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Abstract: Depression is increasingly prevalent, leading to higher suicide risk. Depression detection
and sentimental analysis of text inputs in cross-domain frameworks are challenging. Solo deep learning
(SDL) and ensemble deep learning (EDL) models are not robust enough. Recently, attention mechanisms
have been introduced in SDL. We hypothesize that attention-enabled EDL (aeEDL) architectures are
superior compared to attention-not-enabled SDL (aneSDL) or aeSDL models. We designed EDL-
based architectures with attention blocks to build eleven kinds of SDL model and five kinds of EDL
model on four domain-specific datasets. We scientifically validated our models by comparing
“seen” and “unseen” paradigms (SUP). We benchmarked our results against the SemEval (2016)
sentimental dataset and established reliability tests. The mean increase in accuracy for EDL over their
corresponding SDL components was 4.49%. Regarding the effect of attention block, the increase in the
mean accuracy (AUC) of aeSDL over aneSDL was 2.58% (1.73%), and the increase in the mean accuracy
(AUC) of aeEDL over aneEDL was 2.76% (2.80%). When comparing EDL vs. SDL for non-attention
and attention, the mean aneEDL was greater than aneSDL by 4.82% (3.71%), and the mean aeEDL was
greater than aeSDL by 5.06% (4.81%). For the benchmarking dataset (SemEval), the best-performing
aeEDL model (ALBERT+BERT-BiLSTM) was superior to the best aeSDL (BERT-BiLSTM) model by
3.86%. Our scientific validation and robust design showed a difference of only 2.7% in SUP, thereby
meeting the regulatory constraints. We validated all our hypotheses and further demonstrated
that aeEDL is a very effective and generalized method for detecting symptoms of depression in
cross-domain settings.

Keywords: depression; ensemble deep learning; attention-enabled; diagnosis; domain adoption

1. Introduction

Depression is a serious and debilitating mental health condition that affects millions of
people worldwide, affecting 260 million people globally [1]. According to the National In-
stitute of Mental Health, depression is increasingly prevalent, affecting individuals’ ability
to function in daily life, resulting in suicide risk increasing by 35.2% from 2000 to 2020 [2].
It is characterized by persistent feelings of sadness, hopelessness, and a loss of interest
in daily activities [3]. Individuals with depression often experience a range of physical
and emotional symptoms, including fatigue, insomnia, changes in appetite, and difficulty
concentrating in day-to-day activities [4,5]. Depression can have a significant impact on
an individual’s quality of life, affecting their personal and professional relationships, their
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ability to work, and their overall sense of well-being [6,7]. Therefore, early detection is
essential to prevent the condition from worsening and to help individuals access appropri-
ate treatment and support. Through this, individuals may be better able to manage their
symptoms and maintain their ability to work and contribute to society. This can lead to
better outcomes for both individuals and society as a whole [8,9].

Depression detection has been conducted for over 200 years through the identification
of an individual’s behavior by qualified psychologists [10,11]. Machine learning (ML)
has become very popular in healthcare, particularly in the field of the classification of
diseased vs. control patients [12,13]. Several studies have explored the use of statistical
ML models to categorize a person’s chats and texts as exhibiting either depressive or
non-depressive behavior by analyzing patterns in language use and to identify features
that are indicative of depression [14,15]. As observed before, ML models suffer from poor
performance due to their inability to handle the non-linearity of risk predictors and gold
standard labels or events [13,16,17]. Similarly, the linear structure architecture of current
automated depression detection models renders them susceptible to poor performance,
since they only focus on individual words and fail to consider the context of previous and
subsequent words. These models tend to be slow, due to non-parallel and slow processing,
and offer few options for algorithmic tuning and refinement.

Deep learning (DL) has rapidly gained momentum in large number of applications
due to its automated ability to extract automated features [18]. These models utilize fully
connected layers with neurons and activation functions, creating networks that mimic
the human brain’s functioning [19]. Recently, advanced DL models have penetrated the
field of text classification and are capable of identifying complex sequences in language
data [20–22]. The use of DL models and open-source embedding techniques, such as
Word2vec and GloVe [23], have shown promise in addressing the challenge of detecting
depression. By using embeddings, text data can be converted into dense vectors, where
semantically similar inputs are located close to each other [24]. The introduction of ar-
chitecture such as Gated Recurrent Units (GRUs) has improved the results of depression
detection [25], but there are still limitations, such as the nature of a single input–output
channel and the inability to achieve optimal results through a single base classifier.

Ensemble deep learning (EDL) represents a breakthrough in the field of DL, pro-
viding the potential for better performance than standalone models [26,27]. It enables
the training of data of varying sizes, shapes, and types to different base classifiers and
produces a single predictive output, which may be helpful in situations where data are
of a multimodal nature [28–30]. Studies, including [31], have employed clustering and
ensemble-based models to yield superior results in sentiment detection. To further enhance
the performance of EDL, incorporating attention channels (or blocks) into the model archi-
tecture could increase its robustness and enable a more focused analysis of specific input
tokens [32–34]. By identifying key features within the input data, the attention mechanism
could potentially improve the accuracy, reliability, and generalizability of the model, par-
ticularly in applications related to mental health or other complex domains. Study [35]
employed an attention-enabled LSTM model for sentiment analysis at the document level,
which included a joint loss function to enhance its performance. Additionally, transformers
have been widely used for sentiment analysis, as demonstrated by another study [36] that
utilized a weight ensemble of transformer models to detect aggressive text in the Bengali
language, employing various BERT-based techniques.

Multi-head co-attention networks enable us to attend independently to different parts
of a sequence. Study [37] leveraged this approach to perform aspect-level sentiment
analysis on a text dataset, surpassing existing methods. In the same domain of aspect-
based sentiment extraction, numerous studies have explored triplet extraction techniques
involving target, opinion, and sentiment extraction [38,39].

To conduct our study, we constructed eleven attention-enabled solo deep learning
(aeSDL) and five attention-enabled ensemble deep learning (aeEDL) models and evaluated
their performance on four main datasets, namely, two public datasets (SD-Sford-09 and DD-
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Kgg-22), and two proprietary datasets (DD-Red-14 and SD-Twi-2). We utilized self-attention
blocks to determine the overall performance improvement after incorporating attention
mechanisms into the models. Additionally, we calculated the average performance gain of
aeEDL versus aeSDL, as well as attention models versus non-attention, or without attention
(wa), models. We conducted a benchmark of our model on two public datasets and achieved
the best performance with our aeEDL (ALBERT+BERT-BiLSTM), outperforming previous
studies in the literature. Furthermore, we validated our model using various statistical
tests and cross-validation protocols on seen vs. unseen datasets to verify the robustness of
our aeEDL. Finally, we conducted cross-domain tests to demonstrate the adaptability of our
model by training and testing it on datasets with differing semantics.

This paper follows a systematic flow, beginning with Section 2, which describes the
methodology. Section 2.1 includes a discussion of the four types of dataset used in the study,
the architecture and building of both the SDL and EDL models are outlined in Section 2.2,
and the experimental protocols undertaken are discussed in Section 2.3. Next, the paper
describes the performance metrics used throughout the study in Section 2.4. The Results
section of the paper reports the findings of the study, which are presented across five
different experimental protocols in Section 3. Section 4 presents a performance evaluation,
whereby ROC curves and bar graphs showcase the models’ performance in Section 4.1,
and a discussion of the statistical tests used is presented in Section 4.2. Finally, the paper
discusses how the study’s findings compare with other related research studies in Section 5.
It also includes a discussion of the study’s principal findings, and a brief note on attention,
the strengths and weaknesses, and possible extensions of our current study.

2. Methodology

Our methodology involved using simple DL models as a starting point, since they
have proven to be effective in various natural language processing (NLP) tasks. To evaluate
a model’s efficiency and generalizability, we conducted tests on multiple intra- and cross-
domains. Therefore, the first step in our methodology was to collect multiple datasets.
Next, we constructed the architecture of the individual models, and then, used them to
build the aeEDL. Finally, we declare the experiment protocols that we implemented, as well
as the performance metrics that we utilized to evaluate the models.

2.1. Data Types and Their Preparation

The methodology employed in this study involved gathering data from multiple
sources and domains. To conduct our experiment, we collected data from four different
sources, two of which were publicly available, and two of which were proprietary. Finally,
the fifth sentimental dataset, the famous SemEval (2016) [40], was used for benchmarking.

2.1.1. Dataset 1: SD-Sford-09

This dataset, “Sentiment140”, labeled “SD-Sford-09”, comprises sentimental data
(SD) from Stanford University (Sford), first published in 2009. This is a publicly available
dataset [41], which contains 1.6 million tweets, each labeled with the polarity of the tweet,
as portrayed in Table 1. A polarity value of zero indicates a negative tweet, while a value
of four indicates a positive tweet. The dataset is well balanced, with 800,000 members in
each class, and our analysis focused solely on the polarity and text content of each tweet.

2.1.2. Dataset 2: DD-Red-14

We adopted the methodology followed by study [42] to create a depression-centric
dataset using the PushShift API to download information from 12 subreddits focused on
mental health (such as r/bipolarreddit, r/socialanxiety, r/healthanxiety, r/ptsd, r/autism,
r/schizophrenia, r/addiction, r/adhd, r/anxiety, r/alcoholism, r/lonely, and r/depression)
and 11 subreddits focused on non-mental health-related topics (such as r/jokes, r/gaming,
r/india, r/music, r/teaching, r/legaladvice, r/mildlyinteresting, r/unexpected, r/space,
r/cats, and r/news). Subreddits are individual communities within the larger Reddit
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platform, where users can join and participate in discussions centered around specific
topics. These communities often have their own rules, moderators, and user base, creating
a unique environment for sharing and interacting with content. To address the validation
of the ground truth label, we specifically obtained the dataset from specialized mental
health subreddits. These subreddits were externally moderated by dedicated subreddit
moderators, who played a crucial role in ensuring the data’s quality. It was labeled “DD-
Red-14” since it comprised depression data (DD) from a Reddit source (Red) and was first
published in 2014. A total of 13,000 posts were collected from the mental health subreddits
and labeled ‘depressive’, and an additional 13,000 posts were collected from the non-mental
health-related subreddits and labeled ‘neutral’, as portrayed in Table 2.

Table 1. Visual description of “SD-Sford-09” dataset *.

Tweet Sentiment
Oh dear, my Devilder prediction wasn’t the best . . . . sorry Irena I only saw the
3rd, Hanescu was pounding the ball and not missing. 0

@switchfoot http://twitpic.com/2y1zl (accessed on 10 January 2023) *—Awww,
that’s a bummer. You shoulda got David Carr of Third Day to do it.;D 0

Is sad because the gas station didn’t have french vanilla cappuccino. 0

@rickyzea I be rocking the meds . . . time to give the old gal her magic pills 4

Orange juice for breakfast this morning, think I’ll splurge at lunch! 4

I have so much to do but I don’t mind one bit because life is just brilliant right now 4
* URL: http://help.sentiment140.com/home (accessed on 10 January 2023).

Table 2. Visual description of DD-Red-14 dataset.

Reddit Post Class
i am tired i don’t feel anything good i just don’t want to exist anymore Depressive

I’m think I’m depressed and my anxiety is through the roof rn I’m having a
hard time focusing what should i do Depressive

didn’t make it by here today they are saying we will have snow tomorrow
wtf it is tennessee it doesn’t even snow here in winter Neutral

only two more day until holiday all my friend are in public school so we
can’t hang out on thursday then disneyland omg Neutral

2.1.3. Dataset 3: DD-Kgg-22

This dataset was extracted from the Kaggle platform and contains 27,977 posts which
comprise text related to people suffering from anxiety, depression, and other mental health
issues [43]. It was labeled “DD-Kgg-22”, since it comprises depression data (DD) from the
Kaggle (Kgg) source and first published in 2022. Of these, 14,139 entries are from people
free from any mental health issues, labeled 0, while 13,838 entries are from people who are
suffering from mental health issues, labeled 1, as visualized in Table 3.

2.1.4. Dataset 4: SD-Twi-23

This dataset contains 31,000 tweets published between January 2018 and January 2021.
It was labeled “SD-Twi-23” since it comprises sentimental data (SD) taken from Twitter
(Twi) and first published in 2023. Of these, 16,000 tweets were labeled “negative” and were
extracted using keywords such as ‘sad’, ‘bad’, and ‘negative’. An additional 15,000 tweets
labeled “neutral” were collected without any filters to serve as a control group for the
analysis.

http://twitpic.com/2y1zl
http://help.sentiment140.com/home
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Table 3. Visual description of dataset DD-Kgg-22.

Reddit Post Class
feels good ive set dateim killing friday nice finally know im gonna it bye 1

nearly always youi hate good enough live day day trying find things look forward 1

excercise motivated ngl cant wait get shape know gonna overnight im happy right now 0

im arguing im explaining million wasnt enough 0

happy scared math finals make board game math questions 0

started playing genshin impact yesterday oh god fun id highly recommend it 0

2.1.5. Dataset 5: Benchmarking Dataset—SD-SemEval-16

This dataset contains tweets with the tags “Positive” and “Negative” from SemEval-
2016 Task 4 Subtask B [40]. It was labeled “SD-SemEval-16” since it comprises sentimental
data (SD) taken from the 2016 competition. The tweets were categorized into the categories
train, dev, devtest, and test, with 14,042 labeled as having positive sentiment and 3677 as
having negative sentiment, as visualized in Table 4.

Table 4. Visual description of SD-SemEval-16 dataset.

Tweet Class
Come check out @shoutheyband at the black dahlia on saturday night! It’s going
to be a party! Positive

Dethklok, All That Remains, Machine Head, and The Black Dahlia Murder at Stage
AE November 8th..HIGHLY considering going to that.#heavymetal Positive

Talking about ACT’s &amp;&amp; SAT’s, deciding where I want to go to college,
applying to colleges and everything about college stresses me out Negative

The pain is far deeper than a Billy cundiff missed field goal. Gotta wake up and
forget
about it tomorrow. #Orioles #stayhungry

Negative

Finally starting the 5th season of #Dexter. See ya later, weekend! Positive

Figure 1 depicts the overall architecture of our study. We began by collecting datasets
using published resources and APIs such as Twint. The first block was the pre-processing
of the dataset prior to the application of the DL models. In this research paper, we describe
the data preprocessing steps used to prepare raw text data for machine learning tasks
in natural language processing. Firstly, we performed data cleaning by converting the
input to lowercase and removing punctuation and symbols. Then, we tokenized the input
paragraphs using word tokenization to convert the sentences into a stream of tokens that
can be passed to the machine. Lemmatization was performed to convert words to their
base form, or lemma, while retaining their inherent meaning. Stop words were removed
from the tokens, including articles, pronouns, and conjunctions. Finally, we performed
embedding to map the processed input to its vector counterpart. Embedding is necessary
to represent text data as vectors in a high-dimensional space, and we used Word2vec and
pre-trained BERT embedding techniques to create a distributed representation of words
that capture semantics and relationships among the words.

The power of AI was used once the data preparation had been conducted. Here, we
divided the dataset into training and testing sets, and then, built the training models for the
(a) SDL models and (b) EDL models. These training models were then used to transform
the test datasets, yielding the prediction labels, which were then used for performance
evaluation and explainability using the explainable AI module.
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Figure 1. Overall architecture of our proposed study.

2.2. Solo Deep Learning and Ensemble Deep Learning Architectures

For our preliminary data analysis, we built a total of 16 models, which included
11 SDL and 5 EDL models constructed from the SDL models. Among the SDL models,
we developed three unidirectional models: Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and recurrent neural network (RNN), along with their corresponding
bidirectional versions: Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), and
Bidirectional RNN (BiRNN), comprising six models. Additionally, we created two pre-
trained SDL models: Bidirectional Encoder Representations from Transformers (BERT) [44]
model and its optimized version: A Lite BERT (ALBERT) [45] from Huggingface. BERT and
ALBERT were chosen over other models, such as DistilBERT [46] and XLNet, [47] for several
reasons. While DistilBERT and XLNet offer comparable performance with faster inference
times [48], the larger model sizes and training procedures of BERT and ALBERT provide
more powerful representations, capturing complex contextual information and improving
overall performance. This advantage was particularly important for our cross-domain
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approach across all four datasets, as BERT and ALBERT exhibited better adaptability and
understanding of text nuances across different domains [49].

In addition to their advantages mentioned earlier, BERT and ALBERT excel in their ease
of incorporating attention mechanisms and additional attention channels. Their complex
architectures include multiple attention heads that can attend to different parts of the input,
enabling straightforward extension of the models with extra attention layers and refinement
of the attention mechanisms. Furthermore, BERT and ALBERT offer a wide range of
pretrained models, providing flexibility and adaptability to meet various experimental
requirements. We were able to choose from various model sizes and variations, allowing
for customization and optimization based on our specific needs.

While individual deep learning models have shown limited success in detecting
depression, combining them into hybrid deep learning models has been shown to improve
performance and overcome data scarcity [50]. By leveraging multiple architectures, Hybrid
models can address domain-specific challenges and improve accuracy in tasks such as
detecting depression [51–54]. Using these spirits of HDL, we finally constructed three
hybrid deep learning (HDL) models: a CNN-LSTM, a CNN-BiLSTM, and a BERT-BiLSTM.
These constituents have a total of eleven SDL models.

We constructed five EDL models using fusion through and concatenation with seven
SDLs. These EDL models, designed to surpass their individual SDLs, are drawn in
Figures 2–6, and their constituents are detailed in Table 5.

Table 5. Constructed EDL models and their components.

SN EDL Types EDL Models
1 EDL1 GRU + CNN-LSTM
2 EDL2 BiLSTM + CNN-LSTM
3 EDL3 BERT + CNN-BiLSTM
4 EDL4 ALBERT + CNN-BiLSTM
5 EDL5 ALBERT + BERT-BiLSTM
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While all of these architectures follow a similar skeleton, it is the combination of
different SDL models, the sequence of layers in each SDL model, and their embeddings that
differentiate the architecture and affect its training. To ensure that the anticipated improve-
ment gained is a general trait and independent of the constituent models’ architecture, it
was necessary to create five different EDL models. We anticipate that the performance of
the EDL models will vary due to their core being built out of different SDL models. Hence,
the EDL models will retain some behavior of their original SDL model, which would be
optimized in the EDL architecture.

All of the architectures have two modules that can accept two identical or different sets
of input tokens. The modules converge into a concatenation layer, followed by a depression
detection module that consists of max pooling, dropout, and a fully connected dense layer
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network. A final output sigmoid layer is used to classify the input as depressive/non-
depressive or positive/negative sentiment, depending on the protocol being carried out.
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The EDL1 model utilizes two modules: GRU and CNN-LSTM; these are visualized
in Figure 2. The GRU layer contains a self-attention layer followed by dense and dropout
layers. The CNN-LSTM module includes a convolution layer and a max pooling layer,
which is connected to an LSTM layer. The EDL2 model employs the same CNN-LSTM
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module, along with a BiLSTM module that has self-attention enabled within it, as shown in
Figure 3. EDL3 and EDL4 use a CNN-LSTM module with convolution layers along with
a BiLSTM module, but with Word2vec embedding being replaced by pre-trained BERT
and ALBERT embedding, respectively, as visualized in Figures 4 and 5. EDL5 incorporates
both ALBERT and BERT-BiLSTM modules, where each module includes a self-attention
layer. These two modules are concatenated to form the depression detection module.
Additionally, the BERT module also contains a BiLSTM layer, as depicted in Figure 6.

Attention mechanisms in deep learning are used to improve model performance by
allowing the model to selectively focus on important parts of the input. By doing so,
attention mechanisms can improve the accuracy of the model’s predictions and reduce
training time. Additionally, attention mechanisms can increase the interpretability of the
model by providing insight into which parts of the input are most relevant to a given
prediction. Hence, we applied attention layers using multi-head self-attention to all the
SDL and EDL models to observe the effects of incorporating attention into the models.

Multi-head self-attention is a variant of the self-attention mechanism that involves
computing multiple attention heads in parallel and concatenating the output of each head
before applying a linear transformation. The multi-head self-attention mechanism that we
incorporated can be mathematically illustrated as:

Attention Score Computation

Let X = [x1, x2, . . . , xn] be the input sequence of length n, and let H = [h1, h2, . . . , hn]
be the output sequence of the multi-head self-attention layer, where hi is the representation
of the ith element in H.

First, we compute Query (Q), Key (K), and Value Vectors (V), which are learnable
parameters, and dks is the dimensionality of the query. Then, we calculate the attention
scores using the SoftMax function s and multiply it with V to obtain the weighted sum for
each head:

Hi = s (
QKT

dks
) Vi (1)

Then, we compute the output sequence using the concatenation of each head, where ©
denotes the concatenation function:

H = © ([H1, H2, H3, . . . .., Hn]) (2)

Lastly, we apply a linear transformation to map the output and obtain the desired
output size (Final Output sequence) Hos from H, where it is the desirable size for the next
layer:

Hos = H × a (3)

where a is a learnable weight matrix for mapping the output of the layer to the desired
output size.

2.3. Training and Loss Functions

The models in the study were trained using a batch size of 128 and an input layer of
100 tokens, with a binary cross-entropy loss (CLE) function. Binary CLE is a loss function
used in ML for binary classification problems. Cross-entropy is a mathematical function
that is defined in terms of the logarithm of the predicted label and the gold standard label.
It measures the difference between the predicted probabilities of the positive class and the
true labels, and penalizes the model for large errors. The binary cross-entropy loss function
is denoted as Lbce, and mathematically, it can be expressed as:

Lbce = − 1
N

× ∑N
i=1(Yi × log(Ŷi) + (1 − Yi)× log(1 − Ŷi)) (4)



Diagnostics 2023, 13, 2092 11 of 34

where N is the number of samples in the dataset, Yi is the ground truth label (either 0 or 1),
Ŷi is the predicted probability of the positive class, log is the natural logarithm, and
× means multiplication.

Table 6 provides information on the epochs each model took, as well as their initial
learning rates and optimizers. As shown, EDL1 and EDL2 used Adam optimizers, while
EDL3, EDL4, and EDL5 used SGD optimizers. The models were trained and tested on a
9:1 split using the K10 protocol. The initial learning rate for EDL1, EDL2, and EDL3 was
2 × 105 and for EDL4 and EDL 5, it was 1 × 104. Finally, it should be noted that EDL 1 was
trained for 30 epochs, EDL 2 and EDL 3 were trained for 40 epochs, EDL 4 was trained
for 45 epochs, and EDL 5 was trained for 50 epochs. The study was implemented using
Python 3.8 and a TensorFlow framework. To implement the system, a 12 GB NVIDIA P100
16 Graphics Processing Unit (GPU) was utilized. Additionally, the system was equipped
with an Intel Xeon Processors processor and 12 GB of RAM.

Table 6. Hyperparameter table for EDL models using K10 protocol.

Hyperparameter Table
EDL
Type

EDL
Model Optr * CVP ILR Max

Epochs
EDL1 GRU + CNN-LSTM Adam 9:1 2.00 × 10−5 30
EDL2 BiSTM + CNN-LSTM Adam 9:1 2.00 × 10−5 40
EDL3 BERT + CNN-BiLSTM SGD 9:1 2.00 × 10−4 40
EDL4 ALBERT + CNN-BiLSTM SGD 9:1 1.00 × 10−4 45
EDL5 ALBERT + BERT-BiLSTM SGD 9:1 1.00 × 10−4 50

* Optr: optimizer; CVP: cross-validation partition; ILR: initial learning rate.

2.4. Experimental Protocols

Based on our preliminary analysis and introduction, we developed an experimental
workflow, which is outlined in this section. Initially, we examined the SDL models and
compared the advantages of bidirectional models over unidirectional models. Subsequently,
we investigated how combining SDL models with EDL models can enhance performance
on standard datasets. We then evaluated the impact of adding an attention layer to these
models on the overall performance of the depression and sentiment analysis task. Finally,
we cross-validated our observed results and demonstrated the domain adaptability of our
system by performing an unseen paradigm (a situation where the deep learning model is
tested on a new and previously unseen task or dataset that is significantly different from
the data it was trained upon).

2.4.1. Experiment 1: Unidirectional vs. Bidirectional SDL Models

We conducted this experiment on the SDL model, comparing the performance metrics
of unidirectional models versus their bidirectional counterparts (LSTM vs. BiLSTM, GRU
vs. BiGRU, and RNN vs. BiRNN) averaged across our four main datasets (SD-Sford-09,
DD-Red-14, DD-Kgg-22, and SD-Twi-2) to visualize how the bidirectional model fared
compared to the unidirectional model under a constant K10 partition protocol.

2.4.2. Experiment 2: SDL Models vs. EDL Models

The aim of this experiment was to determine whether the EDL models are superior to
their corresponding SDL models, averaged across our four main datasets (SD-Sford-09, DD-
Red-14, DD-Kgg-22, and SD-Twi-2). For this experiment, we compared five EDL models
and seven SDL models to demonstrate how joining multiple SDL models can improve
performance under a constant K10 partition protocol.

2.4.3. Experiment 3: Effect of Training Size on the Performance of SDL/EDL Models

To validate the robustness of the models, we applied four cross-validation protocols,
namely, K2, K4, K5, and K10, to vary the training size for each model and evaluate the
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corresponding performance drop resulting from reducing the training size. We utilized
these partition protocols across the four main datasets (SD-Sford-09, DD-Red-14, DD-
Kgg-22, and SD-Twi-2) and averaged the results to illustrate how data size affects our
model.

2.4.4. Experiment 4: EDL Models without Attention Block vs. EDL Models with
Attention Block

The purpose of this experiment was to observe the change in performance of the SDL
and EDL models when augmented with a self-attention block after the classifier in the
architecture, compare them with the original EDL model across all datasets (SD-Sford-09,
DD-Red-14, DD-Kgg-22, and SD-Twi-2), and benchmark them under a constant partition
protocol.

2.4.5. Experiment 5: Domain Adoption of Ensemble Deep Learning Models in
Unseen Paradigm

This experiment was one of the most critical, as it aimed to evaluate the EDL model’s
performance when encountering cross-domain data (where a model was trained on one
domain and was then applied to test a different domain) using an “unseen test dataset”.
Specifically, we trained the model on one dataset and evaluated it on a different dataset
with varying domains and semantics to demonstrate its generalization ability. Our model
showcased domain adaptation following training on a single domain of sentiment data
and an evaluation of its ability to adapt to a new domain by testing its performance on
depression data. We were able to transfer knowledge learned from the original domain to a
new domain and assess the model’s ability to generalize to different tasks and datasets.

2.5. Performance Metrics

The proposed models were estimated using the parameters “true positive (TP)”, “true
negative (TN)”, “false positive (FP)”, and “false negative (FN)”, which are defined as
follows: If a normal/neutral sentiment input is detected as a normal/neutral sentiment
by the depression detection mechanism, then it is identified as true positive (TP). If a
depressive/negative sentiment input is detected as a depressive/negative sentiment by the
depression detection mechanism, then it is identified as true negative (TN). In the other case,
if a depressive/negative input is detected as a normal/neutral sentiment by the mechanism,
then it is identified as false positive (FP). Finally, if a normal/neutral input is detected as
a depressive/negative sentiment by the mechanism, then it is identified as false negative
(FN). Using these parameters, we can derive the following PE parameters: (i) Accuracy:
This denotes the overall correct predictions out of the total predictions made (Equation
(5)). (ii) Recall (R): This is the number of correctly predicted positive class predictions
made of all the positive members in the dataset (Equation (6)). (iii) Precision (P): This is the
number of correctly predicted positive class predictions to the total number of classified
positive predictions (Equation (7)). (iv) F1-Score (F): This is defined as the harmonic mean
of precision and recall. It is useful for imbalanced datasets (Equation (8)). (v) Finally, the
area-under-the-curve (AUC) represents the two-dimensional area underneath the plotted
ROC curve.

2.6. Mean and Standard Deviation of the Statistics

In this study, we propose formulations for measuring the overall robustness of the
model. To accomplish
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η=
TP + TN

TP + FP + FN + TN
(5)

R =
TP

TP + FN
(6)

P =
TP

TP + FP
(7)

F = 2 × P × R
P + R

(8)

this, we measure six quantities in this section. η(m) denotes model m’s accuracy
summarized over all D datasets; η(d) denotes the robustness of dataset d achieved by
summarizing M models; ηsys denotes the overall system robustness by averaging the
accuracy achieved over M models and D datasets; α(m) denotes model m’s area-under-the-
curve summarized over all D datasets; α(d) denotes the robustness of dataset d, achieved
by summarizing the area-under-the-curve over M models; and αsys denotes the overall
system robustness by averaging the area-under-the-curve achieved over M models and D
datasets. All these formulas were computed in Section 3 using the K10 partition protocol.

η(m, K10) =
∑D

d=1 η (m, d, K10)
D

(9)

η(d, K10) =
∑M

m=1 η (m, d, K10)
M

(10)

ηsys =
∑D

d=1 ∑M
m=1 η (m, d, K10)

M × D
(11)

α(m, K10) =
∑D

d=1 α (m, d, K10)
D

(12)

α(d, K10) =
∑M

m=1 α (m, d, K10)
M

(13)

αsys =
∑D

d=1 ∑M
m=1 α (m, d, K10)

M × D
(14)

3. Results

The experimental results of the protocols were obtained by employing four main
datasets (SD-Sford-09, DD-Red-14, DD-Kgg-22, and SD-Twi-2) and sixteen (11 + 5) models
through the utilization of the TensorFlow framework. The training process was executed
using a Tesla P100 GPU. Each result was obtained by conducting ten rounds of training
and testing, and subsequently, calculating the mean value.

3.1. Unidirectional vs. Bidirectional SDL Models

In this study, we demonstrated that bidirectional models consistently outperform
unidirectional DL models of comparable architecture. We tested this hypothesis by train-
ing and testing six baseline models, with both bidirectional and unidirectional variations.
Across all three variations, the bidirectional models consistently outperformed the uni-
directional models, as visualized in Table 7, validating our hypothesis. Specifically, the
BiLSTM model achieved the greatest absolute increase in performance compared to the
LSTM model, with an increase of 2.65% averaged over all four datasets, with BiRNN giving
a 1.80% increase over RNN, and BiGRU giving a 1.47% increase over GRU. This can be
attributed to the fact that bidirectional models have the ability to process data from past
and future inputs, giving them better comprehension of the sequence and context, which
can improve performance in comparison to unidirectional models, which only work in one
direction.
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Table 7. Evaluation results of all solo unidirectional and bidirectional deep learning models (K10
protocol).

Comparative Analysis
SDL Type SDL Model Mean Accuracy Mean Recall Mean Precision Mean AUC Absolute Increase (%)

LSTM vs. BiLSTM
SDL1 LSTM 84.12% 83.08% 84.04% 0.8194
SDL2 BiLSTM 86.35% 85.04% 85.54% 0.8554 BiLSTM > LSTM 2.65%

GRU vs. BiGRU
SDL3 GRU 86.96% 86.43% 84.90% 0.864
SDL4 BiGRU 88.24% 87.55% 88.67% 0.876 BiGRU > GRU 1.47%

RNN vs. BiRNN
SDL5 RNN 85.49% 86.32% 85.37% 0.8427
SDL6 BiRNN 88.04% 87.38% 88.77% 0.878 BiRNN > RNN 1.80%

3.2. SDL Models vs. EDL Models (without Attention)

This experiment demonstrates how EDL models outperform their individual com-
ponents. We evaluated eleven SDL models and five EDL models, and their performance
metrics were averaged over four datasets; the results are presented in Table 8. As shown in
the table, the EDL models consistently outperformed their individual components in every
case, with a mean increase in performance over the five EDL models of 4.49%. Moreover,
the best increase in EDL model performance was observed in EDL4, which showed a 7.22%
absolute increase over its component, SDL8. These results demonstrate the effectiveness of
EDL models in improving the overall performance of DL models.

This could be attributed to the fact that EDL models are able to leverage the strengths
of different models and overcome their weaknesses, leading to improved accuracy and gen-
eralization ability. In contrast, SDL models may struggle to capture complex relationships
in the data or be prone to overfitting. EDL models address these limitations by combining
the predictions of multiple models, each with different strengths and weaknesses, thereby
reducing the risk of overfitting and improving the robustness of the model.

3.3. Cross-Validation Protocols of All Models

In this experiment, we studied the effect of training data size on the performance of our
models. Tables 9 and 10 present the results of our analysis, showcasing how the accuracy
and area-under-the-curve (AUC) metrics, respectively, gradually decrease over different
cross-validation protocols (K10 (default), K5, K4, and K2). In this case, the accuracy of
EDL5 dropped from 95.01% when using the K10 protocol to 90.07% when using the K2
protocol, and the AUC fell from 0.9251 when using the K10 protocol to 0.8667 when using
the K2 protocol. Even with a reduced amount of training data in the K2 (50:50) validation
protocol, the metrics of our EDL models did not drop significantly, demonstrating the
generalizability of the models. These results suggest that our EDL models can be used
effectively even when the amount of available training data is limited.

3.4. Effect of Attention on the SDL and EDL Models and Its Benchmarking against
SemEval Dataset

The fourth experiment aimed to demonstrate the effect of using an attention layer in
all of the SDL and EDL models. For this purpose, we implemented a self-attention channel
on top of the EDL models. As demonstrated by Table 11, the use of attention increased
the performance of the models summarized over all four main datasets (SD-Sford-09, DD-
Red-14, DD-Kgg-22, and SD-Twi-2). According to Table 11, Mean aeSDL > aneSDL for all
five of the PE metrics, and similarly, the mean accuracy of aeEDL > aneEDL for all five of
the PE metrics. This further proves our hypothesis that “attention blocks” are a powerful
paradigm in depression and sentimental analysis.
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Table 8. Evaluation results of all SDL and EDL models using K10 protocol.

Table 8. EDL Models Comparative Analysis Remarks
SDL
Type

SDL
Model

Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
AUC

EDL
Type

EDL
Model

Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
AUC Absolute Increase % Top 3

EDL
SDL1 LSTM 84.12% 83.08% 84.04% 0.8194 EDL1 > SDL3 0.77%
SDL2 BiLSTM 86.35% 85.04% 85.54% 0.8554 EDL1

GRU +
CNN-
LSTM

87.63% 86.83% 86.99% 0.8616 EDL1 > SDL7 2.47%

SDL3 GRU 86.96% 86.43% 84.90% 0.864 EDL2 > SDL2 2.62%
SDL4 BiGRU 88.24% 87.55% 88.67% 0.876 EDL2

BiSTM +
CNN-LSTM

88.61% 86.75% 87.65% 0.8727 EDL2 > SDL7 3.62%

SDL5 RNN 85.49% 86.32% 85.37% 0.8427 EDL3 > SDL9 6.17%

SDL6 BiRNN 88.04% 87.38% 88.77% 0.878 EDL3
BERT +
CNN-

BiLSTM

92.54% 91.81% 92.56% 0.9082 EDL3 >
SDL8 6.21% 3 Best 3

EDL

SDL7 CNN-
LSTM 85.52% 85.57% 85.42% 0.8413 EDL4 >

SDL8 7.22% 1 Best 1
EDL

SDL8 CNN-
BiLSTM 87.13% 87.51% 87.51% 0.8674

EDL4
ALBERT
+ CNN-
BiLSTM

93.42% 92.74% 93.32% 0.8971 EDL4 >
SDL10 5.33%

SDL9 BERT 87.16% 87.13% 86.53% 0.8608 EDL5 >
SDL10 7.13% 2 Best 2

EDL

SDL10 ALBERT 88.69% 88.91% 88.51% 0.876
EDL5

ALBERT
+ BERT-
BiLSTM

95.01% 94.14% 94.11% 0.9313 EDL5 >
SDL11 3.36%

SDL11 BERT-
BiLSTM 91.92% 92.04% 91.35% 0.9024 Mean

Increase 4.49% 4

1 First Best performing EDL Model (EDL4) as compared to its SDL component (SDL8). 2 Second Best performing EDL Model (EDL5) as compared to its SDL compo-
nent (SDL10). 3 Third Best performing EDL Model (EDL3) as compared to its SDL component (SDL8). 4 Mean increase in accuracy of EDL Modes as compared to their
SDL components.
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Table 9. Accuracy metrics of five EDL models using different cross-validation protocols.

Accuracy (%) of Five EDL Models Using Cross-Validation Protocols

EDL EDL Models K2
(50:50)

K4
(75:25)

K5
(80:20)

K10
(90:10) SD

EDL1 GRU + CNN-LSTM 84.74% 85.51% 86.29% 87.63% 1.07%

EDL2 BiSTM + CNN-LSTM 84.26% 87.33% 88.39% 88.61% 1.74%

EDL3 BERT + CNN-BiLSTM 88.20% 90.89% 92.30% 92.54% 1.73%

EDL4 ALBERT + CNN-BiLSTM 88.59% 92.83% 93.21% 93.42% 1.99%
EDL5 1 ALBERT + BERT-BiLSTM 90.07% 94.04% 94.82% 95.01% 2.0%

1 Best performing EDL Model.

Table 10. AUC metrics of five EDL models using different cross-validation protocols.

AUC (0–1) of All EDL Models Using Cross-Validation Protocols

EDL EDL Models K2
(50:50)

K4
(75:25)

K5
(80:20)

K10
(90:10)

EDL1 GRU + CNN-LSTM 0.846 0.8503 0.86 0.8616

EDL2 BiSTM + CNN-LSTM 0.8588 0.8651 0.8619 0.8727

EDL3 BERT + CNN-BiLSTM 0.8744 0.8869 0.8925 0.9082

EDL4 ALBERT + CNN-BiLSTM 0.8627 0.8914 0.8965 0.9092
EDL5 1 ALBERT + BERT-BiLSTM 0.8867 0.9179 0.9185 0.9251

1 Best performing EDL Model.

Furthermore, with this experiment, we were able to establish a benchmark on the
SemEval 2016 Subtask A dataset, with an accuracy of 85.09% and an AUC score of 0.8008;
this is the highest accuracy achieved so far using EDL5 with the self-attention block, giving
an boost in accuracy of 3.86%, compared to the best score for SDL11 with the self-attention
block. These results, shown in Tables 12 and 13, demonstrate the effectiveness of our
approach in achieving state-of-the-art performance in sentiment analysis on the SemEval
dataset.

3.5. Unseen Tests Using Cross-Domain Testing for SDL and EDL Models

In this experiment, we demonstrate our model’s ability to perform in a cross-domain
setting by conducting unseen tests. We performed 12 sub-experiments on four datasets,
involving training on one dataset and testing on a different one, covering all possible
combinations. The performance results were averaged out for all the datasets, and the
accuracy and percentage differences in seen accuracy and unseen accuracy are shown
in Tables 14 and 15 for the SDL and EDL models. Our analysis showed that the mean
difference between unseen and seen accuracy for the SDL models was ~3%. Similarly, the
mean difference between unseen and seen accuracy for the EDL models was ~2.7%.

Table 11. Effect of attention layer on SDL and EDL models using K10 protocol.

Performance Metrics
Mean of Eleven SDL Models Mean of Five EDL Models

Metrics Without
Attention

With
Attention

w/Atten vs.
w/o Atten

Absolute
Difference

Without
Attention

With
Attention

w/Atten vs.
w/o Atten

Absolute
Difference

Accuracy 87.24% 89.49% aeSDL > aneSDL 2.58% 91.44% 93.97% aeEDL > aneEDL 2.76%

Precision 87.00% 88.32% aeSDL > aneSDL 1.52% 90.63% 92.15% aeEDL > aneEDL 1.67%

Recall 86.96% 89.09% aeSDL > aneSDL 2.45% 90.75% 92.86% aeEDL > aneEDL 2.33%

F1-Score 86.98% 88.70% aeSDL > aneSDL 1.98% 90.69% 92.50% aeEDL > aneEDL 2.00%

AUC 0.8621 0.877 aeSDL > aneSDL 1.73% 0.89412 0.9192 aeEDL > aneEDL 2.80%
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Table 11. Cont.

Performance Metrics
Comparative Analysis of Attention Layer

Mean Accuracy
Comparison Absolute Difference Mean Accuracy Comparison Absolute Difference

aeSDL > aneSDL 2.58% aeSDL > aneSDL 1.73%
aeEDL > aneEDL 2.76% aeEDL > aneEDL 2.80%

aneEDL > aneSDL 4.82% aneEDL > aneSDL 3.71%

aeEDL > aeSDL 5.06% aeEDL > aeSDL 4.81%

Table 12. Effect of attention on SDL models on benchmark dataset “SemEval” using K10 protocol.

Dataset SD-SemEval-16 (Without Attention) SD-SemEval-16 (With Attention)
Model Accuracy Precision Recall AUC Accuracy Precision Recall AUC

LSTM 76.70% 76.11% 76.25% 0.7519 77.04% 76.45% 76.35% 0.754

BiLSTM 78.15% 77.24% 77.82% 0.7599 78.36% 77.40% 77.62% 0.762

GRU 77.16% 76.88% 76.59% 0.7631 77.29% 76.97% 77.21% 0.7645

BiGRU 77.25% 76.96% 77.08% 0.7643 77.34% 77.10% 77.34% 0.7648

RNN 77.11% 76.98% 77.11% 0.7639 77.55% 77.02% 77.24% 0.764

BiRNN 77.26% 77.02% 77.28% 0.7647 77.86% 77.47% 77.33% 0.7655

CNN-
LSTM 79.44% 79.20% 79.17% 0.7664 79.91% 79.67% 80.14% 0.7679

CNN-
BiLSTM 80.40% 80.29% 80.05% 0.7707 81.42% 80.615 80.22% 0.7709

BERT 81.31% 81.36% 80.95% 0.7744 81.53% 81.40% 80.96% 0.7812

ALBERT 81.73% 80.47% 81.32% 0.7825 81.80% 80.56% 81.43% 0.7832

BERT-
BiLSTM 81.74% 80.61% 81.70% 0.7842 81.93% 80.89% 81.81% 0.7897

Table 13. Effect of attention on EDL models on benchmark dataset “SemEval” using K10 protocol.

Dataset SD-SemEval-16 (Without Attention) SD-SemEval-16 (With Attention)
Model Accuracy Precision Recall AUC Accuracy Precision Recall AUC

GRU + CNN-LSTM 79.60% 77.39% 77.74% 0.7716 80.15% 78.03% 78.09% 0.7748

BiLSTM + CNN-LSTM 81.50% 79.67% 79.56% 0.7846 81.19% 80.03% 80.23% 0.7854

BERT + CNN-BiLSTM 81.59% 80.26% 80.35% 0.7896 81.70% 80.44% 80.62% 0.7921

ALBERT + CNN-BiLSTM 82.07% 80.64% 80.53% 0.7978 82.26% 81.05% 80.89% 0.7982

ALBERT + BERT-BiLSTM 82.61% 80.87% 80.60% 0.7998 85.09% 81.04% 81.24% 0.8008

Difference between With Attention and Without Attention in Accuracy for SDL model is 3% (ALBERT + BERT-
BiLSTM).

Table 14. Accuracy metrics of SDL models on unseen dataset using K10 protocol.

SDL
Type

SDL
Models

Seen
Accuracy (sa)

Unseen
Accuracy (ua)

Percentage Difference
(sa − ua)/sa × 100

SDL1 LSTM 84.12% 80.24% 4.61%

SDL2 BiLSTM 86.35% 83.41% 3.40%

SDL3 GRU 86.96% 84.77% 2.52%

SDL4 BiGRU 88.24% 85.80% 2.77%

SDL5 RNN 85.49% 83.04% 2.87%
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Table 14. Cont.

SDL
Type

SDL
Models

Seen
Accuracy (sa)

Unseen
Accuracy (ua)

Percentage Difference
(sa − ua)/sa × 100

SDL6 BiRNN 88.04% 85.75% 2.60%

SDL7 CNN-LSTM 85.52% 83.15% 2.77%

SDL8 CNN-BiLSTM 87.13% 85.16% 2.26%

SDL9 BERT 87.16% 84.95% 2.53%

SDL10 ALBERT 88.69% 86.93% 1.98%

SDL11 BERT-BiLSTM 91.92% 88.03% 4.23%
Mean difference between unseen and seen accuracy for SDL model is 2.95~3%.

Table 15. Accuracy metrics of EDL models on unseen dataset using K10 protocol.

EDL
Type

EDL
Models

Seen
Accuracy (sa)

Unseen
Accuracy (ua)

Percentage
Difference

(sa − ua)/sa × 100
EDL1 GRU + CNN-LSTM 87.63% 84.87% 3.15%

EDL2 BiLSTM + CNN-LSTM 88.61% 86.59% 2.27%

EDL3 BERT + CNN-BiLSTM 92.54% 90.45% 2.26%

EDL4 ALBERT + CNN-BiLSTM 93.42% 91.02% 2.57%

EDL5 ALBERT + BERT-BiLSTM 95.01% 91.97% 3.20%
Mean difference between unseen and seen accuracy for EDL model is 2.69~2.7%.

The corresponding AUC and percentage differences are shown in Tables 16 and 17
for the SDL and EDL models, respectively. Our analysis showed that the mean difference
between the unseen and seen AUC for the SDL models was ~3%. Similarly, the mean
difference between the unseen and seen AUC for the EDL models was ~2.4%. Note that the
criterion for a robust design, leading to superior generalizability, was that the difference
between seen and unseen analysis be less than 3% to 5% [54–56]; our system design
demonstrates results less than 3%, which qualifies it as a robust, generalizable, and stable
design, which is also part of our running hypothesis.

Table 16. AUC metrics of SDL models on unseen dataset using K10 protocol.

SDL
Type

SDL
Models

Seen
AUC (sa)

Unseen
AUC (ua)

Difference (%)
(sa − ua)/sa ×

100
SDL1 LSTM 0.8194 (p < 0.001) 0.7815 (p < 0.02) 4.63%

SDL2 BiLSTM 0.8554 (p < 0.001) 0.8226 (p < 0.002) 3.83%

SDL3 GRU 0.864 (p < 0.003) 0.842 (p < 0.005) 2.54%

SDL4 BiGRU 0.876 (p < 0.002) 0.8529 (p < 0.001) 2.64%

SDL5 RNN 0.8427 (p < 0.001) 0.8226 (p < 0.01) 2.39%

SDL6 BiRNN 0.878 (p < 0.001) 0.8581 (p < 0.001) 2.27%

SDL7 CNN-LSTM 0.8413 (p < 0.001) 0.8225 (p < 0.01) 2.23%

SDL8 CNN-BiLSTM 0.8674 (p < 0.01) 0.8324 (p < 0.01) 4.03%

SDL9 BERT 0.8608 (p < 0.001) 0.8421 (p < 0.01) 2.17%

SDL10 ALBERT 0.876 (p < 0.001) 0.851 (p < 0.001) 2.85%

SDL11 BERT-BiLSTM 0.9024 (p < 0.0001) 0.8666 (p < 0.0001) 3.97%
Mean difference between unseen and seen AUC for SDL model is 3.05~3%.
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Table 17. AUC metrics of EDL models on unseen dataset using K10 protocol.

EDL
Type EDL Models Seen

AUC (sa)
Unseen

AUC (ua)

Difference (%)
(sa − ua)/sa ×

100
EDL1 GRU + CNN-LSTM 0.8616 (p < 0.002) 0.8432 (p < 0.001) 2.14%

EDL2 BiLSTM + CNN-LSTM 0.8727 (p < 0.0001) 0.8526 (p < 0.001) 2.30%

EDL3 BERT + CNN-BiLSTM 0.9082 (p < 0.0001) 0.8862 (p < 0.001) 2.42%

EDL4 ALBERT +
CNN-BiLSTM 0.9092 (p < 0.001) 0.8895 (p < 0.001) 2.17%

EDL5 ALBERT +
BERT-BiLSTM 0.9251 (p < 0.0001) 0.9009 (p < 0.001) 2.62%

Mean difference between unseen and seen AUC for EDL model is 2.33~2.4%.

4. Performance Evaluation and Explainable AI

As part of the performance evaluation, the classifiers of the models were determined
through their ROC curves, and bar charts were plotted to visualize the performance of
the models. ROC curves and bar charts provide a visual representation of the model’s
performance. Overall, the performance evaluation provides insight into the strengths and
weaknesses of the system and helps to identify areas for improvement. The reliability of the
system was assessed to determine its robustness and the stability of the model. This was
achieved through various statistical tests, such as the R-squared test (adjusted), and paired
t-test. The statistical tests were used to determine whether the differences in performance
between the models are significant.

As part of the increasing interpretability of the AI models, explainable AI techniques
were employed. These techniques provide insights into how the black-box models make
decisions and help understand the factors contributing to depression detection.

4.1. Receiver Operating Curves

ROC curves are used to evaluate the performance of the models across their entire been
operating range. In Figure 7, we visualize the effect of the size of the training data on the
EDL5 model by implementing cross-validation protocols K10, K5, K4, and K2. We observe
that the AUC for K10 is 0.9251, and the AUC for K2 is 0.8867. The ROC performance of
the five EDL models (EDL1, EDL2, EDL3, EDL4, and EDL5) is visualized in Figure 8, with
EDL5 having the highest AUC score of 0.9251 and EDL1 having the lowest AUC score of
0.8616.
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The bar charts are helpful in visualizing the information present in tables more ef-
ficiently. Figure 9 showcases the accuracy of all EDL models averaged over the four
datasets, with EDL1 having an accuracy of 87.63% and EDL5 having an accuracy of 95.01%.
Figure 10 visualizes the effect of accuracy with the change in the amount of training data
for EDL5 through the use of cross-validation protocols K2, K4, K5, and K10. The accuracy
in K2 drops to 90.07% from 95.01% in K10 (default).
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4.2. Reliability Analysis Using Statistical Tests

The stability of the system was validated through four statistical tests conducted on the
EDL models across all five datasets. The tests performed were the adjusted R-squared test,
two-tailed Z test, paired t-test, and ANOVA test. These tests were conducted to determine
whether the predicted data were significant and to monitor the p-value in the paired t-test
and ANOVA test to check whether it was less than 0.01 (p < 0.001). The results of these tests
are presented in Table 18, across all five EDL models and the five datasets (SD-Sford 09,
DD-Red-14, DD-Kgg-22, SD-Twi-2, and SD-SemEval-16).
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Along the lines of [57], we conducted these tests and observed that all five EDL models
showcased p < 0.001 in the paired t-test and the ANOVA test, signifying the significance
of the data and validating their clinical importance. The adjusted R-squared test, which
portrays the correctness of the model, illustrates the extent of a feature’s variance, and the
Z in two-tailed tests denotes the Z-score, which describes the standard deviation above or
below the mean population.

Table 18. Statistical tests on EDL models using K10 protocol. EDL1 (GRU+CNN-LSTM); EDL2
(BiLSTM + CNN-LSTM); EDL3 (BERT + CNN-BiLSTM); EDL4 (ALBERT + CNN-BiLSTM); EDL5
(ALBERT + BERT-BiLSTM).

Models
Dataset Tests EDL1 EDL2 EDL3 EDL4 EDL5

Adjusted R2 0.714 0.789 0.784 0.864 0.879
Z (two-tailed) 1.37 6.52 −2.56 −1.25 −1.22
Paired t-test p < 0.0005 p < 0.0005 p < 0.0001 p < 0.0001 p < 0.0002SD-Sford-09

ANOVA test p < 0.0001 p < 0.0002 p < 0.001 p < 0.0002 p < 0.0001
Adjusted R2 0.659 0.714 0.744 0.723 0.7892

Z (two-tailed) 1.31 −0.679 0.3 2.33 0.7
Paired t-test p < 0.0001 p < 0.0001 p < 0.0002 p < 0.0001 p < 0.0001SD-SemEval-16

ANOVA test p < 0.001 p < 0.0003 p < 0.0002 p < 0.001 p < 0.001
Adjusted R2 0.735 0.712 0.882 0.825 0.813

Z (two-tailed) −6.95 −2.32 −1.02 5.43 1.64
Paired t-test p < 0.0002 p < 0.002 p < 0.0001 p < 0.0001 p < 0.0003DD-Red-14

ANOVA test p < 0.0001 p < 0.0003 p < 0.0002 p < 0.0004 p < 0.0001
Adjusted R2 0.874 0.742 0.755 0.713 0.819

Z (two-tailed) 4.64 0.87 4.45 −0.42 1.43
Paired t-test p < 0.0008 p < 0.001 p < 0.001 p < 0.0005 p < 0.0001DD-Kgg-22

ANOVA test p < 0.0001 p < 0.0001 p < 0.0002 p < 0.0001 p < 0.0001
Adjusted R2 0.755 0.736 0.808 0.922 0.932

Z (two-tailed) −2.04 −3.28 −0.98 1.54 2.04
Paired t-test p < 0.0001 p < 0.0002 p < 0.001 p < 0.0001 p < 0.001SD-Twi-23

ANOVA test p < 0.0001 p < 0.0002 p < 0.0001 p < 0.001 p < 0.0001

4.3. Reliability Analysis Using Statistical Tests

Given that deep learning models, such as BERT, are often considered black box mod-
els, we recognized the importance of providing insights into the interpretability of our
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results. To address this, we employed the “SequenceClassificationExplainer” module from
the “transformers-interpret” library in our paradigm, as showcased in Figure 11. This
explainer allowed us to calculate the attribution of each word in a given sentence after
cleaning, tokenization, and prediction. It enabled us to identify the most impactful tokens
contributing to the sentiment classification. Additionally, by using fixed thresholds, we
constructed masked sentences that highlight the most impactful tokens.
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Figure 11. Flowchart of explainable AI module.

In our study, a value closer to 0 indicates a depressive sentiment, while a value closer
to 1 indicates a non-depressive sentiment. By incorporating this explainable AI technique,
our aim was to shed light on the underlying factors influencing sentiment classification. The
results over the two datasets are demonstrated in Figures 12 and 13. Although BERT itself
does not inherently provide specific interpretability features, leveraging the explainability
module helped us address the lack of fixed features and provided additional insights into
the decision-making process of our model.
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5. Discussion

Since we implemented 11 SDL and 5 EDL models on four datasets with and without at-
tention paradigms (16 × 2 = 32 models), we summarize the primary and secondary findings
of our comprehensive analysis. Further, it is critical to benchmark our design (aeEDL and
aeSDL) against the existing studies in the domains of depression and sentimental analysis.
Another important component is to elaborate on the bounds of the attention mechanism
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under which it was adapted. Lastly, as part of the discussion, we illustrate the strengths
and weaknesses and possible extensions of this study.

5.1. Principal Findings

Through an exhaustive study, we have proven three major and three minor hypotheses.
We developed eleven SDL models and five EDL models. Using our four main datasets
(SD-Sford-09, DD-Red-14, DD-Kgg-22, and SD-Twi-2), we discovered that bidirectional SDL
models outperformed unidirectional models. Building upon this finding, we discovered
that EDL models outperformed their component SDL models by 4.49%, and yielded better
results when they were utilized together in the architecture. Using self-attention layers,
we observed significant improvement in the performance of DL models. This was further
enhanced by incorporating attention mechanisms into our EDL architecture, leading to
benchmark accuracy on the SemEval-2016 dataset. We observed that the increase in the
mean accuracy (AUC) of aeSDL over aneSDL was 2.58% (1.73%), and the increase in the
mean accuracy (AUC) of aeEDL over aneEDL was 2.76% (2.80%). When comparing EDL vs.
SDL for non-attention and attention, the mean aneEDL was greater than aneSDL by 4.82%
(3.71%), and the mean aeEDL was greater than aeSDL by 5.06% (4.81%). On benchmarking
dataset (SemEval), the best-performing aeEDL model (ALBERT + BERT-BiLSTM) was
superior to the best aeSDL (BERT-BiLSTM) model by 3.86%. Furthermore, we validated
our models through statistical tests, demonstrating their ability to effectively handle cross-
domain challenges by performing well on unseen paradigms and predicting on different
domains to those on which they were trained. We met the regulatory requirement by
showing that the accuracy and AUC differences between unseen and seen paradigms were
less than 3%.

5.2. Benchmarking: A Comparative Analysis

The crux of our study was positioned using an attention-enabled paradigm in EDL
models. These EDL models were designed by fusing DL-based models. Thus, it is important
to evaluate our framework against the previous SDL and EDL models. We therefore
decided to squarely address the benchmarking efforts in two consecutive steps, with step
one involving a comparison of our proposed models with previous DL models and step
two consisting of a deeper comparison of our proposed models with previous EDL models.
Since the total number of studies in the sentiment analysis and depression detection were
9 and 18, respectively, we organized our benchmarking into two clusters in the form of
two tables, namely, Tables 19 and 20. Table 19 focuses on nine studies that did not use
attention in their architecture, and Table 20 consists of studies where attention blocks were
an integral part of the paradigm. Table 19 showcases fourteen attributes for each of the
nine studies. Columns C1 to C16 are as follows: the year of the study (C1); the last name of
the author (C2); the main objective of the paper (C3); the base model (C4); the use of an
SDL vs. an EDL model (C5); the fusion or stacking technique used, if any (C6); the main
method used (C7); the data type used (C8); data size (C9), the evaluation metric (C10) and
evaluation score (C11); scientific validation (C12) and clinical validation (C13); and the
conduction of an unseen paradigm, if any (C14).

Out of the nine studies, six studies [58–63] worked on sentiment analysis, while two
studies [64,65] carried out work on depression detection. Study [66] approached suicide de-
tection as their objective. LSTM and BiLSTM, as SDL or as HDL, were the main approaches
used in studies [58,60,62,63], while studies [59,64] used statistical ML algorithms, and the
authors of [65] implemented decision trees with pruning for classification. Four out of
the nine studies [58,60–63] used SDL models (columns C5, C6). In contrast, the authors
of [64–66] used EDL models as the main architecture through the use of stacking, feature
extraction, or max voting.

The studies demonstrated up to four kinds of data source, namely, social media chat,
reviews, or published psychological data (column C8). Unlike these, in our proposed study
(R10), keeping generalizability in mind, we used five kinds of data source, namely, Twitter,
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Twitter (Stanford), Reddit, Kaggle, and SemEval (for benchmarking). Furthermore, these
nine studies had a data size range of 718 to 550,000 sentences (column C9), while in our
proposed study (R10), the data size ranged from 10,000 to 1,000,000 sentences. All of these
studies computed at least one out of accuracy, F1-Score, or AUC (columns C10, C11). Our
study (R10) outperformed existing studies and yielded a mean accuracy of 91.44% across
all EDL models and 95.01% in the best EDL5 model, and an F1-Score of 0.8941. Seven out
of the nine studies [58–60,62–65] presented some sort of scientific or clinical validation by
performing an ablation study, providing p-values of less than 0.001, or by performing cross-
validation (columns C12, C13), unlike in our proposed study (R19), where we conducted
exhaustive tests, including six individual statistical tests that yielded p-values of less than
0.001, deployed four cross-validation protocols, and achieved an overall standard deviation
of less than 2.5%. Further, it is noted that only our proposed work (R10) conducted a true
unseen paradigm (column C14) by training and testing the model on datasets of different
domains, thus proving its generalizability over cross-domains.

Table 20 shows the state-of-the-art DL models used for sentiment analysis and depres-
sion detection. It showcases fifteen attributes for each of the eighteen studies: Columns
C1 to C15 are as follows: the year of the study (C1); last name of the author (C2); the main
objective of the paper (C3); the base model (C4); the use of an SDL vs. an EDL model (C5);
the fusion or stacking technique used, if any (C6); the attention block technique (C7); the
main method used (C8); the data type used (C9); data size (C10); evaluation metric (C11)
and evaluation Score (C12); scientific validation (C13) and clinical validation (C14); and the
conduction of an unseen paradigm, if any (C15).

Most of the studies worked on sentiment analysis [67–80], while study [81] worked
on stance detection, study [82] focused on emotion recognition, study [83] focused on
bias identification, and finally, study [84] focused on depression detection (Column C3).
Unlike their singular focuses, our study’s paradigm (R19) was domain adaption; hence,
our objective was threefold—sentimental analysis, and depression and suicide detection.
Studies [67,68,70–78,80,81,83,85] used a single model as the base classifier (column C4),
while only four studies [69,79,82,84] used HDL models as the base model. Notably, to
outperform the existing results, our proposed study (R19) squarely used a hybrid of
ALBERT, BERT, and BiLSTM as one of the base EDL models.

Ten out of the eighteen studies [67,69,72–74,76,77,80,83,84] used SDL models (columns
C5, C6). In contrast, the authors of [68,70,71,75,78,79,81,82] and our proposed study (R19)
used EDL models as the main architecture, using concatenation, fusion, or weighted sums.
All of the studies [67–84] demonstrated three to four kinds of data source, namely, social
media chat, reviews, or public communications (column C9). Unlike these, in our proposed
study (R19), keeping generalizability in mind, we used five kinds of data source, namely,
Twitter, Twitter (Stanford), Reddit, Kaggle, and SemEval (benchmarking). Furthermore,
these eighteen studies, apart from [63], had a data size range of 1250 to 100,000 sentences
(column C10), while in our proposed study (R19), the data size ranged from 17,719 to
1,600,000 sentences. Except for study [83], the remaining seventeen studies [67–82,84]
computed at least one out of accuracy, F1-Score, or AUC (columns C11, C12). Our study
(R19) outperformed the existing studies and yielded an accuracy of 93.97% and an F1-Score
of 0.9192. Furthermore, our study provided benchmark accuracy over the benchmark
public SemEval-2016 (SD-SemEval-16) dataset, achieving 85.09% accuracy on our aeEDL
model (ALBERT + BERT-BiLSTM).

Studies [67–69,71,74,76,78–80,82,83] presented some sort of scientific and clinical vali-
dation by performing ablation studies, yielding p-values of less than 0.001, or performing
cross-validation (columns C13, C14), unlike in our proposed study (R19); we conducted
six individual statistical tests that yielded p-values of less than 0.001, deployed four cross-
validation protocols, and achieved an overall standard deviation of less than 2.5%. While
only three studies attempted to validate unseen data [74,83,84] by employing sub-sampling,
data merging, or cross-domain validation (column C15), it is noted that only our proposed
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work (R19) conducted a true unseen paradigm through training and testing on data of
different domains, thus proving its generalizability.

5.3. A Special Note on Attention in Depression Detection

Attention mechanisms help in depression detection by allowing the model to selec-
tively focus on important parts of the input text, instead of treating the entire text equally.
This is particularly useful in depression detection, where certain words or phrases may be
more indicative of depression in some individuals than in others. For example, an attention
mechanism could help the model to identify important keywords or phrases that are highly
indicative of depression, such as negative self-talk, hopelessness, or social isolation.

In depression detection, certain words or phrases may carry more weight than others,
and attention mechanisms can help the model identify and prioritize these important
features. Additionally, attention mechanisms can help the model better understand the
context and meaning of the text by focusing on relevant information and ignoring irrele-
vant information. This can lead to improved accuracy and performance of the model in
identifying depression in text data.

Strengths, Weakness, and Extensions

This article focuses on the application of EDL models and attention layer for depres-
sion detection. The study shows significant improvement in predicting sentiment and
depression from multiple data sources, making the proposed EDL a benchmark in the field
of depression detection. The EDL model outperforms existing studies on two datasets.
Additionally, cross-validation, clinical validation, and unseen implementations prove the
system’s robustness and domain adaptability, as it performs fairly well on a different
domain to that on which it was trained, demonstrating its generalization ability.

Due to the limited availability of high-quality open datasets on depression, the exist-
ing study focused mainly on training classifiers on specific datasets. Consequently, the
model’s accuracy was not improved beyond 95%, although it still outperformed existing
studies. To encourage further research in the field and improve current benchmark models,
high-quality datasets of substantial size are necessary to build more robust and optimal
models. The scope of this approach focuses only on the NLP text-based approach, and
hence, we adapted the Twitter and Reddit dataset as they follow the same paradigm.
This was an in-depth explanation of the domain adaption paradigm, which focused on
the adaption of ensemble-based NLP models through extensive experimentation. We
developed 11 solo deep learning models and 5 ensemble models, which were specifically
designed to leverage their capabilities in detecting depression from users’ text patterns.
Additionally, within our ensemble models, we incorporated attention channels to enhance
explainability, highlighting key textual features that contribute to the classification decision.
By employing these techniques, we aim to achieve both high performance in depression
detection and meaningful explanations for the model’s decisions, ensuring transparency
and interpretability in our classification approach.

The exploration of multimodal videos and images will be considered as a potential
continuation in future research. Through such research, we can explore datasets from
visual-based social media platforms such as TikTok, YouTube, and Instagram. Here, we will
shift our focus to video classification, which requires different methodologies compared to
the NLP-based classification we have utilized thus far. We will employ computer vision-
based classification models to analyze visual cues, facial expressions, body language, and
other visual elements in order to detect depression using an entirely different paradigm.
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Table 19. A table showing the studies carried out that did not use attention blocks.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

Yr. Last Name Objective
(Analysis) AI Models SDL vs.

EDL EDL Type Method Data Type Data Size Eval.
Metric Score Sci. Val. Clin.

Val.
Unseen

Val.

R1 2020 Zhu et al.
[63]

Sentiment
Analysis

CNN-
BiLSTM SDL SDL

Context Vector via
Kernel

Optimization
Function

Movie
Review Text

Data
11,846 Accuracy 85.4 X K5 X

R2 2020 Yilmaz
et al. [62]

Multi-Label
Sentiment
Analysis

BiLSTM SDL Dynamic
Weighting

Multi-Label
Classification using
Balancing of classes

Text in 100
Languages—

Mixed
Type

X

Macro
F-Score
Micro

F-Score

0.584
0.696 Ablation K7 4.

R3 2020 Bibi et al.
[59]

Sentiment
Analysis

Clusters of
Naive

Bayes and
SVM

EDL
Clustering—

Max
Voting

Hierarchical
Clustering
ML-based

Model—Max
Voting

4 Datasets
(Tweet) 3844/4578/718/3000 AUC

Accuracy
0.74
75 X K10 X

R4 2021 Behera
et al. [58]

Sentiment
Analysis

CNN-
LSTM SDL SDL Convolution LSTM

Hybrid

4 Text
Datasets

(Reviews)
25,000/13871 F-Score

Accuracy
0.8302
83.13 p < 0.05 K5, K10 X

R5 2022 Tong et al.
[65]

Depression
Detection

Decision
Trees EDL

Boosting
and

Pruning

Boosting Pruning
Ensemble Model

3 Datasets
(Tweet)—
CLPsych

2558/5304/58,810 F-Score
Accuracy

0.9246
90.9 Ablation SD < 2.5 X

R6 2022 J. Kumar
et al. [60]

Multi-Label
Sentiment
Analysis

LSTM +
GRU SDL SDL

Gender-Based
Multi-Aspect

Sentiment
Detection

Text
(Reviews) 1722/2438 Accuracy 83.58 X K5 X

R7 2022 Li et al.
[66]

Suicide
Detection CNN EDL Hierarchical

Ensemble

Hierarchical
Ensemble Model
for Imbalanced

Data

2 Datasets
(Weibo) 550,000/7329 F-Score

Accuracy
0.8962
93.11 Imbalance X X

R8 2022 Liu et al.
[64]

Depression
Detection

KNN, NB,
LG1, LG2 EDL

Stacking of
Base

Classifiers

Hybrid Feature
Selection and

Ensemble Model

Blog Text
(Weibo) X Accuracy 90.27 X K10 X

R9 2023 Wu et al.
[61]

Sentiment
Analysis

Graph
Network

Model
SDL SDL

Graph
Knowledge-Aware

Graph Network

4 Text
Datasets 6.940/4.728/2.966/12,522 F-Score

Accuracy
0.8194
87.01 X X X

R10 2023
Singh et al.

(This
paper)

Sentiment/
Depression

Analysis

ALBERT-
CNN-

BiLSTM
EDL

Concatenation
of Solo
Models

Domain-Adaptive
Ensemble Models

for Depression
Detection

Text (Tweet)
(Reddit)
(Kaggle)

1,600,000/26,000
/27,977/31,000/17,719

F-Score
Accuracy

0.8941
91.44

(95.01) 1

SD < 2.5;
p < 0.001

Cross-
Validation 4

1 Best Accuracy achieved by EDL5 Model (ALBERT + BERT-BiLSTM).
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Table 20. A table showing the studies carried out that used attention blocks.

Table 10.
Cont. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Yr. Last
Name

Objective
(Analysis)

AI
Models

SDL
vs.

EDL
EDL Type Attention

Type Method Data Type Data Size Eval.
Metric Score Sci. Val. Clin. Val. Unseen

Val.

R1 2019
Long
et al.
[67]

Sentiment
Analysis LSTM SDL SDL

Cognition-
Grounded
Attention

Cognition-
Grounded

Attention for
improving

LSTM Model

3 Text
Datasets

(Reviews)
84,919/1631/12,836 RMSE

Accuracy
0.685
65.5 Ablation X X

R2 2020
Zhai
et al.
[70]

Sentiment
Analysis BiLSTM EDL Attention

Fusion
Multi-

Attention

Fusion
Modeling for
Educational

Data

3 Text
Datasets 5052 Accuracy 79.6 X X X

R3 2020
Zhang
et al.
[71]

Sentiment
Analysis BiLSTM EDL Weighted

Sum/Capsules
Capsule

Attention

Knowledge-
Guided

Network
using Capsule

Attention

5 Text
Datasets 6940

Macro
F-Score
Accuracy

0.7072
88.47 p < 0.001 Tests Per-

formed X

R4 2020
Yang
et al.
[69]

Sentiment
Analysis

CNN-
GRU SDL SDL Attention

Lexicon
Analysis

using
Attention

Text (E-
Commerce) 100,000 Accuracy 93.2 Ablation K Cross X

R5 2021
Wang
et al.
[74]

Aspect
and

Sentiment
Analysis

BERT SDL SDL Attention

Aspects,
Sentiment and

opinion
Extraction

4 Text
Datasets 5971 F-Score

Accuracy
0.630
91.7 Ablation 4 4 Sub-

Sample

R6 2021
Zhang
et al.
[76]

Sentiment
Analysis LSTM SDL SDL Influence

Attention
Interactive

LSTM
Text Conversa-

tions 24,072 F-Score
Accuracy

0.779
78.0

Credibility
LSTM X X

R7 2021
Su

et al.
[73]

Sentiment
Analysis BERT SDL SDL BERT Self-

Attention
BERT-Based

Self-Attention
3 Text

Datasets 1014/2889/1741
Macro
F-Score
Accuracy

0.8234
87.86 X X X

R8 2021

Al-
Ghadir
et al.
[81]

Stance
Detection ML EDL

Fusion of
ranked

lists

Fusion
Attention

Weighted
KNN (ML

Models Only)
Text (Tweet) 4163 Macro

F-Score 0.7645 X X X

R9 2022
Tu

et al.
[78]

Sentiment
Classifica-

tion
Transformers EDL

Dialogue
Trans-
former

Attention

Attention
Context- and

Sentiment-
Aware

Networks

Text Data
(Emotion) 13,708/103,607/9489 Accuracy 58.31 Ablation X X

R10 2022

P. Ku-
mar
et al.
[82]

Text
Emotion
Recogni-

tion

BERT
BiLSTM EDL

Ensembled
Model
with

Concate-
nation

Self-
Attention

Dual Channel
Module Con-

catenation
Attention

4 DS
News/Text/

Tweets
7665/5025/1250/2000 Accuracy 79.17 K3, K5, K10 Different

Datasets X
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Table 20. Cont.

Table 10.
Cont. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

R11 2022
Mei
et al.
[77]

Sentiment
Classifica-

tion
RNN SDL SDL Attention

Task-Aware
Dropout for

RNN

Continual
Sentiment

data
24 × 5000 Accuracy 85.52 X X X

R12 2022
Huang
et al.
[72]

Sentiment
Analysis LSTM SDL SDL Influence

Attention

Enhanced
LSTM using

Emotion
Estimator

4 Text
Datasets

(English and
Chinese)

5000/5000/15,000/15,000 Accuracy 81.15 X
Inter-
Class
Val.

X

R13 2022
Liu
et al.
[83]

Political
Bias GPT-2 SDL SDL Attention

Language
Models for

bias detection

Text (Media
Outlets) 260,000 Bias 0.339 p < 0.001 p < 0.001 4 Merg-

ing

R14 2023
Mosin
et al.
[80]

Sentiment
Analysis Transformers SDL SDL Vocabulary

Transfer
Fine-Tuning

Transformers

4 Text
Datasets

(Question–
Answer)

201,000/1,300,000/
3,688,358 Accuracy 83.1 Token

Shuffle X X

R15 2020
Yang
et al.
[68]

Sentiment
Analysis

Gated
CNN EDL Fusion Self-

Attention

Aspect-based
Sentimental
Attention

using Gated
CNN

2 Text
Datasets

(Reviews)
6000/5000 Accuracy 81.4 K10 X X

R16 2022
Zhang
et al.
[75]

Sentiment
Analysis Transformers EDL

Concatenation
with

Enhance-
ment

Nodes

Multi-
Task

MultiTask
Transformer

Network
using

Mapping

2 Text
Datasets
(Twitter,
Reviews)

69,672 F-Score
Accuracy

0.778
77.4 X X X

R17 2022
Lu

et al.
[79]

Sentiment
Analysis

BERT—
BiLSTM EDL Attention

Fusion
Attention

Scores

Graph
Attention
Network

using Dual
Channel

Edges

6 Text
Datasets

(Reviews)
12,522/2343/4688/2966 F-Score

Accuracy
0.7676
80.56 Ablation X X

R18 2022
Nadeem
et al.
[84]

Depression
Detection

GRU—
LSTM SDL SDL Self-

Attention

Hybrid
Ternary

Classification
using

Self-Attention

Text (Tweet) 31,000 F-Score
Accuracy

0.829
82.9 X X

4
Cross-

Domain
Val.

R19 2023

Singh
et al.
(This
pa-

per)

Sentiment/Depression
Analysis

ALBERT-
CNN-

BiLSTM
EDL

Concatenation
and Self-

Attention

Self-
Attention

Domain
Adaptive
Ensemble

Models with
self-attention

5 Text
Datasets
(Tweet)
(Reddit)
(Kaggle)

1,600,000/26,000/27,977/
31,000/17,719

F-Score
Accuracy

0.9192
93.97

(95.01)
1

SD < 2.5;
p < 0.001

Cross-
Validation 4

4 4 4 4 4 4 4 4

1 Best Accuracy achieved by EDL5 Model (ALBERT + BERT-BiLSTM).
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In the future, our goal is to develop new datasets and explore novel architectures, such
as Generative Adversarial Networks (GANs), for improving depression detection. We aim
to compare these new models, such as the fusion of ML with exhaustive feature space with
DL [86], to our existing EDL models to evaluate their performance and perform variability
analysis [87]. Additionally, we plan to develop new loss functions and incorporate multiple
loss functions into our aeEDL models, as adopted in the imaging framework, to increase
their robustness and improve their performance metrics [34,88]. Additionally, design sys-
tems can be pruned to reduce the size of the training models [89], and artificial intelligence
designs are susceptible to bias; we intend to work on understanding studies and rank them
according to their bias [90–93].

Lastly, there have been studies in different domains, such as immunology [94,95],
cardiovascular risk assessment [96], and psoriasis diagnosis [97], where cloud-based end-
to-end systems are used for detection and moderation. We therefore intend to use a
similar paradigm to create an automated and scalable cloud-based system using research
into AI sentiment analysis to interpret the emotional content present in various forms of
communication, such as text messages, social media posts, and online interactions.

The proposed cloud system follows a layered architecture, where the presentation
layer operates locally on users’ devices, while the business and persistence layers are
hosted on the cloud. This architecture ensures a user-friendly experience by providing real-
time sentiment analysis and emotional guidance directly on the device. Additionally, this
architecture facilitates secure connectivity between the system and psychologists, enabling
them to access and utilize the system’s insights to provide personalized support and
assistance to their patients. The automated moderation provided by this system can greatly
benefit psychologists in their practice. When patients visit a psychologist, it can sometimes
be challenging for them to express their emotions fully. With the assistance of our automated
system, psychologists can gain deeper insights into their patients’ emotional well-being.
This enhanced understanding will enable psychologists to provide more personalized and
tailored treatment plans, improving the effectiveness of their interventions. By utilizing
this system, psychologists can leverage technology to follow up with their patients’ mental
well-being in a more comprehensive and individualized manner.

The cloud-based nature of our system will play a crucial role in its capabilities. It will
enable the secure storage and processing of a vast amount of data, allowing the system to
continuously learn and enhance its understanding of emotions. This accumulated knowl-
edge and analysis of sentiment data contribute to a more robust and accurate sentiment
analysis process. Furthermore, the integration of this system into mobile phone-based
applications will provide users with convenient access to its features. Users can benefit
from real-time guidance and support, empowering them to manage their emotions and
prioritize their mental well-being more effectively. This sentiment analysis system will act
as a personal mental guide in a robust pipeline, operating locally to help users recognize
and address their emotions. Additionally, the integration of AI sentiment analysis could
enable holistic support for mental well-being, positively impacting individuals’ lives by
providing timely assistance and resources based on their emotional needs.

6. Conclusions

Our study presents a novel paradigm for depression detection and sentimental analysis
in a cross-domain framework based on text inputs. This utilizes five kinds of attention-
enabled ensemble deep learning model designed using eleven kinds of solo deep learning
model. A comprehensive data analysis was conducted using four kinds of dataset to prove
our hypothesis. Further, a benchmarking strategy was developed on the standardized
SemEval dataset, establishing our model’s superior performance both in classification
accuracy and area-under-the-curve. As part of a generalizability assessment, “seen” and
“unseen” experiments were conducted, with the model meeting the regulatory requirements.
Finally, the system’s reliability and stability were demonstrated using clinical tests.
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Abbreviations

SN Abb Definition SN Abb Definition
1 ALBERT A Lite BERT 26 GPU Graphics Processing Unit
2 ANOVA One-way Analysis of Variance 27 GRU Gated Recurrent Unit
3 API Application Programming Interface 28 HDL Hybrid deep learning
4 AUC Area-under-the-curve 29 LSTM Long Short-Term Memory
5 BCEL Binary cross-entropy loss 30 NLP Natural language processing

6 BERT Bidirectional Encoder Representations from
Transformers 31 RNN Recurrent Neural Network

7 BiGRU Bidirectional Gated Recurrent Unit 32 ROC Receiver Operating Characteristic
8 BiLSTM Bidirectional Long Short-Term Memory 33 SD Standard deviation
9 BiRNN Bidirectional Recurrent Neural network 34 SDL Solo deep learning
10 CEL Cross-entropy loss 35 SDL1 LSTM Model
11 CNN Convolutional Neural Network 36 SDL2 BiLSTM Model
12 CV Cross-validation 37 SDL3 GRU Model
13 DL Deep learning 38 SDL4 BiGRU Model

14 DD-Kgg-
22 Kaggle Mental Health Dataset 39 SDL5 RNN Model

15 DD-Red-
14 Reddit Depression Dataset 40 SDL6 BiRNN Model

16 EDL Ensemble deep learning 41 SDL7 CNN-LSTM Model
17 EDL1 GRU + CNN-LSTM Model 42 SDL8 CNN-BiLSTM Model
18 EDL2 BiLSTM + CNN-LSTM Model 43 SDL9 BERT Model
19 EDL3 BERT + CNN-BiLSTM Model 44 SDL10 ALBERT Model
20 EDL4 ALBERT + CNN-BiLSTM Model 45 SDL11 BERT-BiLSTM Model

21 EDL5 ALBERT + BERT-BiLSTM Model 46
SD-
SemEval-
16

SemEval-2016 Task 4 Subtask B Dataset

22 FN False negative 47 SD-Sford-
09 Stanford Sentiment140 Dataset

23 FP False positive 48 SD-Twi-
23 Private Twitter Sentimental Dataset

24 GAN Generative Adversarial Network 49 TN True negative
25 GloVe Global Vectors for Word Representation 50 TP True positive
Nomenclature
SN Symbols Explanation
1 η Accuracy: the number of correct predictions made out of the total number of predictions.
2 R Recall: the number of correctly predicted positive class predictions made from all the positive members in the dataset.

3 P Precision: the number of correctly predicted positive class predictions out of the total number of classified positive
predictions.

4 m The current deep learning model “m” that is being investigated.
5 d The current dataset “d” that is being investigated.

6 F F1-Score: F1-Score is the harmonic mean of precision and recall, used to evaluate the performance of a binary
classification model.

7 M Total number of deep learning models used.
8 D Total number of datasets used.
9 η(m) Mean accuracy for the model “m” over all the D datasets.
10 η(d) Mean accuracy over the dataset “d” over all the M models.
11 ηsys Mean accuracy over M models and D datasets.
12 α(m, K10) Mean AUC for the model “m” over all the D datasets for K10 protocol.
13 α(d, K10) Mean AUC for dataset “d” taken over M models for K10 protocol.
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14 αsys Mean AUC over all the models M and datasets D.
15 aneSDL SDL models “without attention” block.
16 aeSDL SDL models “with attention” block.
17 aneEDL EDL models “without attention” block.
18 aeEDL EDL models “with attention” block.
19 X Input Sequence of length n for attention layer.
20 H Output sequence of the multi-head self-attention layer.
21 Hos Final Output sequence of the multi-head self-attention layer of the required size.
22 © Concatenation function.
23 s SoftMax activation function.
24 N Number of samples in the dataset.
25 Yi The ground truth label.
26 Ŷi The predicted probability of the positive class.
27 a Learnable weight matrix for mapping the output of layer to the desired output size.
28 dks The dimensionality of the key space, used as a scaling factor.
29 × Denotes a multiplication sign.
30 Q Query vectors for attention layer.
31 K Key vectors for attention layer.
32 V Value vectors for attention layer.
Abb * = Abbreviation.
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