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Abstract: Cone beam computed tomography (CBCT) has become an essential tool in modern dentistry,
allowing dentists to analyze the relationship between teeth and the surrounding tissues. However,
traditional manual analysis can be time-consuming and its accuracy depends on the user’s proficiency.
To address these limitations, deep learning (DL) systems have been integrated into CBCT analysis
to improve accuracy and efficiency. Numerous DL models have been developed for tasks such as
automatic diagnosis, segmentation, classification of teeth, inferior alveolar nerve, bone, airway, and
preoperative planning. All research articles summarized were from Pubmed, IEEE, Google Scholar,
and Web of Science up to December 2022. Many studies have demonstrated that the application of
deep learning technology in CBCT examination in dentistry has achieved significant progress, and its
accuracy in radiology image analysis has reached the level of clinicians. However, in some fields, its
accuracy still needs to be improved. Furthermore, ethical issues and CBCT device differences may
prohibit its extensive use. DL models have the potential to be used clinically as medical decision-
making aids. The combination of DL and CBCT can highly reduce the workload of image reading.
This review provides an up-to-date overview of the current applications of DL on CBCT images in
dentistry, highlighting its potential and suggesting directions for future research.

Keywords: cone beam computed tomography; deep learning; medical decision-making aids;
segmentation; diagnosis

1. Introduction

Before the 1990s, dental X-rays were only applied in 2D images, such as panoramic
radiographs [1]. In 1998, P. Mozzo invented a new computed tomography (CT), the first
CBCT, which had the advantage of low X-ray doses and could be applied well for dento-
maxillofacial images. Its most important advantage was the 3D image [2]. As per his
prediction, CBCT has become an indispensable tool in modern oral medicine, fulfilling its
promise as a non-invasive imaging technique that enables the visualization of both hard
and soft tissues within the maxillofacial region. The CBCT apparatus is composed of an
X-ray source and collector, which function similarly to traditional CT scanners. At the X-ray
source, electrons produced in the cathode strike the anode, with most of the energy being
transformed into heat, while only a few are converted into X-rays via the Bremsstrahlung
effect. Meanwhile, collectors receive X-rays across the patient’s head and translate the
photons into electrical signals. By revolving around the mandibular region, the X-ray tube
and collector can obtain multiple slices of the head and related 2D data. This information
is then processed to construct 3D models [3]. The calculation principle underlying this
process involves the Lambert–Beer law and the Radon transform. The Lambert–Beer law
states that, when X-rays penetrate an object, their strength decreases, such that it is possible
to estimate the density of the tissue through the attenuation of the X-ray beam [4]. On
the other hand, the Radon transform is employed to calculate the data of each point in
the 3D field based on the original 2D data and slices [5]. Such mathematical operations
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enable the reconstruction of the scanned anatomy in 3D space, providing accurate visual
representations of the internal structures of the maxillofacial region (Figure 1). Overall,
CBCT has revolutionized the field of oral medicine by improving diagnostic accuracy and
treatment outcomes while minimizing patient radiation exposure and invasiveness.
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inated. Another shortcoming is the low quality of soft tissue caused by low X-ray doses 
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trast and density quantification [8]. 

In clinical practice, CBCT is imperative. Compared to a panoramic radiograph, CBCT 
contains more information. Through CBCT images, doctors can identify the boundaries 
of caries, periapical disease, bone disease, impacted tooth, sinus, and inferior alveolar 
nerve easily [2]. However, it comes with the trade-off of higher radiation exposure com-
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Figure 1. The main principles of CBCT. CBCT (A) consists of an X-ray source and collector. The
X-ray source produces X-rays which penetrate the head and are collected by the collector (B). The
collector translates the X-rays into digital signals (C). Those numbers are used to calculate the values
of every point of the head by the Lambert-Beer Law and Radon transform (D). Finally, all values are
summarized and synthesized into CBCT images (E).

CBCT takes nearly half a minute to acquire the image of a patient, so breathing and
other actions can induce motion artifacts [6]. This shortcoming limits its usage in children
and some patients who cannot remain still during the examination. Additionally, the
presence of metal can lead to metal artifacts during scanning. New algorithms have been
designed to reduce these artifacts and achieved good results [7], but they still cannot be
eliminated. Another shortcoming is the low quality of soft tissue caused by low X-ray
doses and a spatially dependent bias, which could be addressed by enhancing the image
contrast and density quantification [8].

In clinical practice, CBCT is imperative. Compared to a panoramic radiograph, CBCT
contains more information. Through CBCT images, doctors can identify the boundaries of
caries, periapical disease, bone disease, impacted tooth, sinus, and inferior alveolar nerve
easily [2]. However, it comes with the trade-off of higher radiation exposure compared to
traditional panoramic and bitewing radiographs. In recent CBCT image scanning software,
there are many functions, for example, 3D scanning and reconstruction, which a panoramic
radiograph does not have. The 3D nature of CBCT can help doctors to know the region of
disease accurately. However, it is time-consuming for doctors to identify every landmark
and measure parameters on CBCT images. Moreover, it takes a long time for new doctors
to become proficient in CBCT landmarks. The development and application of automation
will help to solve these problems. Therefore, we present a summary of the application of
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automation, hoping to provide new ideas for future research and promote the development
of CBCT image reading automation.

2. Deep Learning

DL is a subset of machine learning (ML), which belongs to artificial intelligence (AI) [9].
ML allows manual feature extraction which can be used to predict some special data [10].
Deep learning is also called end-to-end ML, because it enables the entire process to map
from original input images to the final classification, eliminating the need for human
intervention [11].

Deep learning algorithms contain various types of neural networks, such as convo-
lutional neural networks (CNNs), k-nearest neighbors (KNN), recurrent neural networks
(RNNs), and others. These networks are designed to simulate the behavior of nerve cells in
the brain. They receive input data from many sources, which is processed by nodes within
the network to generate output results. In the early days, these algorithms were relatively
simple input–output models, but they have since evolved into complex and sophisticated
systems that can handle large amounts of data and perform advanced tasks such as image
recognition, natural language processing, and predictive modeling [9].

CNNs. In 2006, professor Geoffrey Hinton and his student described an effective way
to initialize the weights that worked well [12]. This work brought neural networks to the
forefront of research again. Nowadays, CNNs are the most widely used neural networks
in medical image segmentation and analysis. CNNs contain an input layer, an output
layer, and hidden layers. Hidden layers contain many pooling layers, convolutional layers,
and fully connected layers, as shown in Figure 2 [13,14]. Convolutional filters can learn
image features and extract hierarchical features. The pooling layer is used for averaging all
acquired features and relating them to neighboring pixels [15]. U-Net is one of the most
important frameworks of CNNs [16]. It is also widely used in medical image segmentation.
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KNN. KNN is a simple algorithm which is mostly used to classify a data point based
on how its neighbors are classified [17].

RNNs. The characteristic of an RNN is that the neurons in the hidden layer are
connected. The time-related input information in the sliding window can be transmitted
sequentially, and the temporal correlation between distant events in the temporal dimension
can be considered [18]. RNNs perform well in automatic speech recognition applications.

Medical imaging is one of the largest and most promising applications of deep learning
in healthcare. At present, with the development of society, imaging examination is more
and more common, and the social demand for radiologists and automated diagnosis is
also gradually increasing [19]. Deep learning provides a way to solve these problems [20].
Deep learning has been studied in many medical fields, such as ophthalmology, respiratory,
orthopedics, etc. [21–23]. In recent years, the application of DL in dentistry has also
increased fast and DL is the most popular AI method applied in dentistry [10]. In many
dental fields, the accuracy of DL is similar to, or even better than, manual work [24].
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3. The Application of Deep Learning in CBCT

In clinical practice, the application of DL in CBCT can help the doctor in their diagnosis.
It includes an array of pre-processing, segmentation, and classification techniques that form
an automated dental identification system, facilitating the work of dentists [25]. It can also
narrow the gap between old and new doctors’ abilities to read images, and alleviate the
gap between imaging diagnoses in rich and poor areas.

However, there are many challenges in this field, such as poor image quality, irregular
object shape, intensity variation in X-rays, proper selection of method, limitations of the
capture device, label and annotation reliability, and a lack of available datasets [25,26]. In
addition to these technical and data factors, the main issue is ethical [27]. Deep learning
cannot take responsibility for patients when a diagnosis goes wrong, which may mean that
it can only be used as auxiliary medical equipment.

In recent years, the application of DL on CBCT has developed rapidly. We searched
the literature on Pubmed, IEEE, Google Scholar, and Web of Science up to December 2022.
The combinations of search terms were constructed from “artificial intelligence”, “AI”,
“deep learning”, “DL”, “convolution neural network”, “automatic”, “computer-assisted
diagnosis”, “Cone beam CT”, and “CBCT”. We obtained 356 articles about DL application
in medicine, but some of them did not belong to dentistry. We only wanted to summarize
the application of DL on CBCT in dentistry. The application of image quality improvement,
tumor radiology therapy, and other fields were not considered. Finally, we found 54 articles
about the clinical application of DL in CBCT (Figure 3), which showed a rapidly developing
trend. We summarized the data of the studies and wrote this narrative review.
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Most of the studies calculated true positive (TP), true negative (TN), false positive
(FP) and false negative (FN). TP represents a region which was supposed to be segmented
and was correctly segmented; FN refers to a region which should have been but was not
segmented; FP is a region which was segmented but was not supposed to be segmented; and
TN represents a region which was not supposed to be segmented and was not segmented.
In the tables below, we have summarized the accuracy, precision, recall or sensitivity, Dice
similarity coefficient (DSC), intersection over union (IoU), F1 score, and 95% Hausdorff
distance (HD) for the studies included in this review.
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Accuracy: The rate of correct findings in relation to all of the observed findings.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision: The percentage of the accurately segmented area out of the completely
segmented area.

Precision = TP/(TP + FP)

Recall or sensitivity: The percentage of the regions that were perfectly detected.

Recall = TP/(TP + FN) = Sensitivity

F1 score: The harmonic average of precision and recall.

F1 score = 2 × precision × recall/(precision + recall)

DSC: The score of how much the segmented area was similar to the ground truth.

DSC = 2TP/(FP + 2TP + FN)

IoU: The amount of overlap between the predicted segmentation and the ground truth.

IoU = TP/(TP + FP + FN)

95% HD: Provides the 95th percentile of the maximal distance between the boundaries
of the automatic segmentation and the ground truth.

P95

(
min
g∈G
‖p− g‖2 ∪ min

p∈P
‖g− p‖2

)
In this narrative review, we have provided a brief overview of some of the technical

details of deep learning (DL), which is a well-established field and extensively covered in
many other articles. However, our primary focus is on the emerging applications of DL
in dentistry, particularly with respect to cone beam computed tomography (CBCT). By
reviewing the current literature on the topic, we aim to provide insights and guidance for
future research on DL applied to CBCT in the context of dentistry. According to the different
organizational areas and common applications, we have divided them into eight categories.
They are the upper airway, inferior alveolar nerve and the third molar, bone-related disease,
tooth segmentation, temporal-mandibular joint (TMJ) and sinus disease, dental implant,
and landmark localization.

3.1. The Application of Deep Learning in CBCT in Segmentation of the Upper Airway

Upper airway reconstruction is essential in the diagnosis and treatment of diseases
such as obstructive sleep apnea-hypopnea syndrome (OSAHS) and adenoidal hypertrophy.
The use of deep learning with CBCT has enormous potential to improve these fields. By
segmenting the upper airway, the volume can be calculated and used for assessing upper
airway obstruction. These applications are mostly semi-automatic or automatic, which
can save time for doctors. Many studies have reported high accuracy and specificity,
with 3D U-Net achieving the highest accuracy. However, most studies did not report
the algorithm’s runtime, except for one study. As such, there is still plenty of room for
improvement in terms of speed. Nonetheless, the application of deep learning in these
areas shows great promise for improving patient outcomes and reducing the workload of
medical professionals.

The 3D U-Net neural network is the most widely studied neural network in upper
airway segmentation. It was used to detect and segment airway space and help diagnose
OSAHS. The best accuracy for pharyngeal airway segmentation can reach 0.97 ± 0.01 and
the Dice score is 0.97 ± 0.02 [28]. Only one study has reported the time taken for analysis,
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reporting that it took nearly 10 min to analyze each sample. However, this may be an
overestimation of the time, because it not only contained pharyngeal airway segmentation,
but also contained computational fluid dynamics calculation and OSAHS assessment [29].
In some trials, doctors have assessed that the accuracy of 3D U-Net was ready for clinical
assistance in OSAHS diagnosis [30].

CNNs are the second most studied algorithm and also perform well. Leonardi et al.
describe a CNN method to segment the sinonasal cavity and pharyngeal airway on CBCT
images. Furthermore, there was no difference between the manual group and the CNN
group [31]. Ulaş Öz also chose CNN to segment the upper airway and calculate its volume.
The mean accuracy was 96.1% and the Dice score reached 91.9% [32].

Only one study used a regression neural network as the main algorithm. Their test
showed that this model was as accurate as manual segmentation [33].

The existing DL models on upper airway segmentation have been shown in Table 1.

Table 1. The existing DL models on upper airway segmentation and their functions and performance.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Jacobs
et al. [28] 3D U-Net 2021 48 25

Segmentation
of pharyngeal
airway space

Precision: 0.97 ± 0.02
Recall: 0.98 ± 0.01

Accuracy: 1.00 ± 0.00
DSC: 0.98 ± 0.01
IoU: 0.96 ± 0.02

95HD: 0.82 ± 0.41 mm

No

Choi
et al. [29] CNN 2021

73 for
segmentation

121 for
OSAHS

diagnose

15 for
segmentation

52 for
OSAHS

diagnose

Segmentation
of upper
airway,

computational
fluid dynamics

and OSAHS
assessment

• Upper airway flow
characteristics

Accuracy: 0.702 ± 0.048
Sensitivity: 0.893 ± 0.048
Specificity: 0.593 ± 0.053

F1 score: 0.74 ± 0.033
DSC: 0.76 ± 0.041

• OSAHS diagnosis

Accuracy: 0.815 ± 0.045
Sensitivity: 0.893 ± 0.048
Specificity: 0.862 ± 0.047
F1 score: 0.0876 ± 0.033

6 min

Yuan
et al. [30] CNN 2021 102

21 for
validation
31 for test

Segmentation
of upper
airway

Precision: 0.914
Recall: 0.864
DSC: 0.927
95HD: 8.3

No

Spampinato
et al. [31] CNN 2021 20 20

Segmentation
of sinonasal
cavity and
pharyngeal

airway

DSC: 0.8387
Matching percentage:

0.8535 for tolerance 0.5 mm
0.9344 for tolerance 1.0 mm

No

Oz
et al. [32] CNN 2021 214

46 for
validation
46 for test

Segmentation
of upper
airway

DSC: 0.919
IoU: 0.993 No

Lee
et al. [33]

Regres-sion
Neural

Network
2021 243 72

Segmentation
of upper
airway

r2 = 0.975, p < 0.001 No

3.2. The Application of Deep Learning in CBCT in Segmentation of the Inferior Alveolar Nerve

Inferior alveolar nerve injury, which can cause temperature, pain, touch, and pressure
sensation disorder in the mandibular parts, is one of the commonest complications of
implant surgery, molar extraction, and orthognathic surgery. Compared to panoramic
radiography, CBCT has a higher predictive value before surgery [34]. In clinical practice,
detection and segmentation of the IAN on CBCT images is a necessary task prior to
implant surgery, molar extraction, and orthognathic surgery. However, this process is
time-consuming and requires skilled manual labor. Recently, deep learning has shown
promising results in automating this task, thus significantly reducing the time required for



Diagnostics 2023, 13, 2056 7 of 18

this necessary step in clinical diagnosis. However, the accuracy in this field is acceptable,
but the precision and DSC still need to be improved, which can ultimately lead to improved
patient outcomes in dentistry.

CNNs are the most used method in this field. Cipriano et al. described a public and
complete method of detecting IAN with CNN and its Dice score was 0.69 [35]. They did not
calculate the accuracy. Many other researchers have described some high-quality methods
of detecting IAN with CNNs on CBCT images, but some of their data were not available.
Their best accuracy could even reach 0.99 [36–38]. A new study compared the difference
between specialist doctors and DL based on CNNs using a large sample of people who
came from different nations and five kinds of CBCT devices. It verified that DL had lower
variability than the interobserver variability between the radiologists [39]. In addition to
detecting IAN alone, CNNs have also been used to detect the relationship between IAN and
the third molar by Pierre Lahoud and Mu-Qing Liu [40,41]. Their studies all reached high
accuracy. The mean DSC in Liu’s method could reach 0.9248. The method found by Lahoud
could detect IAN in nearly 21.26 s. Furthermore, the continuity-aware contextual network
(Canal-Net) was constructed based on 3D U-Net with bidirectional convolutional long
short-term memory (ConvLSTM) under a multi-task learning framework. Conventional
deep learning algorithms (2D U-Net, SegNet, 3D U-Net, MPL 3D U-Net, ConvLSTM 3D
U-Net) and Canal-Net were assessed in the study. Canal-Net performed better and had
clearer boundary detection. It also achieved a higher accuracy and Dice score compared to
the other algorithms [42].

The existing DL models on inferior alveolar nerve have been shown in Table 2.

Table 2. The existing DL models on inferior alveolar nerve and their function and performance.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Grana
et al. [35] CNN 2022 68 8 for validation

15 for test
IAN

detection
IoU: 0.45
DSC: 0.62 No

Kaski
et al. [36] CNN 2020 128 IAN

detection

Precision: 0.85
Recall: 0.64

DSC: 0.6
(roughly)

No

Song
et al. [37] CNN 2021 83 50 IAN

detection 0.58 ± 0.08 86.4 ± 61.8 s

Hwang
et al. [38] 3D U-Net 2020 102 IAN

detection

Background accuracy: 0.999
Mandibular canal accuracy: 0.927

Global accuracy: 0.999
IoU: 0.577

No

Nalampang
et al. [39] CNN 2022 882

100 for
validation
150 for test

IAN
detection Accuracy: 0.99 No

Jacobs
et al. [40] CNN 2022 166 30 for validation

39 for test

IAN
detection,

relationship
between IAN
and the third

molar

Precision: 0.782
Recall: 0.792

Accuracy: 0.999
DSC: 0.774
IoU: 0.636
HD: 0.705

21.2 ± 2.79 s

Fu
et al. [41] CNN 2022 154 30 for validation

45 for test

IAN detection,
relationship

between IAN
and the third

molar

• The third molar

Accuracy: 0.9726
DSC: 0.9730
IoU: 0.9606

• Mandibular canal

Accuracy: 0.9563
DSC: 0.9248
IoU: 0.9003

6.1 ± 1.0 s for
segmentation
7.4 ± 1.0 s for

classifying
relation
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Table 2. Cont.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Yi
et al. [42] Canal-Net 2022 30 20 for validation

20 for test
IAN

detection

Precision: 0.89 ± 0.06
Recall: 0.88 ± 0.06
DSC: 0.87 ± 0.05

Jaccard index: 0.80 ± 0.06
Mean curve distance: 0.62 ± 0.10

Volume of error: 0.10 ± 0.04
Relative volume difference:

0.14 ± 0.04

No

Shin
et al. [43] CNN 2022 400 500 IAN

detection

Precision: 0.69
Recall: 0.832
DSC: 0.751

F1 score: 0.759
IoU: 0.795

No

3.3. The Application of Deep Learning in CBCT in Bone-Related Disease

CT has an advantage in bone imaging and CBCT inherits this advantage as well.
Furthermore, CBCT produces less radiation and saves cost. So, compared to CT, CBCT has
a huge advantage in maxillofacial bone disease diagnosis. Some researchers also agreed
that panoramic radiographs are insufficient in complicated facial fracture diagnosis [44].
Therefore, the research and applications of DL in CBCT are imperative in maxillofacial
bone disease.

CNNs have been used in jaw bone transmissive lesion detection on CBCT images, and
its overall accuracy can reach nearly 80% [45]. In this study, the jaw bone transmissive
lesions contained ameloblastoma, periapical cysts, dentigerous cysts, and keratocystic
odontogenic tumors (KCOT). However, in this study, CNNs could not classify which type
of disease the lesion belonged to. There are other scientists who have studied the computer-
aided CBCT diagnosis system. It can classify periapical cysts and keratocystic odontogenic
tumor lesions. However, the authors did not clarify the classification of their method [46].

Recently, there have been many applications of DL in bone lesion detection on CT
images [47]. DL can also be used to diagnose bone tumors, bone cysts, fractures, and
jaw deformities.

The existing DL models on bone-related disease have been shown in Table 3.

Table 3. The existing DL models on bone-related disease and their functions and performance.

Authors DL Models Year Training
Dataset

Validation/Test
Dataset Functions

Best
Performance of

DL

Time-
Consuming

Li
et al. [45] CNN 2021 282 71 Jaw bone lesions

detection
Overall accuracy:

0.8049 No

Kayipmaz
et al. [46] CNN 2017 50

Periapical cyst and
KCOT lesions
classification

Accuracy: 1
F1 score: 1 No

3.4. The Application of Deep Learning in CBCT in Tooth Segmentation and Endodontics

Tooth segmentation has been the focus of much research in the application of DL in
dentistry. It can be divided into two types: global segmentation and partial segmentation.
Global segmentation is useful for generating tooth charts and orthodontic plans. In particu-
lar, DL and CBCT-based global segmentation techniques can provide more comprehensive
dental information compared to recent oral scans, which only show the position and axis of
the crown but not the root. This approach can save time in the diagnosis and treatment
planning process for orthodontic patients. On the other hand, partial segmentation tech-
niques are applied to aid in the diagnosis of dental diseases such as periapical disease,
pulpitis, and root fractures. These techniques involve the identification and localization of
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specific regions of interest within the tooth structure, which can help clinicians make more
informed decisions about appropriate treatment options.

In tooth segmentation, Kang Cheol Kim et al. described an automatic tooth segmenta-
tion method based on CBCT imaging, but they did not say which algorithm was used. They
first changed the 3D image into a 2D image and identified 2D teeth. Then, loose and tight
regions of interest (ROIs) were captured. Finally, the accurate 3D tooth was segmented
by loose and tight ROIs. The accuracy could reach 93.35% and the Dice score reached
94.79% [48]. There are also many studies about tooth segmentation and identification, and
they all obtain good results [49–53]. Most of their methods used CNNs or were based on
CNNs. There are few studies on U-net. Some traditional U-Net methods (2Da U-Net, 2Dc
U-Net, 2Ds U-Net, 2.5Da U-Net, and 3D U-Net) were compared with upgraded versions of
U-Net (2.5Dv U-Net, 3.5Dv5 U-Net, 3.5Dv4 U-Net, and 3.5Dv3 U-Net) which were obtained
using majority voting in tooth segmentation. The best performing method was 3.5Dv5
U-Net and the DSC reached 0.922 [54].

In periapical disease, DL performs well. A CNN method was studied to detect
periapical pathosis and calculate their volumes on CBCT images. The result showed no
difference between DL and manual segmentation and the accuracy could reach 92.8% [55].
Setzer et al. used a deep learning method based on U-Net to segment periapical lesions on
CBCT images. The accuracy of lesion detection was 0.93 and the DSC for all true lesions
was 0.67 [56]. It verified that the accuracy of DL can reach the quality of manual working.
However, the DSC still needs to be improved.

In root canal system detection, Zhang Jian used 3D U-Net to recognize root canals.
They solved the class imbalance problem and developed the ability to segment using the
CLAHE algorithm and a combination loss based on dice loss [57]. U-Net can be used to
detect the C-shaped root canal of the second molar and unobturated mesial buccal 2 (MB2)
canals on endodontically obturated maxillary molars on CBCT images [58,59]. A cGAN
model was used to segment different tooth parts, and the segmentation effect was ideal [60].
Deep learning methods can also be used in combination. In tooth pulp segmentation, a
two-step method was reported. First, a region proposal network (RPN) with a feature
pyramid network (FPN) method was applied to detect single-rooted or multirooted teeth.
Second, they used U-Net models to segment the pulp. This method can obtain accurate
tooth and pulp cavity segmentation [61].

Many deep learning methods have been combined in root segmentation. Li et al. de-
scribed a root segmentation method based on U-Net with AGs, and RNN was applied for
extracting the intra-slice and inter-slice contexts. The accuracy was higher than 90% [62]. In
vertical root fracture diagnosis, Ying Chen and his team accessed three deep learning net-
works (ResNet50, VGG19, and DenseNet169) with or without previous manual detection.
In the manual group the accuracy of deep learning could reach 97.8% and in the automatic
group was 91.4%. It showed that deep learning has huge potential in the assistance of
diagnosis [63].

The existing DL models on tooth segmentation have been shown in Table 4.

Table 4. The existing DL models on tooth segmentation and their functions and performance.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Jin
et al. [48] Unknown 2022 216 223

Tooth
identification and

segmentation

• Tooth identification

Precision: 0.9681 ± 0.0167
Recall: 0.9013 ± 0.0530

F1 score: 0.9335 ± 0.0254

• Tooth segment

Precision: 0.9595 ± 0.0200
Recall: 0.9371 ± 0.0208
DSC: 0.9479 ± 0.0134
HD: 1.66 ± 0.72 mm

No
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Table 4. Cont.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

He
et al. [49] cGAN 2020 15,750

teeth 4200 teeth
Tooth

identification and
segmentation

• IoU

Incisor: 0.89 ± 0.087
Lateral incisor: 0.92 ± 0.068

Canine: 0.90 ± 0.053
First premolar: 0.91 ± 0.032

Second premolar: 0.93 ±
0.026

First molar: 0.92 ± 0.112
Second molar: 0.90 ± 0.035

No

Jacobs
et al. [50] CNN 2021 2095 slice

328 for
validation

501 for
optimization

Tooth
segmentation

• R-AI

IoU: 0.881 ± 0.036
DSC: 0.937 ± 0.02

• F-AI

IoU: 0.887 ± 0.032
DSC: 0.940 ± 0.018

R-AI
72 ± 33.02 s

F-AI
30 ± 8.64 s

Jacobs
et al. [51] 3D U-Net 2021 140 35 for validation

11 for test

Tooth
identification and

segmentation

Precision: 0.98 ± 0.02
IoU: 0.82 ± 0.05

Recall: 0.83 ± 0.05
DSC: 0.90 ± 0.03

95HD: 0.56 ± 0.38 mm

7 ± 1.2 h
for experts
13.7 ± 1.2 s

for DL

Deng
et al. [52] CNN 2022 450 104

Tooth
identification and

segmentation

Accuracy: 0.913
AUC: 0.997 No

Jacobs
et al. [53] CNN 2022 140 35

Tooth
identification and

segmentation

Accuracy of teeth detection:
0.997

Accuracy of missing teeth
detection: 0.99

IoU: 0.96
95HD: 0.33

1.5 s

Ozyurek
et al. [55] CNN 2020 2800 153

Periapical pathosis
detection and their

volumes calculation
Detection rate: 0.928 No

Li
et al. [56] U-Net 2020 61 12

Periapical lesion,
tooth, bone,

material
segmentation

Accuracy: 0.93
Specificity: 0.88

DSC: 0.78
No

Schwendicke
et al. [58]

Xception
U-Net 2021 100 35

Detect the
C-shaped root canal

of the
second molar

DSC: 0.768 ± 0.0349
Sensitivity:

0.786 ± 0.0378
No

Mahdian
et al. [59] U-Net 2022 90 10

Unobturated
mesial buccal 2 (MB2)

canals on
endodontically

obturated
maxillary molars

Accuracy: 0.9
DSC: 0.768

Sensitivity: 0.8
Specificity: 1

No

Xie et
al [60] cGAN 2021 Improved group 40

Traditional group 40

Different
tooth parts

segmentation

Omit,
Precision, TRP,
FRP, and DSC

No

Yang
et al. [61]

RPN, FRN,
U-Net 2021 20 Tooth and pulp

segmentation

• Single root tooth

DSC: 0.957 ± 0.005
ASD: 0.104 ± 0.019 mm

RVD: 0.049 ± 0.017

• Multiroot tooth

DSC: 0.962 ± 0.002
ASD: 0.137 ± 0.019 mm

RVD: 0.053 ± 0.010

No

Lin
et al. [62]

U-Net,
AGs, RNN 2020 1160 361 Root

segmentation

IoU: 0.914
DSC: 0.955

Precision: 0.958
Recall: 0.953

No
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Table 4. Cont.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Lin
et al. [63]

ResNet50,
VGG19,

DenseNet169
2022 839 279

Vertical root
fracture

diagnosis

• ResNet50

Accuracy: 0.978
Sensitivity: 0.970
Specificity: 0.985

• VGG19

Accuracy: 0.949
Sensitivity: 0.927
Specificity: 0.970

• DenseNet169

Accuracy: 0.963
Sensitivity: 0.941
Specificity: 0.985

No

Zhao
et al. [64] 3D U-Net 2021 51 17

Root
canal system

detection
DSC: 0.952 350 ms

3.5. The Application of Deep Learning in CBCT in TMJ and Sinus Disease

In TMJ and sinus disease detection, CBCT can show its 3D advantage clearly. The
panoramic radiograph can only show whether there is disorder, but CBCT can also show
where the disorder is.

U-Net was used to segment the mandibular ramus and condyles in CBCT images; the
average accuracy was near 0.99 [65]. Classification of temporomandibular joint osteoarthri-
tis (OA) can be identified by a web-based system based on a neural network and shape
variation analyzer (SVA) [66,67].

Except for OA and the morphology of condyles, CBCT can also show the joint space,
effusion, and mandibular fossa which also can provide evidence for TMJDS diagnosis.
However, there is no study of the application of DL in temporal-mandibular joint CBCT
diagnosis.

CNNs have been used to diagnose sinusitis. It was demonstrated that the accuracy of
CBCT was much higher than panoramic radiographs and the accuracy of CBCT can reach
99.7% [68]. Other scientists also performed similar research, 3D U-Net was used to segment
the bone, air, and lesion of the sinus [69]. However, the algorithm for sinus lesions still
needs to be improved.

The existing DL models on TMJ and sinus disease have been shown in Table 5.

Table 5. The existing DL models on TMJ and sinus disease and their functions and performance.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Soroushmehr
et al. [65] U-Net 2021 90 19

Mandibular condyles
and ramus

segmentation

Sensitivity: 0.93 ± 0.06
Specificity: 0.9998 ± 0.0001
Accuracy: 0.9996 ± 0.0003

F1 score: 0.91 ± 0.03

No

Prieto
et al. [66]

Web-based
system

based on
neural

network

2018 259 34 TMJ OA
classification No No

Prieto
et al. [67] SVA 2019 259 34 TMJ OA

classification Accuracy: 0.92 No

Ozveren
et al. [68] CNN 2022 237 59 Maxillary sinusitis

evaluation

Accuracy: 0.997
Sensitivity: 1

Specificity: 0.993
No

Song
et al. [69] 3D U-Net 2021 70 20 Sinus lesion

segmentation
DSC: 0.75~0.77
Accuracy: 0.91

1824 s
for manual

855.9 s for DL



Diagnostics 2023, 13, 2056 12 of 18

3.6. The Application of Deep Learning in CBCT in Dental Implant

Before implant surgery, doctors always need to measure the bone density, width, and
depth, and decide on the implant’s position. The integration of CBCT imaging and DL
techniques can help doctors to collect and analyze those messages.

Bone density relates to the implant choice and the placing of the implant insertion.
Knowing the alveolar bone density in advance can also help doctors to select the implant
tool. Many kinds of DL methods have been studied. CNNs were studied to make clas-
sifications of alveolar bone density on CBCT images through a 6-month follow-up. The
accuracy could reach 84.63% and 95.20% in hexagonal prism and cylindrical voxel shapes,
respectively [70]. Nested-U-Net was also used, and the Dice score could reach 75% [71].
QCBCT-NET, which combines a generative adversarial network (Cycle-GAN) and U-Net,
can be used to measure the mineral density of bone. It was verified that QCBCT-NET was
more accurate than Cycle-GAN and U-Net used singly [72].

In addition to in relation to bone density, CNNs have also been used in other areas.
Faisal Saeed chose six CNN models (AlexNet, VGG16, VGG19, ResNet50, DenseNet169,
and MobileNetV3) to detect missing tooth regions. Among them, DenseNet169 achieved
the best score and the accuracy could reach 89% [73]. Bayrakdar et al. used a CNN to
measure bone height, bone thickness, canals, sinuses, and missing teeth. They achieved
good results in premolar tooth regions in bone height measurements. However, in other
measurements, the results need to be improved [74]. CNNs can also can be used to help
plan the immediate implant placement. A recent end-to-end model only took 0.001 s for
each CBCT image analysis [75].

After implant surgery, CNNs can help to assess implant stability. Panoramic radio-
graph cannot show the full bone loss or integration information around the implant, so
CBCT is the best choice. Liping Wang described a multi-task CNN method that can segment
implants, extract zones of interest, and classify implant stability. Its accuracy was higher
than 92% and it could evaluate each implant in 3.76 s [76].

The combination of CBCT and DL can aid in the evaluation of tooth loss, alveolar bone
density, height, thickness, location of the inferior alveolar nerve, and other conditions in the
area of tooth loss. Such information provides a basis for doctors to evaluate the feasibility
of implantation and shorten the time required for treatment planning. Additionally, postop-
erative stability analysis can be performed using these technologies, providing convenience
for later review. These existing techniques already cover preoperative assessment and
postoperative follow-up for implant surgery. As technology advances, the combination of
these techniques may pave the way for the development of implant surgery robots in the
near future.

The existing DL models on implant have been shown in Table 6.

Table 6. The existing DL models on implant and their functions and performance.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Khajeh
et al. [70] CNN 2019 620

54 for
validation
43 for test

Bone density
classification

Accuracy: 0.991
Precision: 0.952 76.8 ms

Lin
et al. [71]

Nested-U-
Net 2022 605 68 Bone density

classification
Accuracy: 0.91

DSC: 0.75 No

Yi
et al. [72]

QCBCT-
NET 2021 200

Bone mineral
density

measurement

Pearson correlation
coefficients: 0.92 No

Saeed
et al. [73] CNN 2022 350

100 for
validation
50 for test

Missing tooth
regions detection

Accuracy: 0.933
Recall: 0.91

Precision: 0.96
F1 score: 0.97

No
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Table 6. Cont.

Authors DL
Models Year Training

Dataset
Validation/Test

Dataset Functions Best Performance of DL Time-
Consuming

Shumilov
et al. [74] 3D U-Net 2021 75

Bone
height\thickness\canals,
missing tooth, sinus

measuring

• Right detection

Canal: 0.722
Sinuses/fossae: 0.664
Missing tooth: 0.953

No

Chen
et al. [75] CNN 2022 2920

824 for
validation
400 for test

Perioperative plan ICCs: 0.895

0.001 s for DL
64~107 s

for manual
work

Wang
et al. [76] CNN 2022 1000 150 Implant stability

Precision: 0.9733
Accuracy: 0.9976

IoU: 0.944
Recall: 0.9687

No

3.7. The Application of Deep Learning in CBCT in Landmark Localization

Craniomaxillofacial (CMF) landmark localization is critical in surgical navigation
systems, as the accuracy of landmark localization directly impacts surgical precision. This
field presents challenges for deep learning due to the presence of deformities and traumatic
defects. However, the application of deep learning techniques can save time for doctors
and assist in clinical planning, as accurate data enables more precise surgical plans. Overall,
while challenging, deep learning showed good results in CMF landmark localization.

Neslisah Torosdagli et al. proposed a three-step deep learning method to segment the
anatomy and make automatic landmarks. In the first step, they constructed a new neural
network to segment the image, which decreases the complex post-processing. In the second
step, they formulated the landmark localization problem for automatic landmarks. In the
third step, they used a long short-term memory network to identify the landmark. Their
method showed very good results [77].

Shen Dinggang and his team performed a lot of work in this field. They described a
multi-task deep neural network that can use anatomical dependencies between landmarks
to realize large-scale landmarks on CBCT images [78]. Shen’s team also invented a two-step
method including U-Net and a graph convolution network to identify 60 CMF landmarks.
The average detection error was 1.47 mm [79]. Later, they invented another two-step
method involving 3D faster R-CNN and 3D MS-UNet to detect 18 CMF landmarks. They
first made a cause prediction of landmark location and then redefined it via heatmap
regression. It can reach state-of-the-art accuracy of 0.89 ± 0.64 mm in an average time
of 26.2 s per volume [80]. Their team also used 3D Mask R-CNN to identify 105 CMF
landmarks on patients with varying non-syndromic jaw deformities on CBCT images. The
accuracy could reach 1.38 ± 0.95 mm [81].

This technology can also be used in orthodontics analysis. Two-dimensional X-ray
cephalometry and CBCT are both needed in clinical orthodontic practice today. Fortunately,
the application of automatic landmark localization in CBCT has the potential to replace 2D
X-ray cephalometry. Jonghun Yoon and his team used Mask R-CNN to detect 23 landmarks
and calculate 13 parameters, even in a natural head position. Their algorithm was demon-
strated to be able to perform as well as manual analysis in 30 s while manual analysis
needed 30 min [82].

The existing DL models on landmark localization have been shown in Table 7.
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Table 7. The existing DL models on landmark localization and their function and performance.

Authors DL Models Year Training
Dataset

Validation/Test
Dataset Functions Best Performance of

DL
Time-

Consuming

Bagci
et al. [77]

Long
short-term
memory
network

2019 20,480 5120

Mandible
segmentation

and 9
automatic
landmarks

DSC: 0.9382
95HD: 5.47

IoU: 1
Sensitivity: 0.9342
Specificity: 0.9997

No

Shen
et al. [78]

Multi-task
dynamic

transformer
network

2020 no no 64 CMF
landmarks

DSC:
0.9395 ± 0.0130 No

Shen
et al. [79]

U-Net, graph
convolution

network
2020 20

5 for
validation
10 for test

60 CMF
landmarks

Accuracy:
1.69 mm

1~3 min
for DL

Yap
et al. [80]

3D faster
R-CNN,

3D
MS-UNet

2021 60 60 18 CMF
landmarks

Accuracy:
0.79 ± 0.62 mm 26.6 s for DL

Wang
et al. [81]

3D Mask
R-CNN 2022 25 25 105 CMF

landmarks
Accuracy:

1.38 ± 0.95 mm No

Yoon
et al. [82]

Mask
R-CNN 2022 170 30 23 CMF

landmarks

• mean absolute

value of deviation
length: 1 mm

angle: <2◦

25~35 min
for manual
17 s for DL

4. Conclusions

In summary, the application of deep learning technology in CBCT examinations in
dentistry has achieved significant progress: this achievement may significantly reduce the
workload of dentists in clinical radiology image reading. In many dentistry fields, such as
upper airway segmentation, IAN detection, and periapical pathosis detection, the accuracy
of DL can reach that of dentists [33,39,55].

However, there are many problems that need to be addressed: (1) Ethical issues
prohibit using deep learning as a stand-alone approach to diagnose oral diseases. Still,
it can serve as an aid to clinical decision making. (2) Although the existing studies have
produced promising results, there are still many areas that require improvement. For
example, the accuracy and DSC of IAN segmentation are not yet satisfactory, while bone
fracture and tumor detection are largely unexplored. (3) It may be difficult for a single
algorithm model to achieve high-precision identification and diagnosis of oral diseases.
Instead, the integration of multiple algorithms could be a trend in DL development.

In conclusion, the potential of deep learning in improving the accuracy of radiology
image analysis in dental diagnosis is enormous. Nonetheless, more significant efforts and
research must be conducted to improve its diagnostic capabilities for oral diseases.

5. Recommendations for Future Research

In addition to improving the accuracy of the existing DL algorithms, the follow-
ing areas can also be paid attention to in future research: (1) Achieving compatibility
across different CBCT devices is a critical challenge that needs to be addressed. (2) While
ChatGPT—based on DL—has been used in medical radiology, its performance in dentistry
needs to be improved through increasing the number of training samples [83]. (3) Since oral
diseases are complex and diverse, a single-function algorithm model may lead to missed
diagnoses of diseases. Therefore, integrating deep learning for the diagnosis of multiple
diseases may be the future direction of research in this field.
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