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Abstract: Integrative interpretation of cardiopulmonary exercise tests (CPETs) may improve assess-
ment of cardiovascular (CV) risk. Here, we identified patient phenogroups based on CPET summary
metrics and evaluated their predictive value for CV events. We included 2280 patients with diverse
CV risk who underwent maximal CPET by cycle ergometry. Key CPET indices and information on
incident CV events (median follow-up time: 5.3 years) were derived. Next, we applied unsupervised
clustering by Gaussian Mixture modeling to subdivide the cohort into four male and four female
phenogroups solely based on differences in CPET metrics. Ten of 18 CPET metrics were used for
clustering as eight were removed due to high collinearity. In males and females, the phenogroups
differed significantly in age, BMI, blood pressure, disease prevalence, medication intake and spirome-
try. In males, phenogroups 3 and 4 presented a significantly higher risk for incident CV events than
phenogroup 1 (multivariable-adjusted hazard ratio: 1.51 and 2.19; p ≤ 0.048). In females, differences
in the risk for future CV events between the phenogroups were not significant after adjustment for
clinical covariables. Integrative CPET-based phenogrouping, thus, adequately stratified male patients
according to CV risk. CPET phenomapping may facilitate comprehensive evaluation of CPET results
and steer CV risk stratification and management.

Keywords: cardiorespiratory fitness; cardiopulmonary exercise test; cardiovascular risk stratification;
cardiopulmonary phenogrouping; machine learning

1. Introduction

Cardiovascular (CV) diseases substantially burden societal health and healthcare [1].
We are still in search of tools to timely identify individuals at high risk for CV disease in
order to timely initiate risk reducing strategies [2]. The assessment of cardiorespiratory
fitness (CRF) may improve CV risk assessment [3]. CRF reflects the ability of the muscles
to perform dynamic work, relying on the respiratory and CV systems for the transport of
oxygen (O2) to, and carbon dioxide (CO2) from, working muscles. Low CRF is strongly
associated with a higher incidence of adverse CV events [3,4]. Nowadays, cardiopulmonary
exercise testing (CPET) allows standardized assessment of CRF in clinical settings. To date,
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however, more awareness needs to be raised about the potential added value of CPET
testing for identification of at risk populations [5].

Currently, clinicians interpret a selection of summary CPET metrics to evaluate CRF
and its cardiorespiratory determinants [5,6]. Yet, a more integrative interpretation of CPET
metrics may provide better characterization of CRF components and, thus, of CV risk.
Integrative interpretation of CRF is, however, challenging, due to the complex interrelation-
ships between the different CPET components, such as gas exchange, and hemodynamic
and blood pressure (BP) responses. Yet, unsupervised machine learning (ML) approaches
may enable integrative CPET profiling by identifying interaction patterns within the com-
plex clouds of interrelated, large-scale CPET data [7]. In addition, such a computational
approach could extract and mark the most informative metrics (‘features’) from the pool of
variables arising from CPET.

To date, only a few studies have applied unsupervised ML to identify clinically
relevant phenogroups from CPET data. In one study, for instance, four patient groups
were identified from 738 patients with exercise intolerance based on a network model of
invasively measured CPET variables [7]. As such, non-invasive CPET-based phenomapping
for CV risk stratification remains unexplored. Therefore, we applied an unsupervised ML
approach to identify clinically distinct phenogroups based on CPET summary metrics from
a large patient sample with diverse CV risk profiles. Next, we evaluated the clinical value
of CPET-based phenogrouping for prediction of incident CV events.

2. Materials and Methods
2.1. Study Population

This retrospective study is an iCOMPEER sub-study (“Integrative computer modeling
for personalized profiling of CRF and prediction of response to ambulatory cardiac reha-
bilitation”). The study received approval from the Ethics Committee of UZ/KU Leuven
(#S64901). We screened data from 3466 adult patients who underwent a maximal CPET at
the University Hospital Leuven (Leuven, Belgium) between April 2010 and October 2020.
Patients were referred for CPET for diverse reasons: (a) following recent revascularization,
including elective percutaneous coronary interventions (PCIs); (b) for CV risk assessment
in hypertension, obesity, or diabetes mellitus; (c) as part of screening before initiating an
exercise program; or (d) for differential diagnosis of dyspnea, chronic fatigue syndrome or
another exercise-limiting condition. Only the first CPET of each patient was considered.

Patients were excluded from analysis if they (1) were below 18 or above 80 years old;
(2) had previous myocardial infarction with an impact on left ventricular function (i.e., ejec-
tion fraction < 50%), symptomatic heart failure, congenital heart disease, cardiomyopathy,
cardiac surgery (e.g., coronary artery bypass grafting) or an artificial pacemaker; (3) had
an autoimmune disease, a malignancy or recreational drug abuse; (4) were pregnant; or
(5) did not pass the criteria of a maximal CPET (see Section 2.5). The final study sample
included 2280 patients.

2.2. Retrospective Data Retrieval

Data was pooled from the medical repository system of the University Hospital Leu-
ven. The data comprised demographics, anthropometrics, disease history and medication
intake as well as CPET summary metrics. Blood test results for renal function (eGFR) and
glucose regulation (blood glucose, HbA1c) from less than 1 year before CPET were retrieved
to complement the medical data. This biochemical data was available in 1772 patients
(77.7%; median time between blood sample and CPET: 1.1 months).

Definitions of the CV risk factors and comorbidities, such as hypertension, chronic
kidney disease and diabetes mellitus, are detailed in the Supplementary Material. CV
diseases and surgery were determined from the patient’s medical history files and surgery
reports (Table S1).
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2.3. Outcome Collection (Incident CV Events)

To evaluate the performance of the CPET-based phenogrouping model for CV disease
prediction, we collected information on incidence of fatal and non-fatal CV events from
the medical repository system. CV events were ascertained until December 2022. Fatal
and non-fatal CV events included the following: coronary events (myocardial infarction,
acute coronary syndrome, angina pectoris or ischemic heart disease requiring coronary
revascularization), symptomatic heart failure, valvular heart disease requiring surgical
intervention, heart block, pacemaker implantation, incident atrial fibrillation, stroke, tran-
sient ischemic attacks, aortic aneurysm, pulmonary heart disease, pulmonary embolism or
infarction, arteriosclerosis, other peripheral vascular disease, arterial embolism or thrombo-
sis, and other diseases of arteries and arterioles. A grace period of 3 months for a first CV
event was respected to exclude events resulting from residual therapy (e.g., planned PCI
for residual lesions).

2.4. Spirometry

Spirometry was available for 1756 of the 2280 patients (77.0%) prior to CPET. Variables
recorded were the forced expiratory volume in 1 s (FEV1), the forced vital capacity (FVC),
and their ratio (FEV1/FVC). The percentage predicted FEV1 and FVC were calculated as
the measured FEV1 and FVC relative to the FEV1 and FVC predicted when considering the
patient’s age, sex, and height [8].

2.5. Cardiopulmonary Exercise Testing

Patients were instructed not to refrain from taking their medications prior to CPET.
Patients had performed a CPET in a hospital setting on a cycle ergometer (Ergometrics 800S,
Ergometrics, Bitz, Germany) supervised by a physiotherapist or clinician in accordance with
the then prevailing recommendations [9]. Each patient performed an incremental exercise
protocol, aiming to reach maximum exertion within 8–12 min (20 W + 20 W/min (79.9%),
20 W + 10 W/min (12.2%), 10 W + 10 W/min (6.7%) or another incremental protocol (1.2%)).
During the test, all patients were encouraged to reach maximal exertion and instructed to
maintain the cycling cadence between 60 and 70 rotations per minute. Exercise testing was
performed under continuous ECG monitoring with breath-by-breath analysis of inspired
and expired gas (VO2, VCO2) and minute ventilation. The BP was measured every other
minute using an automated BP monitor. The CPET was stopped upon volitional fatigue,
when the patient was unable to keep the pedalling rate above 60 rpm or when any AHA
termination criterion was reached [10]. After the test, the patient rated the maximal level of
perceived exertion on the 6 to 20 Borg scale. The test supervisor determined the point of the
second ventilatory threshold (VT2) using the ventilatory equivalent VE/VCO2 method [11].
Patients were included in analyses if VT2 and/or a peak respiratory exchange ratio (RER,
the ratio of VCO2 and VO2) above 1.05 occurred [12].

2.6. CPET Summary Metrics

We derived CPET metrics at peak exercise, including the load, VO2, RER, HR, O2
pulse (as VO2peak/HRpeak), systolic BP and ventilation. VO2peak was the highest of the last
three consecutive 30-s averages of VO2. Peak O2 pulse was calculated as VO2peak/HRpeak.
We additionally indexed VO2peak and peak O2 pulse for body weight in kilograms. The
percentage of age-predicted HR was 100 × [peak HR/maximal predicted HR (defined as 220-
age)]. We applied sex-specific equations to calculate the predicted peak VO2 from age, weight,
and height [in men: −69 + 1.48 × age + 14.02 × height + 7.44 × weight − 0.2256 × age2;
in women: −588 − 11.33 × age + 9.13 × height + 26.88 × weight − 0.12 × weight2]
and retrieved percentage predicted VO2 as 100 × VO2peak/predicted peak VO2 [13]. The
peak metabolic equivalents of Task (METspeak) were calculated as VO2/kgpeak/3.5. The
VE/VCO2 slope was determined by applying linear regression on the ventilation and
VCO2 tracings recorded during the exercise period until the respiratory compensation
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point [14]. In addition, we derived the percentage of VO2 and HR at VT1 relative to the
peak exercise values.

2.7. Statistical Analysis

Study data were managed using the REDCap electronic data management tool hosted
at KU Leuven [15]. Means and frequencies were compared between males and females
using two-sided unpaired t-tests and χ2 tests, respectively. A p value below 0.05 on a
two-sided test was considered statistically significant.

2.8. Cluster Analysis for CPET-Based Phenogrouping

Python 3.8 (https://www.python.org, accessed on 10 May 2023) was used for the
unsupervised analysis to identify sex-specific, CPET-based phenogroups and to investigate
their associations with the clinical data and CV outcome. Figure 1 summarizes the steps of
the unsupervised ML pipeline.
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Figure 1. Workflow of the unsupervised machine learning. The blue and orange rhomboids repre-
sent the input data and the output of the analysis, respectively. The rectangles describe analytical
steps. The dashed line represents data supporting the phenogrouping. CPET, cardiopulmonary
exercise testing.

2.8.1. Feature Selection

Before phenogrouping, we applied a feature selection step to avoid any clustering bias
originating from strongly correlated features. First, the 18 spirometric and CPET features
were standardized to a mean of 0 and standard deviation of 1. A Pearson’s correlation
matrix was constructed by using the Pandas library (1.1.2) to identify highly correlated
features (i.e., correlations with a Pearson correlation coefficient ≥ 0.8). Of the highly
correlated features, only the most connected and most clinically relevant features were kept
so as to end up with a set of features for phenogrouping free from strong interrelationships.
Eventually, FEV1, FVC, and their ratio were not considered for the phenogrouping as

https://www.python.org
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spirometric data was missing in 23% of the patients. In total, 10 CPET features were, thus,
selected for phenomapping.

2.8.2. Model Fitting

Two clustering approaches were taken from the scikit-learn library version 0.23, which
were applied to the male and female patients separately [16,17]. First, we performed
exploratory analysis with biclustering, based on hierarchical clustering with Euclidean
distance and Ward linkage, to visually identify patterns that could define subsets of pa-
tients based on the previously determined set of 10 features. A biclustering heatmap was
created using the seaborn library (v0.10.1), visualizing the grouping of both patients and
CPET variables.

Second, we used Gaussian mixture model-based clustering, fit with an expectation
maximization algorithm, for the actual CPET-based phenomapping [17,18]. The advantages
of Gaussian mixture model-based clustering, compared to other approaches, relate to the
following: (i) the possibilities of statistical analysis using the underlying probabilistic
framework, (ii) estimating cluster parameters from soft assignments, (iii) accounting for
variance and (iv) the formation of clusters of different sizes and shapes [19].

By using Bayesian information criteria (BIC), the ideal number of clusters (K) in
men and women was determined for every tested k, as implemented in the scikit-learn
library [16,20]. The K with the lowest BIC represented the most appropriate number
of clusters. Based on visual inspection of the biclustering heatmap and the BIC values,
we instructed the Gaussian mixture algorithm to identify four male and four female
phenogroups. Four clusters were considered per sex to enable sufficient granularity be-
tween the phenogroups, while maintaining adequate interpretability. Next, the R package
VarSelLCM v2.1.3 (https://www.r-project.org, accessed on 10 May 2023) was applied
to determine the importance of the features in the phenogroups by sex. The package
uses a model-based clustering framework by optimizing a modified integrated complete-
data likelihood [21]. Radar charts were used to visualize CPET features across the sex-
specific phenogroups.

2.9. Model Validation

To define the clinical relevance of the CPET phenogrouping, we first compared clinical
characteristics across the phenogroups by means of two-sided unpaired t-tests and χ2

statistics, with Bonferroni correction of p values to account for multiple testing. Next, using
the lifelines library v0.27, we plotted the event-free survival of CV events per phenogroup
and performed pairwise Log-rank tests comparing the individual Kaplan–Meier curves.
We also calculated the multivariable-adjusted Cox proportional hazard ratios expressing
the adjusted risk for CV events per phenogroup (with phenogroup 1 as reference). We con-
sidered the following confounders in Cox regression: age, body height and weight, heart
rate, systolic and diastolic BP, antihypertensive drug intake and a history of diabetes melli-
tus, chronic kidney disease and cardiovascular intervention. We also tested models that
additionally accounted for differences in VO2/kgpeak or the percentage predicted VO2peak.

3. Results
3.1. Population Characteristics

Table 1 presents the clinical and CPET characteristics by sex. Of the 2280 patients,
1092 (47.9%) were female, 1310 (57.5%) had hypertension and 1057 (46.4%) were taking
BP lowering medication. Overall, females were younger than males (47.5 ± 13.7 years
in women vs. 55.9 ± 13.0 years in men), and had a more favorable CV risk profile and
medical history and less medication intake. Apart from a higher HR at rest and at peak
exercise in women, men achieved significantly higher CPET values than women, including
a higher load, VO2, O2 pulse, systolic BP, minute ventilation, VE/VCO2 slope and RER at
peak exercise (p ≤ 0.011) (Table 1).

https://www.r-project.org
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Table 1. Clinical characteristics of 2280 patients.

Characteristics Men
(n = 1188)

Women
(n = 1092) p Value

Age and anthropometrics
Age, years 55.9 ± 13.0 47.5 ± 13.7 <0.0001
Weight, kg 86.0 ± 14.7 71.0 ± 14.5 <0.0001
Height, cm 176.2 ± 7.1 165.2 ± 7.0 <0.0001

BMI, kg/m2 27.7 ± 4.4 26.1 ± 5.3 <0.0001
Medical history

Hypertension, n (%) 858 (72.2) 452 (41.4) <0.0001
Diabetes mellitus type I or II, n (%) 166 (14.0) 57 (5.2) <0.0001

Chronic kidney disease, n (%) 59 (5.0) 24 (2.2) 0.0006
Obstructive pulmonary disease, n(%) 45 (3.8) 44 (4.0) 0.85

CV disease, n (%) 732 (61.6) 205 (18.8) <0.0001
CV intervention, n (%) 702 (59.1) 164 (15.0) <0.0001

Medication
Antihypertensive drugs, n (%) 730 (61.4) 327 (29.9) <0.0001

Lipid-lowering drugs, n (%) 779 (65.6) 251 (23.0) <0.0001
Anti-thrombotic drugs, n (%) 755 (63.6) 233 (21.3) <0.0001

Antidiabetic drugs, n (%) 142 (12.0) 56 (5.1) <0.0001
Spirometry *

FEV1, L 3.6 ± 0.8 2.8 ± 0.6 <0.0001
FEV1 %predicted 103.8 ± 16.3 103.8 ± 17.6 0.97

FVC, L 4.7 ± 0.9 3.6 ± 0.7 0.0085
FVC %predicted 106.9 ± 15.2 111.7 ± 17.1 <0.0001
FEV1/FVC (%) 77.3 ± 7.6 78.3 ± 8.2 0.0085
CPET data at rest

HR, bpm 71.8 ± 13.6 80.2 ± 14.3 <0.0001
SBP, mmHg 127.1 ± 19.6 118.3 ± 19.0 <0.0001
DBP, mmHg 78.2 ± 11.6 76.9 ± 11.5 0.0061

CPET data at peak
Load, watt 191.9 ± 50.2 131.3 ± 37.2 <0.0001

VO2, mL/min 2143 ± 597 1473 ± 380 <0.0001
VO2 per kg, mL/kg/min 25.3 ± 7.5 21.3 ± 6.0 <0.0001
VO2 percentage predicted, % 89.9 ± 19.5 88.6 ± 18.3 0.083

HR, bpm 147.9 ± 24.7 156.2 ± 23.9 <0.0001
HR percentage predicted, % 90.0 ± 12.4 90.5 ± 11.2 0.36

O2 pulse, mL/beat 14.5 ± 3.0 9.5 ± 2.0 <0.0001
O2 pulse/kg, mL/beat 0.17 ± 0.04 0.14 ± 0.03 <0.0001

SBP, mmHg 181.9 ± 28.6 159.1 ± 28.4 <0.0001
VE, L/min 82.8 ± 23.1 54.0 ± 13.7 <0.0001

VE/VCO2 slope 28.6 ± 4.4 28.1 ± 4.4 0.011
RER 1.18 ± 0.08 1.16 ± 0.08 <0.0001

Borg score 15.9 ± 1.6 16.0 ± 1.8 0.24

Data are presented as mean ± SD or number of subjects (%). p values are for differences between men and women.
* Data available in 877 men and 879 women. BMI, body mass index; CPET, cardiopulmonary exercise testing; CV,
cardiovascular; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HR, heart rate; RER, respiratory
exchange ratio; SBP, systolic blood pressure; VCO2, volume of carbon dioxide exhaled; VE, minute ventilation;
VE/VCO2 slope, ventilatory efficiency; VO2, oxygen uptake.

3.2. CPET-Based Phenogroups
3.2.1. Feature Selection and Phenogrouping

For feature selection prior to the phenogrouping, correlations were determined across
18 spirometric and CPET features by means of a Pearson’s correlation matrix to filter a
set of features free from strong interrelationships (Figure 2). Of the eight highly corre-
lated features, we kept loadpeak and VO2/kgpeak as features for phenogrouping, given
their major clinical importance (Figure 2B). As a result, we excluded VO2peak, VCO2peak
and peak minute ventilation (because they were strongly correlated with loadpeak) as
well as VCO2/kgpeak and O2 pulse/kgpeak (because they were strongly correlated with
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VO2/kgpeak) from the phenogrouping (Figure 2B). In addition, the spirometric variables
were also excluded from phenogrouping, as this data was missing in 23% of the patients,
leaving 10 CPET variables for phenomapping.
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Figure 2. Correlations between the spirometric and the CPET features. Strong correlations, those
with an absolute Pearson correlation coefficient > 0.8, were framed in red in the correlation matrix
(A) and presented below (B). The spirometric measurements were eventually excluded from the
phenogrouping, due to the extensive amount of spirometric data missing (23.0%). In addition,
five CPET metrics were excluded from the phenogrouping due to high collinearity (see B), leaving
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Figure S1 presents the heatmap from biclustering based on agglomerative hierarchical
clustering of the 10 CPET features. Based on visual inspection of the biclustering heatmap
(Figure S1), and on the BIC values (Figure S2), the optimal number of clusters ranged
between 3 and 6 in women and between 4 and 6 in men. Four clusters were eventu-
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ally considered per sex to enable sufficient granularity between the phenogroups, while
maintaining adequate interpretability. As such, the Gaussian mixture modeling algorithm
extracted four phenogroups per sex. In both men and women, the loadpeak, VO2/kgpeak,
and HRpeak had the highest power to discriminate the four clusters (Figure S3). In contrast,
SBPpeak (and the Borg score in women) were the least important for the phenogrouping.

3.2.2. Comparing Phenogroup Characteristics

Figure 3 presents the radar charts comparing the 10 CPET features across the sex-
specific phenogroups. In general, in both men and women, VO2/kgpeak and HRpeak gradu-
ally declined and VE/VCO2 slope gradually increased from phenogroups 1 to 4 (Figure 3).
Within each sex, phenogroup 4 was, thus, characterized by the lowest VO2/kgpeak, lowest
HRpeak and highest VE/VCO2 slope.

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 3. Radar charts of the CPET features used for the phenogrouping illustrate the superposition 
of these features in each of the four phenogroups identified for each sex. The plot lines compare the 
clusters’ standardized values expressed as z-scores relative to the global average (=0) across the ten 
dimensions used as inputs to the clustering process. Abbreviations as in Table 1. 

3.2.3. The Association between CV Outcome and Phenogroup Assignment 
The median follow-up time was 5.3 years (5th–95th percentile, 1.3 to 10.8 years). 

During the follow-up time, 278 males and 109 females experienced a CV event (43.9 and 
16.2 events per 1000 person-years, respectively). In both sexes, the incidence of CV events 
increased significantly from phenogroup 1 to 4 (Figure 4). 

In males, relative to phenogroup 1, the adjusted risk for CV events was significantly 
higher for phenogroups 3 (adjusted hazard ratio with 95% CI (HRadj): 1.51, 1.00–2.27; p = 
0.048) and 4 (HRadj: 2.19, 1.31 to 3.66; p = 0.0028), after adjustment for clinical confounders 
(Figure 5). After an additional adjustment for VO2/kgpeak or percentage predicted VO2peak, 
phenogroup 4 was still at higher risk for CV events than phenogroup 1 (Table 2). 
Reversely, a lower METspeak was significantly associated with a higher CV risk in men, also 
after adjustment for clinical phenogroup information, at least for METspeak on a continuous 
scale (Table S4). In females, the risk for future CV events did not differ between the 
phenogroups after adjustment for the clinical covariables and VO2/kgpeak or percentage 
predicted VO2peak. (Figure 5, Table 2), but was also not associated with METspeak after 
accounting for clinical covariables (Table S4).

Figure 3. Radar charts of the CPET features used for the phenogrouping illustrate the superposition
of these features in each of the four phenogroups identified for each sex. The plot lines compare the
clusters’ standardized values expressed as z-scores relative to the global average (=0) across the ten
dimensions used as inputs to the clustering process. Abbreviations as in Table 1.

Table S2 presents the clinical characteristics per female phenogroup. From the first
(n = 102) to the second (n = 713) to the third (n = 166) to the fourth phenogroup (n = 111), we
noted the following: (i) a progressive increase in age, BMI and resting systolic BP (ii) a strong
increase in disease prevalence (as the history of hypertension, diabetes mellitus, chronic
kidney disease and CV disease), (iii) a progressive increase in the intake of antihypertensive,
lipid-lowering, anti-thrombotic and anti-diabetic drugs, and (iv) a progressive decline in
the FEV1 and FVC (Table S2). In men, we observed the same inter-phenogroup differences,
in age, systolic BP, disease history, medication intake and spirometry from the first (n = 327)
to the second (n = 132) to the third (n = 661) to the fourth phenogroup (n = 68), as in women
(Table S3).

3.2.3. The Association between CV Outcome and Phenogroup Assignment

The median follow-up time was 5.3 years (5th–95th percentile, 1.3 to 10.8 years).
During the follow-up time, 278 males and 109 females experienced a CV event (43.9 and
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16.2 events per 1000 person-years, respectively). In both sexes, the incidence of CV events
increased significantly from phenogroup 1 to 4 (Figure 4).

In males, relative to phenogroup 1, the adjusted risk for CV events was significantly
higher for phenogroups 3 (adjusted hazard ratio with 95% CI (HRadj): 1.51, 1.00–2.27;
p = 0.048) and 4 (HRadj: 2.19, 1.31 to 3.66; p = 0.0028), after adjustment for clinical con-
founders (Figure 5). After an additional adjustment for VO2/kgpeak or percentage predicted
VO2peak, phenogroup 4 was still at higher risk for CV events than phenogroup 1 (Table 2).
Reversely, a lower METspeak was significantly associated with a higher CV risk in men, also
after adjustment for clinical phenogroup information, at least for METspeak on a continu-
ous scale (Table S4). In females, the risk for future CV events did not differ between the
phenogroups after adjustment for the clinical covariables and VO2/kgpeak or percentage
predicted VO2peak. (Figure 5, Table 2), but was also not associated with METspeak after
accounting for clinical covariables (Table S4).

Table 2. The multivariable-adjusted risk for cardiovascular events by the integrative CPET profiles.

Adjusted Models

Unadjusted Model Clinical Covariables Clinical Covariables
+ VO2/kgpeak

Clinical Covariables
+ % Predicted VO2, peak

HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value

Females

Phenogroup 2 3.72
(0.90–15.3) 0.069 1.92

(0.45–8.17) 0.88 1.79
(0.40–7.94) 0.77 2.55

(0.66–9.78) 0.17

Phenogroup 3 10.7
(2.54–44.9) 0.0012 1.64

(0.46–7.36) 0.65 1.54
(0.33–7.12) 0.55 2.19

(0.55–8.66) 0.26

Phenogroup 4 19.6
(4.71–81.8) <0.0001 1.65

(0.36–7.50) 0.65 1.51
(0.31–7.33) 0.51 2.51

(0.60–10.6) 0.21

Males

Phenogroup 2 2.72
(1.66–4.46) 0.0001 1.53

(0.90–2.60) 0.11 1.19
(0.69–2.07) 0.52 1.52

(0.85–2.71) 0.15

Phenogroup 3 3.42
(2.36–4.95) <0.0001 1.51

(1.00–2.27) 0.048 1.30
(0.84–2.01) 0.24 1.54

(1.00–2.37) 0.051

Phenogroup 4 5.99
(3.70–9.70) <0.0001 2.19

(1.31–3.66) 0.0028 1.76
(1.00–3.07) 0.048 2.09

(1.20–3.67) 0.0098

Hazard ratios (95% CI) represent the risk for cardiovascular events relative to phenogroup 1. Clinical covariables
included age, height, weight, heart rate, systolic and diastolic blood pressure, antihypertensive drug intake and
history of diabetes mellitus, chronic kidney disease, and cardiovascular intervention at baseline. Models with
VO2/kgpeak did not include weight. Models with % predicted VO2, peak did not account for age (as already
considered in the calculation of the % predicted).
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and cardiovascular intervention at baseline. Table 2 details the hazard ratios and p values from the
unadjusted and adjusted models, including the models accounting for differences in VO2/kgpeak or
% predicted VO2,peak.

4. Discussion

We leveraged clinical and CPET data from a large and heterogeneous patient sample to
construct integrative cardiopulmonary exercise response profiles for CV risk stratification.
In brief, unsupervised machine learning identified four CPET-based phenogroups in both
men and women, which stratified the patient sample along CV risk in terms of both
prevalent and future CV disease. These findings may pave the way to an integrative CPET
interpreter for CV risk stratification and CV event prediction.

Previous studies demonstrated the additive prognostic value of individual CPET
metrics, beyond traditional risk factors in individuals with symptomatic diseases [22–24].
These studies, however, focused on prognostic adverse events in patients with already
established diseases, particularly symptomatic heart failure [24]. Moreover, the studies
mostly tested the predictive value of only peak O2 consumption and the VE/VCO2 slope,
by means of traditional regression modeling [24]. More research is warranted to assess
the added value of integrative CPET evaluation, especially for the identification of at risk
(asymptomatic) populations [25].

Within this context, ML approaches (either supervised or unsupervised) may enable
the extraction of clinically meaningful profiles from CPET data for early CV risk strati-
fication. Recently, plenty of studies have explored supervised ML methods for disease
diagnosis or prognosis using CPET data in at-risk individuals [26–28], but only a limited
number of studies have applied unsupervised learning approaches. For instance, a previous
study on 1619 patients with chronic heart failure applied a cluster analysis on an extensive
set of clinical variables, including exercise performance metrics, such as HRpeak, VO2,peak,
RERpeak and VE/VCO2 slope [29]. They identified four distinct heart failure phenotypes
heterogeneous in exercise capability and at risk for all-cause mortality and hospitalization.
Unfortunately, the authors did not provide insights into the importance of the variables
considered in the clustering, making it impossible to evaluate the contribution of the CPET
metrics to the phenogroup assignment and performance.

So far, only one study has applied clustering methods to group patients solely based on
CPET summary data. In 738 patients with unexplained dyspnea or exertional intolerance
who underwent an invasive CPET (iCPET), the algorithm defined four patient groups based
on a preselected set of 10 features [7]. Of note, although the authors adjusted minimally for
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confounders, the assigned phenogroups enabled prediction of three-year all-cause hospital-
ization independently of separate invasive measures and the clustering was validated in
two external patient cohorts [7]. However, the invasiveness of the CPET protocol applied
in the study limits the usefulness of its iCPET risk calculator to symptomatic patients with
advanced exercise intolerance and hampers its applicability for early CV risk stratification
strategies, particularly in settings with milder patient phenotypes.

In our study, the phenogrouping appeared to stratify the patient sample along CV risk
in terms of both prevalent and future CV disease. Indeed, in both males and females, we
identified a CPET-based phenogroup of patients with the most favorable CV risk profile as
being younger, having a lower BMI, a lower prevalence of hypertension, diabetes mellitus
and CV disease, a lower medication intake and the greatest response to exercise compared
to the other phenogroups. Besides having the lowest risk for prevalent CV disease, patients
within this phenogroup also represented the lowest risk of developing CV diseases in
the future, which was likely thanks to their having the highest CRFs and more favorable
CV risk profiles at baseline. In contrast, the unsupervised clustering identified a distinct
CPET-based phenogroup with patients at high risk for future CV events, as it included
older patients with an unfavorable CV risk profile (e.g., more CV risk factors, higher disease
prevalence and higher medication intake). Of note, in males, the increased risk for future
CV events of this ‘poor performing’ phenogroup was found to be independent of traditional
CV risk factors. In both males and females, the clusters between the adequate and poor
response groups were at intermediate risk with regards to CPET response, severity of CV
risk profile and risk for future CV events.

As a proof of concept, our unsupervised clustering analyses illustrate that integration
of CPET summary data may generate clinically useful CRF profiles that can help charac-
terize CV health in asymptomatic individuals at risk for future CV disease. In the past,
we applied a similar approach to identify echocardiography-based [18,30] and proteome-
based [20] phenogroups of CV health, illustrating the potential of integrative biomarker
profiling for better CV disease prediction. In addition, the clustering highlighted the CPET
metrics most important for adequate discrimination of patient clusters for CV risk strati-
fication. Indeed, the distinction between the phenogroups was predominantly based on
differences in metrics of overall CRF (loadpeak and VO2/kgpeak) and peak hemodynamic
response (HRpeak), and less on differences in other metrics, such as SBPpeak, RERpeak and
Borg score. The non-steered preference of the phenogrouping algorithm for CRF measure-
ments, such as VO2/kgpeak, may explain its capability to predict CV events. Importantly,
our findings demonstrated an additive value for integrative CPET profiling for CV risk
stratification beyond isolated CPET metrics, as the phenogrouping itself was found to be
predictive of CV events beyond highly predictive indexes, VO2/kgpeak, and percentage
predicted VO2,peak.

4.1. Clinical Implications and Perspectives

Our approach may enable a more comprehensive, faster, and more observer-friendly
way to evaluate CPET results than current approaches or it may be a complementary
tool to current approaches. Future large-scale studies should further evaluate the clinical
usefulness of integrative CPET profiling for CV risk stratification. In particular, studies
should further unravel the extent to which CPET-based phenomapping complements
or supplements current approaches for CV risk stratification. Future work should also
consider how our approach can be translated to other patient populations. Validated,
integrative CPET phenotyping may serve as a complementary tool for healthcare workers
to improve the clinical assessment of CRF and steer clinical decision making. Overall,
more research is needed to utilize the rich data originating from clinical exercise tests to
the fullest. While our analyses were limited to the most common summary CPET metrics,
the interpretation of the complex time series recorded during CPET may further improve
assessment of CRF components and, in consequence, the risk for CV events.
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4.2. Limitations and Strengths

We analyzed a rich resource of CPET data from a heterogeneous group of patients
who visited a university hospital with a high standard of care. Still, medical reports remain
prone to incomplete reporting of diseases and medication. Although the study sample
was heterogeneous, some patient groups may have been underrepresented (selection bias),
especially individuals too sick to perform a maximal CPET or too healthy to be prescribed
one. Furthermore, CPET was supervised by different clinicians and physiotherapists
using three devices during routine clinical practice, so caution is necessary regarding
interobserver variability in CPET measurements. Yet, CPET was performed by intensively
trained staff of a university hospital with a high standard of care and thorough quality
controls were performed on all data, including the CPET metrics. Causality cannot be
inferred from this cross-sectional setting. Lastly, the phenogrouping model produced
during this study has high commercial potential, but a stringent development procedure
for the software to be used as a medical device is required before it can be used as a real-life
medical application.

5. Conclusions

CPET-based clustering by means of unsupervised machine learning algorithms identi-
fied integrative CPET profiles, stratifying a heterogeneous patient sample according to CV
risk. Such phenogrouping may enable an integrative interpretation of CPET results, facili-
tate a more comprehensive assessment of CRF and complement risk stratification strategies
in asymptomatic individuals. Future studies should further validate the clinical value of
cardiopulmonary exercise response profiles for CV risk stratification in the community and
in at-risk patient populations.
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