
Citation: Taylor, C.R.; Monga, N.;

Johnson, C.; Hawley, J.R.; Patel, M.

Artificial Intelligence Applications in

Breast Imaging: Current Status and

Future Directions. Diagnostics 2023,

13, 2041. https://doi.org/10.3390/

diagnostics13122041

Academic Editor: Jae-Ho Han

Received: 20 April 2023

Revised: 20 May 2023

Accepted: 29 May 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Artificial Intelligence Applications in Breast Imaging: Current
Status and Future Directions
Clayton R. Taylor * , Natasha Monga, Candise Johnson, Jeffrey R. Hawley and Mitva Patel

Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
natasha.monga@osumc.edu (N.M.); candise.johnson@osumc.edu (C.J.); jeffrey.hawley@osumc.edu (J.R.H.);
mitva.patel@osumc.edu (M.P.)
* Correspondence: clayton.taylor@osumc.edu

Abstract: Attempts to use computers to aid in the detection of breast malignancies date back more
than 20 years. Despite significant interest and investment, this has historically led to minimal or no
significant improvement in performance and outcomes with traditional computer-aided detection.
However, recent advances in artificial intelligence and machine learning are now starting to deliver
on the promise of improved performance. There are at present more than 20 FDA-approved AI
applications for breast imaging, but adoption and utilization are widely variable and low overall.
Breast imaging is unique and has aspects that create both opportunities and challenges for AI
development and implementation. Breast cancer screening programs worldwide rely on screening
mammography to reduce the morbidity and mortality of breast cancer, and many of the most exciting
research projects and available AI applications focus on cancer detection for mammography. There
are, however, multiple additional potential applications for AI in breast imaging, including decision
support, risk assessment, breast density quantitation, workflow and triage, quality evaluation,
response to neoadjuvant chemotherapy assessment, and image enhancement. In this review the
current status, availability, and future directions of investigation of these applications are discussed,
as well as the opportunities and barriers to more widespread utilization.

Keywords: breast imaging; artificial intelligence; deep learning; machine learning; mammography;
breast MRI; breast ultrasound; radiology workflow; computer-aided diagnosis; computer-aided detection

1. Introduction

Breast cancer is the most common cancer in women of the United States, excluding
skin cancers, and represents nearly 1 in 3 new female cancers each year. According to
the American Cancer Society, there will be nearly 300,000 new cases of invasive breast
cancer and over 50,000 cases of ductal carcinoma in situ diagnosed in 2023, with over
43,000 deaths attributable to breast cancer in the United States alone [1]. The high incidence
and burden of breast cancer represent a tremendous challenge and opportunity for breast
cancer screening programs. The purpose of any breast cancer screening program is to
reduce the morbidity and mortality of breast cancer by identifying early, small breast
cancers to ensure accurate diagnosis and optimal treatment. Screening mammography is
the only breast cancer screening modality with a proven mortality benefit, leading to the
widespread adoption of mammography-based screening programs throughout the world.

Population based screening efforts have led to a large number of mammograms
being performed annually, with nearly 40 million mammograms performed every year in
the United State alone [2]. The importance of screening mammography performance to
breast cancer screening programs and the sheer volume of mammograms involved create
an imperative need to maximize performance and quality. In the United States, this is
closely regulated by the Food and Drug Administration (FDA) via the Mammography
Quality Standards Act (MQSA), including recent emphasis via the Enhancing Quality Using
the Inspection Program (EQUIP) process initiated in 2017. These processes have helped
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ensure quality and uniformity among screening mammograms performed in the United
States. However, even with these efforts there remain opportunities for improvement
in performance metrics for screening mammography. As an illustration of this need, an
evaluation of performance by the Breast Cancer Surveillance Consortium found a sensitivity
of 86.9% and a specificity of 88.9% for screening mammography, with opportunities for
improvement particularly noted regarding abnormal interpretation rates (false positives)
in nearly half of the studied radiologists [3].

2. Background

The convergence of screening mammography as a widespread population health tool
with opportunities to improve performance to reduce breast cancer mortality has generated
significant interest and research. Using computers in an attempt to improve performance is
not new and has a long history in breast imaging in the form of computer-aided detection
(CAD). The FDA first approved CAD for use in mammography in 1998, and by 2002, this
technology was reimbursable by the Center for Medicare and Medicaid Services. This
approval led to its rapid adoption in breast imaging, with 74% of mammograms in 2008
performed with CAD [4].

The initial excitement and enthusiasm for the benefits of CAD in breast imaging
have given way to the realization that traditional CAD may yield limited or no increases
in diagnostic performance [4]. Multiple recent studies have raised concerns about the
cost-effectiveness and clinical utility of CAD in breast imaging. An observational study
of community-based mammography facilities from the Breast Cancer Surveillance Con-
sortium performed by Fenton et al. between 1998 and 2002 found that CAD use reduced
overall radiologist reading accuracy as evaluated by receiver operating characteristic curve
analysis [5]. A subsequent study published in July 2011 found that CAD use reduced
specificity by increasing recall rates, with no increase in sensitivity or invasive tumor char-
acteristics (stage, size, or lymph node status) [6]. Despite these concerns about its efficacy,
CAD utilization for screening mammograms has become ubiquitous, with reimbursement
bundled with screening mammography, and with utilization in 92% of all screening mam-
mograms performed in the United States in 2016 [7]. The failure of conventional CAD
to fulfill the need for improving and optimizing mammography performance creates a
continued opportunity for artificial intelligence (AI) in breast imaging.

3. Artificial Intelligence

AI is a large field that includes many diverse technologies and applications with the
shared characteristics of using computer-based algorithms and data to solve problems or
perform tasks that would typically require human intelligence. In the past 10–15 years,
there have been tremendous advances in the availability and accessibility of more powerful
computational hardware for processing and storing data needed for AI applications. At the
same time, and perhaps even more critically, there has been an exponential increase in the
amount and availability of data for training AI algorithms. These changes have allowed
for revolutionary developments in AI during the past 10 years, with particular focus on
machine learning (ML). ML is a subset of AI in which computers are trained and perform
functions without being explicitly programmed by humans on how to complete those tasks.
ML commonly uses features and input from human programmers as the basis of learning.
Further along the continuum of ML is representation learning, which does not require
human feature engineering, but rather involves a system learning the features itself. Deep
learning (DL) is a step further, where the features are extracted in a hierarchical fashion
and with many simple features making up more complex features [8]. These changes
and developments have allowed for DL applications that generate truly groundbreaking
performance enhancements in image analysis tasks [8].

DL utilizing convolutional neural networks has seen an explosion of possibilities and
practical uses for image analysis for non-medical images in the past 10 years. This includes
many non-medical imaging related tasks such as image classification or detection, which
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are already deeply ingrained in daily workflows. These successes have led to interest
for applications within radiology that could apply the success of AI algorithms in image
analysis to perform clinically meaningful tasks such as classification (presence or absence
of disease), segmentation (quantitative analysis of organs or lesions for surgical planning),
and detection (determining the presence or absence of a lesion or nodule) amongst many
other diverse applications for AI in radiology [8].

4. Artificial Intelligence in Breast Imaging
4.1. Opportunities in Breast Imaging for AI Applications

Breast imaging has many unique features and characteristics that create opportunities
for meaningful AI applications (Table 1). Specifically, the longstanding and unique struc-
tured lexicon of breast imaging as defined by the Breast Imaging Reporting & Data System
(BI-RADS®) from the American College of Radiology facilitates the development and imple-
mentation of AI. BI-RADS® provides a standardized and structured system of lexicon and
terminology, reporting, classification, communication and medical auditing for mammog-
raphy, breast ultrasound, and breast MRI [9]. This system supports the development and
evaluation of AI applications in breast imaging in many ways, perhaps most importantly
by creating a predefined methodology and framework for the radiologist’s interpretation
of breast imaging studies and the mapping of results. When combined with medical out-
comes, auditing, and reporting, there is a repository of data for breast imaging included in
radiologist interpretations and clinical outcomes for mammography [10]. Moreover, the
standardized approach to screening mammography where two specific mammographic
positions are imaged for each breast (craniocaudal and mediolateral oblique positions)
improves the standardization of imaging data being utilized for training and validation.

Table 1. Summary of Opportunities and Challenges for AI in Breast Imaging.

Breast Imaging Opportunities Breast Imaging Challenges

Longstanding uniform reporting and lexicon Recent widespread adoption of digital breast
tomosynthesis (DBT)

Mandated robust outcomes and clinical results tracking systems Variability in image appearance between vendors, increasing
with DBT and synthetic 2D mammography

Standardized positioning and technique File sizes are extremely large

Large available data sets for training
Breast imaging interpretation can rely on concurrently

performed mixed-modality (mammography, ultrasound,
MRI) studies

Familiarity with and acceptance of computer-aided
detection (CAD)

Clinical information obtained from patient, referring provider,
and technologists key for accurate interpretation

This standardization and established methodology for determining and tracking
results has facilitated the creation of multiple large data sets which are a prerequisite for
the development of high-performing AI algorithms. There are currently multiple large
mammography data sets, some of which contain more than 1 million mammograms with
associated patient factors and known clinical outcomes [11–14]. Many of the available
data sets come from various sources including different practice locations, practice types,
and multiple mammography vendors. Some data sets are also focused on including a
racially diverse case mix, which is critical to ensuring high levels of performance across
the entire population [11]. The availability of data sets is significantly more advanced for
mammography, in particular screening mammography, when compared to other breast
imaging modalities such as ultrasound or MRI.

4.2. Challenges of Breast Imaging for AI Applications

There are several unique aspects of breast imaging that make the development and
implementation of high-performing AI algorithms more challenging (Table 1). For example,
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the recent rapid adoption and widespread utilization of digital breast tomosynthesis (DBT)
has created challenges on multiple fronts. The image data for DBT are unique and signif-
icantly different from standard full-field digital mammography (FFDM), as many slices
of images are created with each mammographic position versus the single FFDM image
for each view. The appearances of the images, including benign and malignant pathology,
differ significantly. Moreover, DBT file sizes are orders of magnitude greater than those
of traditional FFDM images, with files sizes for single exams approaching or exceeding
1 gigabyte. This creates significant challenges for the storage, transfer, and consumption of
this large volume of data, particularly in a busy clinical application.

There are also significant variations in the appearance of DBT images between various
vendors, with the differences being significantly greater than when comparing traditional
FFDM mammographic images. Further compounding these challenges are the recent but
variable use of synthetic mammographic images to replace traditional FFDM images. These
synthetic images are generated from tomosynthesis imaging data, a method which has
the advantage of eliminating the need for standalone FFDM images and thus significantly
reduces the radiation dose for patients. The utilization of synthetic mammography is
highly variable [15]. Moreover, there are significant differences between the appearances
of these synthetic images between vendors and between software upgrades of a vendor.
This variability, and the recent heterogenous adoption of these technologies, has created a
significant limitation and challenge for AI algorithms which may not have been developed
for a certain image type or may not perform equally well across all vendors and systems.

An additional significant challenge for the development of high-performing AI algo-
rithms is the manner in which breast images are interpreted. Frequently, breast imaging
studies are interpreted with the utilization of multiple prior comparison imaging exams, al-
lowing radiologists to identify new, subtle, meaningful changes and dismiss stable, benign
variations. This is an additional process that must be either built into AI algorithms or oth-
erwise accounted for in their application. Additionally, the interpretation of breast imaging
is commonly a multimodal process, particularly outside of the screening mammography
environment. Often, mammography is used in conjunction with breast ultrasound, breast
MRI, or other adjunctive imaging modalities to evaluate and work up breast problems.
These tasks are also performed against a complex background in which the radiologist ag-
gregates information in real time about patients’ clinical and medical history, including risk
scores amongst other factors, referring providers, and technologists, which can influence
the most efficacious workup and diagnosis. These different, disparate data sources and
factors represent challenges for the development of high-performing AI algorithms.

5. Applications for Artificial Intelligence in Breast Imaging

Breast cancer screening programs rely on screening mammography to reduce the
morbidity and mortality of breast cancer. Much of the published literature and available
AI applications focus on cancer detection for mammography. However, in addition to
cancer detection, there are several potential interpretive and non-interpretive applications
for AI in breast imaging including decision support, risk assessment, breast density quanti-
tation, workflow and triage, quality evaluation, response to neoadjuvant chemotherapy
assessment, and image enhancement (Table 2).

Table 2. Breast Imaging Artificial Intelligence Potential Applications.

Interpretive AI Non-Interpretive AI

Cancer Detection Cancer Risk Assessment

Decision Support Density Quantification

Response to Neoadjuvant Therapy Workflow Triage

Image Enhancement

Image Quality Assessment
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6. Cancer Detection

Much of the research, development, and excitement surrounding AI applications in
breast imaging have been focused on cancer detection, notably cancer detection in screening
mammography (Table 3). The widespread adoption of breast cancer screening programs,
the significant morbidity and mortality of breast cancer worldwide, and the efficacy of
high-performing screening mammography create a unique and powerful opportunity for
AI. This has led to a tremendous focus on AI-based applications for mammography-based
breast cancer detection.

Table 3. Summary of FDA-approved AI Applications in Breast Imaging.

Product Name Vendor Country of Origin Modality

Cancer Detection

cmAssist® CureMetrix United States Mammography

Genius AI™
Detection Hologic®, Inc. United States Mammography and

Tomosynthesis

Lunit INSIGHT MMG Lunit South Korea Mammography

MammoScreen® 2.0 Therapixel France Mammography and
Tomosynthesis

ProFound AI® iCAD, Inc. United States Mammography and
Tomosynthesis

Saige-Dx™ DeepHealth, Inc. United States Mammography

Transpara® ScreenPoint Medical B.V. Netherlands Mammography and
Tomosynthesis

Decision Support

Koios DS™ Breast Koios™ Medical, Inc. United States Ultrasound

QuantX™ Qlarity Imaging United States MRI

Density Quantification

cmDensity™ CureMetrix, Inc. United States Mammography

IntelliMammo™

densityai™ Densitas® Canada Mammography

PowerLook® Density
Assessment

iCAD, Inc. United States Mammography

Quantra™ 2.2 Hologic®, Inc. United States Mammography and
Tomosynthesis

Saige-Density™ DeepHealth, Inc. United States Mammography and
Tomosynthesis

Syngo.BreastCare Siemens® Germany Mammography

Visage Breast Density Visage Imaging, Inc.® United States Mammography

Volpara TruDensity® Volpara Imaging New Zealand Mammography

WRDensity Whiterabbit.ai United States Mammography

Triage

cmTriage® CureMetrix, Inc. United States Mammography

HealthMammo Zebra Medical Vision Israel Mammography

Saige-Q™ DeepHealth, Inc. United States Mammography and
Tomosynthesis

Syngo.BreastCare Siemens® Germany Mammography
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There have been many published examples of AI algorithms which demonstrate
excellent performance in cancer detection for screening mammography. These include a
number of algorithms trained and evaluated on single-institution or homogenous internal
data sets. However, there have also been multiple, more recent examples of AI algorithms
trained on larger, more heterogenous or representative data sets. These includes an AI-
based cancer detection system trained on United Kingdom (U.K.) and United States (U.S.)
data comparing AI performance vs. radiologist performance in a reader study finding
absolute reductions of 5.7% and 1.2% in false positives and 9.4% and 2.7% in false negatives
(U.S. and U.K. data sets, respectively) [16]. The AI algorithm performed significantly
better than all human readers in the reader study [16]. Another seminal AI algorithm
was developed as the result of an international crowdsourcing challenge which found
that individual AI algorithms approached but did not exceed radiologist performance [17].
Rather, the best performance was achieved when an ensemble of the best AI algorithms was
combined with a radiologist [17]. An additional published AI model trained on more than
1 million images achieved an excellent AUC for cancer detection of 0.895 when evaluated
on a large data set. Further evaluation and comparison of this model’s performance with
a group of radiologists in a reader study found that the AI’s AUC exceeded that of all
individual readers; however, it was importantly found that the performance of a radiologist–
AI hybrid model was the highest in the reader study, exceeding both the individual and
AI-alone performances [18].

Such investigations have generated tremendous excitement for using AI applications
for breast cancer detection, with multiple commercially available products already available
for use on the market, in addition to other investigational or open-source AI algorithms.
However, there is currently a significant gap in the understanding of how these AI ap-
plications will perform in the real world when used in clinical practice by radiologists.
A recent review article found no prospective studies testing accuracy of AI in screening
practice [19]. The review also noted significant issues with methodology and quality in
published investigations, finding the majority of AI applications were less accurate than
a single radiologist and that all included algorithms were less accurate than a consensus
of two or more radiologists. The authors also noted the pattern of small, more limited
studies finding AI to be more accurate than radiologists demonstrated issues with bias and
generalizability, and that their results were not yet replicated in larger studies [19].

External attempts to evaluate the performance of AI algorithms have resulted in
variable observed performance. For example, a high-performing AI model demonstrated
significantly inferior performance when used at an external site in its native form [20].
This same AI model was then tested after training without transfer learning and after
retraining with transfer learning (using a pretrained algorithm and then applying it to a
new but related problem with some modification). Local retraining of that model with
transfer learning allowed for improvement in performance that approached the initially
reported levels [20]. The results suggest limitations and concerns regarding generalizability
of performance in AI applications. Perhaps more importantly, these results illustrate the
possibilities for optimizing AI performance locally at sites using a generally available model.
A study looking to externally evaluate and compare three different commercially available
algorithms with human readers (single and double) found that performance for the single
best AI algorithm was sufficiently high that it could be evaluated as an independent reader
for screening mammography [21]. Moreover, combining the first radiologist reader with
the best AI algorithm found more cancers than using the first and second radiologist
readers. A systematic review of independent external validation of AI algorithms for cancer
detection in mammography found only 13 data sets that met the inclusion criteria, with all
being either retrospective reader or simulation studies. The review found mixed results,
with only some AI algorithms alone exceeding radiologist performance, whereas in all
reviewed instances radiologists combined with AI outperformed radiologists alone [22]. An
additional serious concern is that developed and available AI algorithms may not perform
equally well in all subpopulations or patient groups. A study evaluating a well-known,
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previously externally validated, high-performing AI algorithm on an independent, external,
diverse population found that for certain patient groups, it had much lower performance
compared to other groups and previously published performances. These issues raise
concerns about unintended secondary consequences of inadequate inclusion of all patient
groups in testing and validation data sets [23].

DBT represents an additional challenge when interpreting the available literature
and evaluating AI performance for clinical use. Many of the large available data sets for
training and previously published AI algorithms were created and validated entirely or
predominantly using FFDM data sets. As DBT has gained widespread adoption and a high
level of utilization, this creates more uncertainty when attempting to generalize the expected
performance of commercially available or investigational AI algorithms into clinical practice.
A recent, large study evaluating a well-known commercially available AI algorithm’s
performance on FFDM versus DBT found significantly diminished levels of performance
for the AI algorithm with the DBT data [24]. The AI algorithm met or surpassed radiologist
performance for FFDM but generated a markedly higher and undesirable false-positive
rate with DBT images, illustrating both the challenges of these data and the difficulty in
generalizing performance across settings [24].

The high level of interest and focus on developing improved AI algorithms for screen-
ing mammography has led to the RSNA Screening Mammography Breast Cancer Detection
Competition of 2023 [25]. This competition will utilize data from the ADMANI data set and
should further increase the attention and resources dedicated to breast cancer detection
with AI applications [14].

The development and evaluation of AI tools for cancer detection in breast imaging
have overwhelmingly been focused on mammography. This is intuitive given the immense
number of mammography exams that are performed worldwide and the relatively stan-
dardized nature of mammography. There have however been additional investigations
regarding AI to increase cancer detection with breast ultrasound, breast MRI, and contrast-
enhanced mammography. A recent retrospective reader study evaluating hybrid AI and
radiologists’ performance in the interpretation of screening and diagnostic breast ultra-
sounds found preserved sensitivity for breast cancer detection with the hybrid AI workflow,
with the advantage of reducing false positives by 37.3% and decreasing benign biopsies by
27.8% for screening ultrasounds [26]. Screening breast ultrasounds can be performed using
a handheld technique or an automated technique. There are several benefits of automated
breast ultrasound technology for screening; however, such studies typically contain sig-
nificantly more than 1000 images, which presents a significant challenge for radiologists’
efficiency and can lead to failure to detect a meaningful finding. A commercially available
AI-powered application is available for use as CAD in automated breast ultrasound studies
which may be able to help address these challenges for automated breast ultrasound screen-
ing [27]. AI applications for cancer detection with breast MRI are also in development,
including a recent study reporting non-inferiority between breast radiologists and an AI
system for identifying malignancy in breast MRI [28]. Contrast-enhanced mammography
is another important supplemental screening modality whose use is evolving rapidly. A
DL model developed to evaluate contrast-enhanced mammography images demonstrated
excellent performance, and radiologist use of the AI model led to significantly improved
performance metrics for radiologists in the study [29].

7. Decision Support

Improving the efficacy of breast imaging interpretations is not restricted to cancer
detection on screening exams. There is also a need to improve radiologists’ diagnostic
performance when a lesion or area of interest is identified. Many opportunities for im-
provement are available in the realm of decision support, including limiting benign biopsy
recommendations and minimizing false-negative interpretations. Applications of decision
support have been studied in several different scenarios across various breast imaging
modalities. A study evaluating an AI-based clinical decision support application for DBT
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found that radiologists using the decision support system were able to increase sensitivity
while preserving specificity, thus reducing the likelihood of false-negative interpretations
without increasing benign biopsy recommendations [30]. A separate investigation evaluat-
ing AI decision support for mammography evaluated radiologist performance in categoriz-
ing masses, finding improved AUC when using AI decision support with both increased
sensitivity and specificity [31]. The authors also found that more junior radiologists made
more interpretive adjustments for masses that were suspicious when using AI decision
support, suggesting experience or confidence may be an important potential variable for
the impact of decision support. Another study evaluating an AI-based algorithm used
images and clinical factors for predicting malignancy among suspicious microcalcifications
seen on mammography, a common diagnostic problem encountered in breast imaging,
demonstrating non-inferior diagnostic performance compared to a senior breast radiologist
and outperforming junior radiologists [32].

Decision support opportunities in breast imaging extend beyond mammography. A
common diagnostic problem encountered is appropriately stratifying breast masses identi-
fied on an ultrasound as either benign, needing short-term follow-up, or requiring biopsy
for tissue diagnosis. A multicenter retrospective review of a commercially available AI
breast ultrasound decision support application found that radiologist reader performance
increased significantly when using the AI decision support system, with the AUC increas-
ing from 0.83 without decision support to 0.87 with decision support [33]. Interestingly, the
same study found that using decision support can reduce intrareader variability, providing
an opportunity to standardize interpretive performance [33]. In a recent retrospective study
evaluating decision support for breast MRI, radiologist readers from academic and private-
practice centers compared radiologists reading with conventional MRI CAD software
versus AI-based MRI CAD software. The study found the AUC significantly improved
with the AI algorithm for all readers, with an average improvement from 0.71 to 0.76 [34].
These findings suggest a role for improving diagnostic performance within the context of
complex breast MRI interpretations.

8. Breast Density

Breast density reflects the mammographic amount of fibroglandular tissue in the breast,
designated into four categories by BI-RADS: (a) almost entirely fatty, (b) scattered areas of
fibroglandular density, (c) heterogeneously dense, which may obscure small masses, and
(d) extremely dense, which lowers the sensitivity of mammography. Approximately 40% of
women in the United States have dense breasts, designated as category c or d [35]. Breast
density is an independent risk factor for breast cancer, with at least a moderate association
with breast cancer risk [36]. Due to this elevated risk and the decreased sensitivity of
mammography for them, women with dense breasts may benefit from supplemental
screening with modalities such as breast ultrasound, contrast-enhanced mammography,
molecular breast imaging, or breast MRI. In most states across the United States, women are
required by law to be notified of their breast density. Recently, the FDA issued a national
requirement for breast density notification, which will go into effect in September 2024 [37].

The accuracy of breast density reporting can be subject to interpersonal and intraper-
sonal variability amongst radiologists, highlighting the value of computer-based assessment
in the standardization of breast density reporting. Early iterations required manual input to
outline and define breast tissue density [38]. Numerous fully automated DL algorithms are
now available which use convolutional neural networks to define breast density, demon-
strating high levels of accuracy in stratifying dense and non-dense breasts. For example,
an externally validated algorithm demonstrated 89% accuracy in stratifying non-dense
and dense breasts, with a 90% agreement between the algorithm and three independent
readers [39]. Other models have also demonstrated high levels of agreement in clinical use
in the binary categorization of dense and non-dense breasts, with 94% agreement amongst
radiologists with a DL algorithm when evaluating more than 10,000 mammography exami-
nations [40]. Diagnostic accuracy can be maintained in algorithms assessing breast density



Diagnostics 2023, 13, 2041 9 of 17

in synthetic mammograms, demonstrating an accuracy of 89.6% when differentiating dense
and non-dense breasts [41]. However, the possibility for altered performance of automated
breast density assessments exists when moving from FFDM images to synthetic mammog-
raphy, including complex potential interactions with ethnicity and body mass index that
require awareness and attention [42]. Numerous FDA-approved algorithms for quantifi-
cation of breast density are currently available for use, including some widely used in
clinical practice (Table 2). A study comparing mammographic density assessment in these
models demonstrated that the percentage density measured by some specific commercially
available algorithms also had a strong association with breast cancer risk, suggesting there
may be utility in automated density assessment in cancer risk stratification [43].

9. Cancer Risk Assessment

Identifying women at increased risk of breast cancer is as an important assessment
when determining the need for additional screening and preventative intervention. Cur-
rent risk assessment models estimate the average risk of breast cancer for women with
similar risk factors, as opposed to individual breast cancer risk. These models include the
Gail model (BCRAT), Tyrer–Cuzick model (IBIS), Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm model (BOADICEA), BRCAPRO, and Breast
Cancer Surveillance Consortium model (BCSC). Each of these models accounts for different
factors such as age, age of menarche, obstetric history, first-degree and multi-generational
relatives with breast cancer, genetic information, number of previous biopsies, race and
ethnicity, and body mass index, amongst other factors. The models calculate 5-year, 10-year,
or lifetime risk of breast cancer and are used to identify women who may benefit from
supplemental high-risk screening for breast cancer, chemoprevention, or lifestyle modifica-
tions. As the different models rely on unique combinations of risk factors, including some
factors while excluding others, there are several limitations to a sole model being used
to independently predict cancer risk. For example, the Gail model can underestimate the
risk of breast cancer in women with familial history of breast cancer or a personal history
of atypia, as well as in non-American and non-European populations [44]. In a study
evaluating the 10-year performance of the Gail, Tyrer–Cuzick, BOADICEA, and BRCAPRO
models, the authors identified that the integration of multigenerational family history, such
as in the Tyrer–Cuzick and BOADICEA models, better demonstrates the ability to predict
breast cancer risk [45]. This analysis also suggested that a hybrid model incorporating
various factors from each of these models may help improve accuracy in breast cancer
detection risk. A separate cohort analysis comparing these 5 risk assessment models in
35,000 women over 6 years demonstrated similar, moderate predicative accuracy and good
overall calibration amongst the models (AUC 0.61–0.64) [46].

New developments in AI image-based risk models demonstrate promising results in
cancer risk assessment, in some instances outperforming traditional cancer risk assessment
models. A case-cohort study of an AI image-based mammography risk model assessed
the short-term and long-term performance of its model compared to the Tyrer–Cuzick
version 8 model over a period of 10 years [47]. The image-based AI model outperformed
the Tyrer–Cuzick model in both short-term and long-term assessment when evaluating
approximately 8600 women, with age-adjusted AUC AI model performances ranging
from 0.74 to 0.65 for breast cancers developed in 1 to 10 years, significantly exceeding the
Tyrer–Cuzick age-adjusted AUCs of 0.62 to 0.60 in this time period [47].

Mirai, a DL mammography-based risk model, incorporates digital mammographic fea-
tures along with clinical factor inputs to provide breast cancer risk prediction within 5 years
and was recently validated across a broad, diverse international data set [48]. Approxi-
mately 128,000 screening mammograms and pathologically confirmed breast cancers across
7 international sites in 5 countries including the United States, Israel, Sweden, Taiwan, and
Brazil, were evaluated [48]. Of the 62,185 unique patients, 3815 patients were diagnosed
with breast cancer within 5 years of the index screening mammogram, with Mirai obtaining
concordance indices of >/=0.75 and AUC performances of 0.75 for White women (0.71–0.78,
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95% CI) and 0.78 for Black women (0.75–0.82, 95% CI), outperforming traditional cancer
risk models. Such a model demonstrates the promise of an AI cancer risk assessment tool
to significantly improve the accuracy of breast cancer risk assessments. Moreover, making
personalized AI image-based assessments is an opportunity for improved performance for
all ethnicities and groups, including those for whom previous risk assessment models did
not perform as well.

10. Workflow Applications

AI-based triage tools can be used to prioritize patients and improve overall workflow
for radiologists interpreting breast imaging studies. This has been most well-studied with
screening mammography. Using AI-based triage algorithms, a retrospective simulation
study in which AI-based screening (normal—no radiologist, moderate risk—radiologist re-
view, and suspicious—recalled) was compared to radiologist screening found non-inferior
sensitivity and higher specificity (with a 25.1% reduction in false positives) [49]. The find-
ings of this study were achieved while simultaneously achieving a workload reduction of
62.6%, with triaged normal studies read only by the AI system. Similarly, another retro-
spective simulation study showed that using AI to triage mammograms into no-radiologist
assessment and enhanced assessment categories could potentially reduce workloads by
more than 50% and preemptively detect a substantial proportion of cancers otherwise
diagnosed later [50]. These findings suggest a novel potential way of integrating AI-based
cancer detection into clinical workflows to preserve or improve clinical performance while
reducing workloads. The implications for this type of workflow may differ between
screening programs with a single- versus a double-reader paradigm.

Another study evaluating an AI system used in the detection of lesions on DBT
found that when the algorithm was concurrently incorporated into the interpretation of
the mammograms, it reduced reading times by approximately half while still improving
accuracy with a statistically significant 0.057 average improvement in AUC [51]. As reading
times with DBT are significantly longer than with FFDM, this provides an opportunity for
increased efficiency, which is particularly important given the current shortage of trained
radiologists who can interpret mammograms. An alternative approach for improving
interpretive efficiency for DBT is the replacement of traditional 1 mm thin tomosynthesis
slices with 6 mm thick overlapping slices that has been implemented by a mainstream
mammography modality manufacturer [52]. These thick slices are created in part by using
AI algorithms to make salient suspicious findings more conspicuous [52]. This should
allow for increased efficiency in the interpretation of DBT by reducing the number of slices
for review. By using these triage tools, radiology practices could prioritize examinations
to be read immediately, categorize cases by complexity, and replace the second reader at
sites, offering double reading to enhance radiologist workflows [53]. As of today, there
are multiple commercially available algorithms that can assist in triage of mammographic
interpretation (Table 2).

11. Quality Assessment

The importance of maintaining high-quality positioning and technique has long been
a focus for mammography. MQSA includes a significant focus on ensuring standardization
and quality for mammography in the United States. Poor positioning is often identified
as a leading cause of clinical imaging deficiencies and misdiagnosis [54]. This has led
to the recently implemented FDA EQUIP initiative that began in 2017 to emphasize and
focus on ensuring and improving quality for the effective performance of mammography.
The need for uniform, high-quality mammographic technique and positioning creates an
opportunity for AI algorithms to evaluate mammography exams and provide feedback and
opportunities for improvement for performing technologists and interpreting physicians.
A recent study found an AI algorithm could assess breast positioning on mammography to
search for common issues that can lead to inadequate positioning, such as nipple in profile,
breast rotation, visualization of the pectoral muscle, inframammary fold, and the pectoral
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nipple line, with the algorithm being highly accurate in identifying these deficiencies [55].
Additional research studying the application of AI to breast positioning assessment has
looked to replicate additional quality assessment tasks performed by radiologists when
interpreting mammograms in hopes of standardizing the detection of these issues, finding
some success as well [56]. In fact, there is currently a commercially available application that
utilizes AI to help evaluate, track, and improve quality in mammographic positioning [57].

12. Neoadjuvant Chemotherapy Response

AI may also be used to assess treatment response to neoadjuvant chemotherapy for
breast cancer. Neoadjuvant chemotherapy (chemotherapy given prior to surgery) can
reduce tumor size, allowing for less-invasive surgical procedures. It also enables in vivo
evaluation of treatment response, allowing therapeutic treatment plans to be modified
based on each patient’s individual response [58]. Despite its relatively low sensitivity
(63–88%) and specificity (54–91%), MRI is currently the most accurate imaging method
for determining tumor response to neoadjuvant therapy [59]. Recent research has demon-
strated that AI has the potential to improve treatment response prediction. A meta-analysis
by Liang et al. found that ML and MRI are highly accurate (AUC = 0.87, 95% CI = 0.84 to
0.91) in predicting responses to neoadjuvant therapy [60].

AI applied to imaging may predict tumor response to treatment prior to the initiation
of neoadjuvant chemotherapy. A proof-of-concept study by Skarping et al. demonstrated
the effectiveness of a DL-based model using baseline digital mammograms to predict
patient responses to neoadjuvant therapy, with an AUC of 0.71 [61]. Their model predicted
tumor response by deciphering breast parenchymal patterns and tumor appearances as
reflected by different grey-level pixel presentations in digital mammography. This type of
platform may help aid in clinical decision-making prior to administering chemotherapy,
significantly reducing patient morbidity. Likewise, a study evaluating ultrasound images of
primary breast cancer in clinically node-negative patients was able to predict the likelihood
of having lymph node metastases at surgery with a high level of accuracy [62]. These
findings demonstrate the evolving possibilities for AI-based applications to positively
predict patient outcomes and may provide opportunities to individually tailor and improve
patient care.

13. Image Enhancement

There have been several recent novel investigations and developments using AI
algorithms to enhance the appearance of images in breast imaging. One creative example is
the use of an AI-based process that first involved collapsing or merging suspicious regions
of interest from DBT into ‘maximum suspicion projections’ that emphasize the suspicious
findings, making them more conspicuous [63]. These novel synthesized images are then
used as an input for an AI cancer detection model to detect breast cancers, reducing the
burden of image and data preparation. Along the same lines of this approach, a major
mammography modality vendor now has a commercially available AI-based application
that emphasizes features that are likely to be important for accurate imaging review, such
as bright foci which may represent calcifications, lines that can represent distortion, or
rounded objects that may be masses [52]. This information is derived from 1 mm slices
from the DBT images but is then combined into overlapping, thick 6 mm slabs that can
significantly decrease the number of slices that need to be reviewed while still preserving
the visibility of salient findings [52].

Additional investigations have evaluated using AI applications to reduce the amount
of intravenous contrast dose needed for breast MRI examinations [64]. This is especially
important given the current recommendations for serial annual supplemental screening
breast MRIs for patients at high risk for breast cancer and the recent focus on the possibility
of gadolinium retention. A recent study demonstrated an AI algorithm that was developed
using a data set of breast MRI images with and without contrast. This AI model was then
given inputs consisting only of non-contrast images from breast MRI studies and was able
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to generate simulated contrast-enhanced breast MRI images [65]. These simulated images
were felt to be quantitatively similar to, and demonstrated high level of tumor overlap
with, the true contrast-enhanced breast MRI images, with 95% of images found to be of
diagnostic quality by the study radiologists. These developments demonstrate the power
of AI applications to create clinical value and novel potential workflows using minimal or
limited data sets.

14. Discussion and Future Directions

There are at least 20 available FDA-approved AI-based applications available today for
breast imaging (Table 2). Beyond these currently commercially available applications, there
are many more areas for AI in breast imaging that are being investigated and developed.
These potential areas for AI applications to impact breast imaging are at various degrees of
maturity and availability (Figure 1).
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Figure 1. Visual representation of maturity and availability of different areas for AI applications for
breast imaging.

However, there are significant barriers to the implementation of AI applications in
breast imaging, including inconsistent performance, significant cost, and IT requirements,
along with the lack of radiologist, patient, and referring provider familiarity and trust [66].
Additionally, there are meaningful concerns for the generalizability of AI algorithms in
breast imaging, with a recent publication showing significant performance degradation of
an AI algorithm that was trained using images from a specific manufacturer when tested
using an updated system/software from that same manufacturer [67]. This required site-
specific modification of the algorithm to improve its performance. These issues demonstrate
a more general concern for the ability of AI applications to generate consistent and uniform
results between sites and clinical scenarios. This reinforces the need for careful evaluation
of applications for each site and close monitoring of performance. Further complicating
adoption is the lack of reimbursement for AI applications in breast imaging, which may
drive focus and adoption towards applications that can provide convincing workflow or
efficiency gains to counterbalance the costs of adoption and implementation. Additional
obstacles to the successful use of AI in breast imaging include a lack of understanding of
how radiologists interact with AI applications. This includes concerns about how biases
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may lead inexperienced radiologists to over rely on AI applications, resulting in diminished
clinical performance [68].

During the first few months of 2023, there has been tremendous excitement and focus
on a handful of AI natural language processing models, specifically large language models,
that seem poised to generate evolutionary and disruptive change throughout many different
fields and industries. ChatGPT, a conversation large language model, is perhaps the most
well-known and discussed of these models and is extremely successful at automatically
summarizing large inputs of information and answering questions in a conversational
manner. Potential applications within breast imaging may include imaging appropriateness
and clinical decision support, preauthorization needs, generating reports, summarizing
information from electronic medical records, and creating interactive computer-aided
detection applications [69]. Given the high degree of contact of breast imaging with
patients and general population applications like ChatGPT, large language models may
provide value in shaping and guiding patient interaction and education for breast imaging
topics in the future.

With the expanding use of AI in breast imaging, it will be necessary in the future to
define the roles of radiologists and AI applications in clinical care to maximize the clinical
benefit. These roles may change over time but in the near future may include tasks that are
best served by AI alone, radiologists alone, or AI and radiologists together (Figure 2).
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Figure 2. Venn diagram demonstrating possible future situations where radiologists or AI can make
contributions separately and together towards breast imaging care.

In addition to defining the roles that AI and radiologists will play in patient care, it will
be essential to build and shape the trust and perceptions of patients and referring providers
towards AI in breast imaging. Patient attitudes and perceptions regarding AI in radiology
are complex and include matters of distrust and accountability, concerns about procedural
knowledge, a preference for preserving personal interaction, efficiency, and remaining
informed about use [70]. More generally, approximately 50% of women of screening age
(over 50) in England report positive feelings about the use of AI in reading mammograms,
with the remainder being neutral or reporting negative feelings [71]. These data suggest
that there will be significant future work towards educating patients on how AI can be
implemented in breast imaging and keeping patients aware of the benefits and limitations
of its use.

15. Conclusions

The rapid evolution and expansion of the use of AI in breast imaging presents a
tremendous opportunity to improve the quality of breast imaging provided for patients.
Historically, the biggest challenges were the availability of sufficient computational power
and data sets for creating and training AI applications. Today, some of the most significant
challenges are validating AI performance across diverse data sets and patient populations
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and overcoming implementation barriers. In the future, the key challenges will likely
include better defining the roles that AI should play in patient care and then communicating
these decisions effectively to referring clinicians and patients. The value and opportunity
of AI in breast imaging are clear, and as these challenges are met in the future, the full
potential of AI to transform breast imaging can be realized.
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