.05 was
considered statistically significant. We used R version 4.1.1 for all statistical analyses and
figure creation.



Diagnostics 2023, 13, 2138 7 of 14

3. Results
3.1. Participants and ADC Value Analysis

Table 1 presents the summary of participants; 75 patients met our criteria. The mean
age was 79.9 years, and the time to reperfusion (im2P) was 121.6 min. The mean number of
passes to obtain TICI 3 was 1.8.; The mean pre- and post-mRS were 0.8 and 3.5.; The mean
NIHSS was 17.6.; The mean ASPECTS was 8.1. Further detailed patient information was
shown in the Supplementary Materials (Table S1).

Table 1. The summary of participants.

n 75 (M: 33, F:42)

Mean ± SD Max–Min Median IQR

Age 79.9 ± 8.8 46–96 80 [76–86.5]
Image to re-perfusion (min) 121.6 ± 43.9 53–272 117 [87–148]

Pass 1.8 ± 1.1 1–6 1 [1–2]
TICI 3 ± 0 3–3 3 [3–3]

Pre mRS 0.8 ± 1.2 0–4 0 [0–1]
Post mRS 3.5 ± 1.5 0–6 4 [2–5]

NIHSS 17.6 ± 6.7 3–35 18 [13.5–23]
ASPECTS 8.1 ± 2.4 2–11 9 [7–10]

Table 2 shows the summary of the ADC value analysis. In all values, ICCs were higher
than 0.95.

Table 2. The intraclass correlation coefficients (ICC) between two measures. High correlations were
confirmed among all values. This result showed the robustness of original software in the ADC
analysis.

Thresh Hold Mean ICC (1, 2)

Mean of ADC value

620 × 10−6 mm2/s 566.148 0.99854
600 × 10−6 mm2/s 550.277 0.99817
580 × 10−6 mm2/s 525.785 0.99924
560 × 10−6 mm2/s 505.935 0.99842
540 × 10−6 mm2/s 487.790 0.99577
520 × 10−6 mm2/s 469.877 0.98503
500 × 10−6 mm2/s 457.271 0.98959
480 × 10−6 mm2/s 440.193 0.99678

SD of ADC value

620 × 10−6 mm2/s 149.549 0.99496
600 × 10−6 mm2/s 149.758 0.99331
580 × 10−6 mm2/s 143.564 0.99323
560 × 10−6 mm2/s 138.367 0.99242
540 × 10−6 mm2/s 140.507 0.99357
520 × 10−6 mm2/s 137.920 0.99159
500 × 10−6 mm2/s 133.415 0.99553
480 × 10−6 mm2/s 130.750 0.95665

Voxel number

620 × 10−6 mm2/s 7290.500 0.99982
600 × 10−6 mm2/s 5206.500 0.99985
580 × 10−6 mm2/s 3283.500 0.99984
560 × 10−6 mm2/s 2431.500 0.99986
540 × 10−6 mm2/s 1991.500 0.99988
520 × 10−6 mm2/s 1278.000 0.99989
500 × 10−6 mm2/s 1132.000 0.9999

480 × 10−6 mm2/s 897.000 0.99991

3.2. Comparison of the Performance of ML Models to Estimate Patient Outcomes

Table 3 presents a comparison of the performance of the ML models for validation.
The best-performing model was the extra tree classifier, and the second was the random
forest tree. Table 4 shows the performance of the best two models after parameter tuning
for AUC.
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Table 3. The summary of the comparison of models in Pycaret. The top-performance model was the
Extra tree classifier and the second performance model was the Random forest classifier.

Model AUC Accuracy Recall Prec. F1

Extra Trees Classifier 0.8983 0.8267 0.9402 0.8383 0.8844
Random Forest Classifier 0.8952 0.8447 0.9054 0.8809 0.8912
Light Gradient Boosting Machine 0.8909 0.8330 0.9141 0.8569 0.8836
Gradient Boosting Classifier 0.8857 0.8330 0.9058 0.8638 0.8827
Ada Boost Classifier 0.8056 0.7907 0.8533 0.8556 0.8503
Logistic Regression 0.7808 0.7424 0.7743 0.8602 0.8043
Decision Tree Classifier 0.7720 0.7902 0.8185 0.8744 0.8439
Linear Discriminant Analysis 0.7471 0.7011 0.7062 0.8502 0.7652
Naive Bayes 0.7450 0.6588 0.6210 0.8567 0.7176
K Neighbors Classifier 0.7341 0.6472 0.6040 0.8555 0.7032
Quadratic Discriminant Analysis 0.6158 0.7604 0.9312 0.7742 0.8434
Dummy Classifier 0.5000 0.3053 0.0000 0.0000 0.0000
SVM–Linear Kernel 0.0000 0.6535 0.6732 0.8143 0.7270
Ridge Classifier 0.0000 0.7189 0.7232 0.8632 0.7794

Table 4. The summary of the model performance after tuning for validation data.

Tuned Model AUC Accuracy Recall Prec. F1 Kappa MCC

Extra Trees Classifier 0.9178 ± 0.0918 0.8451 ± 0.0675 0.9141 ± 0.0542 0.8708 ± 0.0557 0.8912 ± 0.0486 0.6203 ± 0.1638 0.6268 ± 0.1600
Random Forest

Classifier 0.9146 ± 0.0754 0.8449 ± 0.0806 0.9225 ± 0.0576 0.8678 ± 0.0736 0.8927 ± 0.0559 0.6086 ± 0.2092 0.6202 ± 0.2000

Blend model 0.9076 ± 0.1225 0.8500 ± 0.095 0.9235 ± 0.0695 0.8751 ± 0.0854 0.8962 ± 0.0647 0.6232 ± 0.2507 0.6400 ± 0.2328

Figure 3 shows the feature importance of each model. In both models, the most important
feature was time to reperfusion, the second most important feature was patient age, and the
third most important was SD of ADC ≤ 580 × 10−6 mm2/s. In comparison to each value
between the good outcome group and the poor outcome group, there was a significant differ-
ence in all values between the good and poor outcome groups (Figure 4). Figure 5 presents
the confusion matrix of the best two models on the test data. Furthermore, Table 5 displays
the performance of each model for the test data sets. The extra tree classifier demonstrated the
best performance (accuracy, 0.933; AUC, 0.833, Recall, 0.667, F1 score, 0.800).
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Table 5. The result of the model performance for test data. The extra tree classifier demonstrated the
highest area under the curve (0.833) and accuracy (0.933).

Model AUC Accuracy Precision Recall F1 Score

Extra Trees Classifier 0.833 0.933 1.000 0.667 0.800
Random Forest Classifier 0.750 0.800 0.500 0.667 0.571

Blend model 0.750 0.800 0.500 0.667 0.571
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3.3. Simulation to Estimate the Time Limit for MT

Figure 6 shows the relationship between the prediction score and time to reperfusion
in the simulation data. The prediction score for obtaining a good outcome decreased
according to increasing time to reperfusion from imaging. The time limit demonstrate as
the cross point was longer for young age, and shorter for older age. The prediction score to
obtain a good outcome was lower according to aging.

Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

Table 5. The result of the model performance for test data. The extra tree classifier demonstrated the 

highest area under the curve (0.833) and accuracy (0.933). 

Model AUC Accuracy Precision Recall F1 Score 

Extra Trees Classifier 0.833 0.933 1.000 0.667 0.800 

Random Forest Classifier 0.750 0.800 0.500 0.667 0.571 

Blend model 0.750 0.800 0.500 0.667 0.571 

3.3. Simulation to Estimate the Time Limit for MT 

Figure 6 shows the relationship between the prediction score and time to reperfusion 

in the simulation data. The prediction score for obtaining a good outcome decreased ac-

cording to increasing time to reperfusion from imaging. The time limit demonstrate as the 

cross point was longer for young age, and shorter for older age. The prediction score to 

obtain a good outcome was lower according to aging. 

 

Figure 6. The relationship between the prediction score and time to reperfusion in the simulation 

data. 

4. Discussion 

This study introduced a novel approach that uses ML to estimate patient outcomes 

and a time limit for MT in AIS. ADC values are the most accessible quantitative value and 

worked to assess patient outcomes and the time limit to reperfusion by mechanical throm-

bectomy after imaging. Our results demonstrated that the ML model using the detailed 

ADC analysis achieved high accuracy and AUC in predicting outcomes. 

Figure 6. The relationship between the prediction score and time to reperfusion in the simulation data.

4. Discussion

This study introduced a novel approach that uses ML to estimate patient outcomes
and a time limit for MT in AIS. ADC values are the most accessible quantitative value
and worked to assess patient outcomes and the time limit to reperfusion by mechanical
thrombectomy after imaging. Our results demonstrated that the ML model using the
detailed ADC analysis achieved high accuracy and AUC in predicting outcomes.

Previous studies have demonstrated that time to reperfusion is a crucial factor in
achieving better clinical outcomes, with worse outcomes observed as the time to reperfusion
increases. In AIS patients due to LVO, 32,000 neurons are lost per second, 8.7 h of aging
per second [26]. This dramatic change is directly related to patient outcomes and is the
main reason why “time is brain” is used as a keyword in AIS treatment. ADC values might
reflect such a drastic change in brain tissue after the onset of LVO. In the keyword “Time
is brain”, accessibility is an important factor in clinical use, and it is considered that ADC
values were suitable to construct ML models to evaluate the acute stage of AIS.

Age also plays a role in AIS treatment outcomes, with older age groups experiencing
more difficulty in achieving good outcomes. It is reported that a very poor three-month
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outcome was independently associated with higher admission NIHSS, absence of throm-
bolysis, absence of recanalization, and higher frailty status in elderly patients over 80 years
old [27,28]. This study supports these findings, with both times to reperfusion and age
identified as important predictors of outcomes. In this study, all patients obtained complete
recanalization, the age of the poor outcome group is significantly higher, implying that
obtaining a good prognosis remains difficult for the elderly.

In our cohort group, there was a significant difference between a good outcome group
and a poor outcome group in time to re-perfusion from imaging and age. This result demon-
strated the same trend as previous studies. Moreover, SD of ADC ≤580 × 10−6 mm2/s
worked as a third important feature. This result means that ADC value will work as one of
the predictive factors of patient outcome in AIS as mentioned in the previous studies.

In the simulation data, the prediction score of good outcomes decreased according
to time elapsed and higher age and that of poor outcomes increased according to age.
Younger age demonstrated a longer time limit to obtain good outcomes. Basically, these
findings which were obtained using the ML model demonstrated a similar trend to previous
studies. In other words, the ML model which was constructed from the detailed ADC
analysis integrated previous studies and allowed to immediately predict individual patient
outcomes.

Prediction of outcomes and the time limit for MT provide some clinical merits. Our
results contribute to the decision as to whether to apply MT for each patient. For instance,
25% of all strokes occur during sleep [29]. So called, “Wake-up stroke”. In these patients, the
accurate time from the onset cannot be known. In clinical practice, we often face difficulty
to decide the treatment strategy for these patients. In other words, whether MT should be
applied for wake-up ischemic stroke is a major concern. FLAIR-DWI mismatch provides
important information to use rt-PA. Patients with DWI-FLAIR mismatch can be presumed
to be within 3 h of onset and can therefore receive rt-PA [30]. However, the effects of rt-PA
on the internal carotid artery and proximal main trunk occlusion are known to be limited,
and it is difficult to say that serious disability can be avoided in AIS due to LVO. On the
other hand, excessive medical care should be avoided in terms of cost and surgical risk,
and this boundary is always a source of concern.

In this study, we used the time to reperfusion from MRI as one of the features, and
it worded an important factor in estimating the outcome. This result may help resolve
a serious problem related to the onset time, such as a wake-up stroke. Because the time
between the imaging examination and MT is always clear. Additionally, when AIS occurs
alone, the last healthy time is often unclear due to unconsciousness. The use of time from
imaging examination resolves this problem and may be clinically useful. If the patient
outcomes can be estimated immediately after the imaging examination, it may be possible
to avoid MT for patients with low indications for treatment and reduce healthcare costs.
Moreover, the prediction of the time limit for MT offers clear time goals until recanalization
and allowed for avoiding unnecessary prolongation of MT. This also works to release a
medical resource.

Previous investigations have identified the ADC value as an important factor in
predicting a patient’s outcome. Perhaps ADC analysis accurately reflects the brain tissue
condition on imaging examination. Purushotham et al. identified a threshold ADC value
of <620 × 10−6 mm2/s for the ischemic core in AIS [31]. Gwak et al. investigated the
region volume using several thresholds and reported that a low value of the ratio between
<520 × 10−6 mm2/s and 620 × 10−6 mm2/s reflects less severe ischemic stress inside a
diffusion lesion in a large ischemic core and may predict clinical outcome [32]. In addition,
Yu et al. reported that ADC values worked as an individual prediction factor to predict the
progression of perforator artery cerebral infarction. There was a significant difference in the
mean ADC values of the ischemic region between the progress and nonprogress groups, but
an overlap of ADC values was also confirmed in their study. Less than 620 × 10−6 mm2/s
has been used as a standard to estimate the ischemic core volume in ADC analysis; however,
it is known that this does not perfectly reflect the core region [33]. Umemura et al. reported
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that a value >520 × 10−6 mm2/s can be salvageable by MT, and the high signal in DWI is
reversible [34]. Thus, ADC thresholds for predicting patient outcomes vary, and there is
no golden standard. A definitive ADC value that can serve as a predictive factor for the
outcome remains unknown.

From these aspects, we performed the detailed ADC analysis from 620 × 10−6 mm2/s
to 480 × 10−6 mm2/s with semiautomatic measurements using the original MATLAB soft-
ware, and attempted the ML method to reveal the complex relationship between ADC val-
ues and outcomes. As a result, in both of the best two models, an SD of <580 × 10−6 mm2/s
was the third important feature. This result showed that ADC values also worked as an
important feature to predict outcomes. Hence, combining the detailed ADC analysis and
ML method may be a good way to cover the conventional ADC value measurement with
manual measurement. It is possible to incorporate the ML model into the software for ADC
measurement, which means that immediate analysis can estimate patient prognosis. The
time to reperfusion from imaging was not considered in previous reports. Therefore, it
is inevitable that different ADC thresholds were calculated. That was the reason why we
also focused on the time to reperfusion from imaging to construct the ML model. Some
studies attempted to apply ML to AIS management. It was reported that ML can perform
the detection of occlusion sites in CT-A. ML did not contribute to improving the outcome.
Meanwhile, our study is a novel study to mention the limited time for MT. We proved the
new potential of ML in the management of AIS [35–37].

In this study, the pixel-number-based demonstration of ischemic volume did not
prove to be a significant feature. This could be attributed to our patient selection criteria,
which included only those with TICI 3. Previous research has suggested that even elderly
patients with a large ischemic volume may benefit from achieving complete reperfusion [38].
Therefore, there was a possibility that ischemic volume in pre-MT did not reflect outcomes
after MT, especially post-mRS after three months. In addition, cases of reversible changes
depending on the ADC value have also been observed. The trend may be confirmed
by measuring ischemic volume before and after MT. However, since the purpose of this
study was also to predict outcomes before MT, postoperative ADC measurements were not
performed in this study.

In constructing the ML models, we excluded features from physical findings such
as the National Institutes of Health Stroke Scale and preoperative mRS. Because these
features clearly significantly affected postoperative outcomes; however, these effects were
qualitative, and interobserver errors cannot be ignored. We believe that objectivity can be
ensured using features obtained from ADC.

This study had several limitations. First, we used only 75 cases from a single institution.
Additionally, we performed data augmentation such as left-right reversal. It would be
desirable to construct a model using more real data. Similar investigations should attempt
to use larger data sets including data from multicenters. Second, we used an automatic ML
method with the Pycaret module in Python. Therefore, we did not perform refining the ML
model to enhance the accuracy of the prediction. Thirdly, some patients may not be able to
receive MRI examinations due to the contradiction of MRI examination such as metallic
implants. Based on the results of this study, we need to try to construct a more detailed and
accurate model.

5. Conclusions

ADC is the most accessible quantitative value in the imaging examination in pre-
mechanical thrombectomy in acute ischemic stroke. Combing the detailed ADC analysis
and ML allowed us to predict patient outcomes after the operation. Additionally, the
simulation study using the prediction score calculated from the ML model offer the time
limit for reperfusion to obtain good outcome such as mRS 0–2. At younger ages, the
probability of obtaining a good outcome was high and the time limit to MT is long. Finally,
the ML model constructed from the detailed ADC analysis can largely contribute to the
application of MT.
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